STUDIES BASED ON THE COLORS AND MAGNITUDES IN STELLAR CLUSTERS¹

EIGHTH PAPER: THE LUMINOSITIES AND DISTANCES OF 139 CEPHEID VARIABLES

BY HARLOW SHAPLEY

Aside from the error involved in the determination of the zero-point of the luminosity-period curve,² most of the error affecting the absolute parallax of an isolated Cepheid variable is due to the uncertainty of apparent magnitude, since the period of light-variation is usually known with an accuracy that for this work is superfluous. Scores of observers, employing numerous methods and systems of magnitudes, have participated in the discovery and observation of these stars; but observations have often been made solely for the determination of periods, little attention being given to light-curves or accurate values of maximum and minimum light. Frequently the magnitudes are referred to the system of the *Bonner Durchmusterung*, and only occasionally, for the brighter or best known stars, to the Potsdam or Harvard photometric scales.

Adding to the uncertainty in the systems of magnitude the occasional difficulty, arising from changes in the form of light-curves, in obtaining accurate mean values of maximum and minimum brightness, we must expect an average probable error in the adopted median magnitude of the order of 0.4 mag. The consequent average probable error computed for the parallaxes of stars that are normal Cepheids is about 20 per cent of the tabulated values; for a number of the brighter stars and for well-observed cluster-type variables the error is only a little more than half that amount, but possibly it attains a maximum of 50 per cent for some of the faintest stars that are scantily observed on uncertain magnitude systems. Accurate determinations of the apparent visual or

¹ Contributions from the Mount Wilson Solar Observatory, No. 153.

² Mt. Wilson Contr., No. 151, sec. III.

photovisual magnitude should reduce the probable error of the parallax of any Cepheid to less than 15 per cent.

The estimated range of 10 to 50 per cent in the probable error of the parallaxes allows for a variation in the probable error of apparent median brightness from a tenth to a whole magnitude—an amount which is shown by an examination of the underlying observational material to be sufficient. We note, therefore, that for parallaxes obtained with the period-luminosity curve the accuracy appears to surpass that of direct measures on any object for which the parallax is less than o.o.o., and is essentially independent of distance. About two-thirds of the Cepheids now known have parallaxes smaller than o.o.

The greatest chance for serious error in the work lies in the unintentional inclusion of some stars that are not typical Cepheids. For a star showing periodic continuous variation which simulates certain Cepheid characteristics but exhibits peculiarities such as double maxima or minima, we have found from cluster studies that the absolute brightness usually is less than for typical variables having the same period. The mean periods of such peculiar stars are often long; and, conversely, Cepheids of very long period are frequently abnormal. Until the normality of period and light-curve is established, we must, therefore, look with some doubt upon the enormously great absolute luminosity (and distance) obtained for galactic variables with periods in excess of forty days. Accordingly such stars are relegated to a supplementary table, which also contains provisional parallaxes and luminosities of variables that for various other reasons seem uncertain.

The list of variables in Table I is essentially complete for typical stars with definitely determined periods less than forty days. The various Harvard compilations and Hartwig's annual catalogue are the principal sources of observational data.¹ Names and posi-

**Note added to proof, A pril, 1918.—Hartwig's catalogue and ephemeris of variable stars for 1915 was the last number of that annual publication available when the tables for this paper were compiled. The issue for 1918, which has now been received, contains not only numerous revisions of the periods of the older variables but also some additions to the list. The corrections demanded by the revised periods have been applied to the values in all the tables, the text has been modified where necessary, and the statistical results in Tables II-VI now include the data for the twelve additional stars in Table Ia.

Annals, 56. For a majority of the stars the median visual magnitude of the eighth column is the mean of the maximum and minimum magnitudes given in this Harvard list, although for a number of variables improved magnitudes are obtainable from recent literature. All photographic magnitudes have been reduced to the visual system with the aid of a mean color-curve. The periods are mainly from Hartwig's catalogues, but occasionally recent publications afford better values. The parallaxes have been computed from the absolute magnitudes, which were read directly from the luminosity-period curve. A representation of the curve appears in Fig. 1 of Contribution No. 151. For the sake of uniformity the first decimal place is retained for all the distances in the last three columns, though for the larger values it is generally meaningless.

The 35 stars in Table II include: (1) all with periods greater than forty days, some of which, RS Puppis, for instance, seem to show typical Cepheid variation, although others, with M-type spectra, may be classed more correctly with the long-period variables; (2) a few with period or type somewhat uncertain; (3) 7 stars that appear to belong to the RV Tauri type of variation, and (4) a number known to be otherwise peculiar or irregular. Further observation is sure to place some of these stars with those of Table I. While it is very probable that the absolute brightness of all of them is high, in many cases the luminosity-period relation may not hold rigorously. Moreover, the high galactic latitude of some variables with periods in excess of forty days suggests, as strongly as the frequent peculiarities of period and amplitude, that these stars differ too greatly from the typical Cepheid to make the estimated distances of much value.

¹ The periods of RV Tauri, R Sagittae, and V Vulpeculae are taken as thirty-nine, thirty-five, and thirty-eight days, respectively; these values, representing approximately the cycle of the principal variations, are more likely to give correct absolute luminosities. Cf. van der Bilt, Recherches Astronomiques de l'Observatoire d'Utrecht, VI, 1916. On the authority of Enebo similar treatment is accorded TV Andromedae, RY Lacertae, SW Persei, and RX Ursae Majoris. L₂ Puppis is a bright southern variable that may belong to this interesting type; a critical examination of its spectrum is very desirable. The study of the secondary variations of such typical stars as RR Lyrae (Astrophysical Journal, 43, 217, 1916) shows that the difference between the RV Tauri type and the ordinary Cepheids is not so great as appears superficially.

TABLE I

Parallaxes and Distribution in Space of 127 Cepheid Variables*

,		Position	Position in 1900	GALACTIC	CTIC	PERIOD IN	PERIOD IN MED. MAG.	A 25 A 4.0	2,11,4,0	DISTANC	DISTANCE (UNIT IS 100 PARSECS)	o Parsecs)
OZ	NAME	R.A.	Decl.	Long.	Lat.	Days	VISUAL		FARALLAA	Radial	Projected	From Plane
I	SY Cassiopeiae		+57°52'	85°	1 ₀ 4	4.071	9.6	—I.8	0,00052	19.2	19.2	- I.3
	SW Andromedae	0 18.4	+28 51	85.	-33	0.442	9.3	-0.3	0.0012	8.3	7.0	1 4.5
3	TU Cassiopeiae		+50 44	88	111	2.137	7.9	-I.2	0.0015	9.9	6.5	_ I.3
4	a Ursae Minoris		+88 46	16	+ 26	3.968	2.12	-1.81	0.016	9.0	0.5	
	RR Ceti	1 27.0	+ 0 50	114	- 59	0.553	9.8	4.0-	0.0016	6.3	3.2	
9	RW Cassiopeiae	I 30.7		26	4	14.80	9.5	-3.8	0.00022	45.4	. 45.3	
7	U Trianguli	I 49.7	+33 17	901	-27	0.447	9.11	-0.3	0.00042	23.8	21.2	8.01—
	UX Persei	2 6.I	+57 37	102	4	4.6	9.01	-2.0	0.00030	33.3	33.2	
6	UY Persei	2 27.I	+58 26	104	7	5.5	9.6	-2.2	0.00044	22.7	22.7	
10	SU Cassiopeiae	2 43.0		IOI	+	1.950	5.9	-I.2	0.0038	2.6	2.6	
II	Persei	3 1.8	+52 48	III	1	0.607	11.7	4.0-	0.00038	26.3	26.2	
12	RW Camelopardalis	3 46.2		112	+	16.402	8.8	-3.9	0.00020	34.5	34.4	+ 3.0
13	SX Persei	4 10.2	+41 29	126	10	4.290	8.01	-I.9	0.00020	34.5	34.4	
14	SZ Tauri	4 31.4		147	-17	3.149	7.1	9.1-	0.0018	5.5	5.2	9.1 —
15	SV Persei	4 42.8	+42 7	130	0	11.128	8.9	-3.3	0.00036	27.8	27.8	0
16	RX Eridani	4 45.2	-1554	182	-33	0.587	9.5	4.0-	0.0012	8.7	6.9	4.5
17	SU Aurigae	4 49.6		140	- 7	0.470	8.7	-0.3	9100.0	6.3	6.2	∞. 0 1
18	U Leporis	4 52.0		188	-33	0.581	9.5	4.0-	0.00.0	9.5	o.8	- 5.2
61	RX Aurigae	4 54.5	+39 49	134	0	11,626	9.2	-3.4	0.00063	15.9	15.9	٥.
20.:	SY Aurigae	Ŋ		133	+	10.138	9.5	-3.2	0.00033	30.3	30.2	
2I	Y Aurigae		+42 21	134	9+	3.859	9.6	8.I—	0.00052	19.2	19.1	
22	RZ Geminorum	5 56.6	+22 15	155	+	5.529	9.4	-2.2	0.00048	20.8	20.8	0
23	RS Orionis			164	7	7.566	9.8	-2.7	0.00055	18.2	18.2	
24	T Monocerotis			171	H	27.012	6.2	7.4.7	99000.0	15.2	15.2	
25	RT Aurigae		+30 34	151	+11	3.728	5.3	-I.8	0.0038	2.6	2.6	
26	RZ Camelopardalis	6 23.7		115	+23	0.480	12.0	-0.3	0.00035	28.6	26.3	
27	W Geminorum	6 29.2	+15 24	165	+	7.916	7.1	-2.8	0.00.0	9.5	9.5	+ o.8
28		6 58.2		164	+13	10.154	4·0	-3.2	0.0036	2.8	2.7	
29	TZ Aurigae	7 4.6	+40 56	143	+23	0.392	8.11	-0.3	0.00038	26.3	24.2	
30	RR Geminorum	7 15.1	+31 4	155	+21	0.397	10.2	-0.3	0.00079	12.7	6.11	+ 4.5

		,	-	-	-							
2.1	X Punnis		- 20		0	25.053	8.5	-4.6	0.00024	41.7	41.7	0
22	V Carinae		- 50	_	-12	6.695	7.8	-2.5	0.00087	11.5	11.2	
23	T Velorum		-47		- 3	4.639	°.	12.0	0.00.0	10.0	0.01	
34	V Velorum		-55	244	1	4.371	7.8	0·I-	0.0012	8.7	8.7	
35	l Carinae		-62		1	35.523	4.3	-5.I	0.0013	7.6	.7.5	
36	RR Leonis		+24		+54	0.452	9.6	-0.3	0.00.0	9.5	5.6	
37	UW Carinae		- 59		I	5.346	0.6	12.2	0.00058	17.2	17.2	- 0.3
38	YZ Carinae		1.58		1	18.158	8.6	-4·I	0.00020	34.5	34.5	
30	UX Carinae		[-57]		+	3.682	8.2	7.1-	0.00.0	9.5	9.5	
	UY Carinae		<u>-61</u>		1	5.544	8.8	-2.2	0.00063	15.9	15.9	
41	Y Carinae	IO 29.4	-57 59	253	0	3.640	8.4	7.1-	96000.0	10.4	10.4	0
42	UZ Carinae		9-	_	7	5.205	9.3	-2.I	0.00052	19.2	19.2	
43	SV Velorum		-55		+ 3	14.097	8.7	-3.7	0.00033	30.3	30.3	4 i.6
44	$\overline{}$		-57		+	18.984	7.3	-4·I	0.00052	19.2	19.2	
45	WW Carinae		<u>- 58</u>		0	4.676	9.6	-2.0	0.00048	50.8 0.8	20.8	0
46	WZ Carinae		9-		0	23.00	7.8	4.4	0.00036	27.8	27.8	0
47	XX Carinae		<u>-64</u>		1	15.725	8.2	-3.8	0.00040	25.0	25.0	N. I. 8
48	U Carinae		– 59		0	38.740	7.4	-5.3	0.00020	34.5	34.5	0
40	XY Carinae		-63		1 3	12.434	8.9	-3.5	0.00033	30.3	30.3	9.1 –
20	XZ Carinae		9-		0	16.644	8.4	-3.9	0.00035	28.6	28.6	
51	ST Centauri		-51		∞ +	3.151	10.0	9.1-	0.00048	20.8	20.6	+ 2.9
52	SU Draconis		494		+49	0.660	9.5	4.0-	0.0012	8.3	5.4	
33	UZ Centauri		-62		0	3.334	9.5	9.1—	69000.0	14.5	14.5	0
4.	S Muscae		69-		- 7	9.657	8.9	-3.1	0.00.0	9.5	9.4	
	SW Draconis		+70		+48	0.570	10.0	4.0-	0.00083	12.0	8.0	
56	SX Centauri		-48		+14	16.50	8.5	-3.9	0.00038	26.3	25.5	
57	T Crucis		19-		+	6.732	7.2	-2.5	0.0012	8.7	8.7	
58	R Crucis	12 18.1	19—		+	5.825	7.3	12.3	0.0012	8.3	8.3	+ o.i
59	R Muscae		- 68		_ 7	0.882	0.7	0.0	0.0030	3.3	3.3	
9	Z Canum Venat.		+44		+73	1.890	10.2	1.1	0.00055	18.2	5.3	
61	SS Hydrae		-23		+38	8.20	7.8	12.8	92000.0	13.2	10.4	
62	VW Centauri		-63		7	15.037	6.8	-3.8	0.00020	34.5	34.5	
63	RV Ursae Majoris		+54		+62	0.468	8.6 8.0	-0.3	96000.0	10.4	4.9	
64	ST Virginis		0		+53	0.411	10.8	-0.3	0,00000	10.7	0.01	
65	V Centauri		-56 2	284	+	5.494	7.1	-2.2	0.0014	7.2	7.2	
99	RS Boötis	14 29.2	+32 11	18	99+	0.377	10.3	-0.3	0.00070	13.2	5.3	+12.0
1				4.000	71:000	hoide	2 2					

*Table Ia, which is appended to this table, contains twelve additional Cepheids. Cf. n. 1, p. 2.

TABLE I-Continued

R.A. Decl. Long. Lat. DAYS VISUAL AISS. MAR. FARLILAX Radial Projected	Z	E V	Position	Position in 1900	GALACTIC	CTIC	PERIOD IN	MED. MAG.	. Jr		DISTANC	DISTANCE (UNIT IS 100 PARSECS)	o Parsecs)
RU Boötis		AMAN.	R.A.	Decl.	Long.	Lat.	DAYS	VISUAL	ABS. MAG.		Radial	Projected	From Plane
K.Y. Bödüs 14 45.2 423 27 356 465 9.0 7.2 -3.0 0.00001 11.0 5.2 + 4.0 1.0	67	RU Boötis	14h41m5		358°	+63°	0.493	<u> </u>	-0.3	0,00017	58.8	26.7	+52.4
K. Tranguli Aust. 15 10.8 -66 8 285 -9 3.389 7.0 -1.7 0.0018 5.5 5.4 -1.8 0.0018 0.		RY Boötis	14 45.2		356	+62	0.6		-3.0	0.00001	0.11	5.2	+ 0.7
 U Normae I S 34.6 − 54 59 S Trianguli Aust. I S 34.6 − 54 59 S Trianguli Aust. I S 34.6 − 62 38 U Trianguli Aust. I S 34.6 − 62 38 I S 4 − 62 38 I S 5 + 40 I S 4 − 60 3 I S 5 + 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69	⋖	15 10.8		285		3.389		-I.7	8100.0	5	5.4	6.0
N. Sagittarii 17 58.6 - 93 53 290 - 9 6 3323 6.9 -2.4 0.0014 7.2 7.1 1.4 1.4 1.2 1.2 1.2 1.2 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	70	U Normae	15 34.6	54	293		12.641		-3.5	0.00033	30.3	30.3	0.5
N. Sagitarii 18 15.5 -18 17 18 18 19.0 -19 18 19.0 -19 19.5 68 18.1 -11 4 0.0013 19.0 19.0 19.0 H. N. Sagitarii 18 15.5 -18 18 19.0 -19 19.5 19.0 H. N. Sagitarii 18 15.5 -18 19.0 H. S. Sagitarii 18 15.5 -18 19.0 H. Sagitarii 18 15.5 -18 19.0 H. Sagitarii 18 19.0 H. Sagitarii 19 19 19 19 19 19 19 19 19 19 19 19 19	71	S I rianguli Aust.			200		6.323		-2.4	0.0014	7.2	7.1	
New Dracons 16 31.8 +58 1 54 +40 0.443 10.4 -0.3 0.00072 13.9 +70 10.6 +40 0.443 10.4 -0.3 0.00073 13.9 +70 10.6 +40 0.445 10.4 -0.3 0.00073 13.9 +70 10.6 +40 0.450 11.6 -0.3 0.00072 13.9 17.0 17.	72	U Trianguli Aust.		62	291		2.568		-I.4	0.0013	7.9	7.8	
New Scroppin 10 51.8 -33 27 319 +4 6 0.662 7.1 -2.4 0 0.0013 7.9 +4	73	KW Draconis		28	54		0.443		-0.3	0.00072	13.9	9.01	
S. W. Estrellis 10 54.2 + 21 42 9 +33 0.493 13.5 -0.3 0.0007 58.8		KV Scorpii		33	319	+	6.062	7.1	-2.4	0.0013	7.9	7.9	9.0 +
The color of the	75	SW Herculis		2 I	6	+33	0.493	13.5	-0.3	0.00017	58.8	49.3	+32.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	Opinchi		Η	350	+15	0.450	9.11	-0.3	0.00042	23.8	23.0	+ 6.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77	X Sagittarii	41	-27	329	H	7.012	4.7	-2.6	0.0035	2.9	2.9	o. 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	78	KY Scorpii	4	-33	324	4	20.32	8.2	-4.2	0.00033	30.3	30.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	y Ophiuchi	4	9	347	~ +	17.121	6.3	0.4-	0.00087	11.5	11.4	+ 1.6
W Sagittarii 17 58.6 -29 35 330 -5 7.595 4.7 -2.7 0.0033 3.0 3.0 W Sagittarii 18 4.1 -15 34 342 $+2$ 14.153 9.0 -3.7 0.00029 34.5 34.5 34.5	%	S Arae	51	- 49	311	-13	0.452	9.3	-0.3	0.0012	8.3	8.1	6·I —
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	%I	W Sagittarii			330	ا م	7.595	4.7	-2.7	0.0033	3.0	3.0	1 0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	82	W Serpentis	4		342	- 7 +	14.153	0.6	-3.7	0.00020	34.5	34.5	+ 1.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	WZ Sagittarii	ΙΙ		340	7	21.7	8.4	4.4	0.00028	35.7	35.7	1.2
X. Sagittarii	×4	Y Sagittarii			340	4	5.773	5. 8.	-2.3	0.0024	4.2	4.2	- 0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		XX Sagittarii			343	4	6.43	0.6	-2.7	0.00046	21.7	21.7	- I.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		U Sagittarii	18 26.0		341	9 -	6.745	6.9	-2.5	0.0013	9.2	9.2	8.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Y Scuti	18 32.6		351	1 %	10.347	0.6	-3.2	0.00036	27.8	27.8	4.1 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	88	Y Lyrae			9	+20	0.503	8.11	-0.3	0.00038	26.3	24.7	0.6 +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	×60	KU Scuti			356	H	19.7	8.9	-4.2.	0.00024	41.7	41.7	
TY Sagittarii 18 43.7 -16 50 346 -8 9.553 7.4 -3.1 0.00079 12.7 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6		KZ Lyrae			50	+15	0.511	10.4	-0.3	0.00072	13.9	13.4	
KT Scuti 18 44.0 -10 30 351 -5 0.496 9.4 -0.3 0.0012 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	91	YZ Sagittarii			346	∞ 	9.553	7.4	-3.I	0.00079	12.7	12.6	8.I –
SL Aquilae 18 59.6 + 1 9 3 - 3 17.136 8.7 -4.0 0.00029 34.5 34.5 34.5 TA Aquilae 19 22.3 + 42 36 43 + 12 0.567 7.25 -0.35 0.0030 3.3 3.2 UAquilae 19 24.0 - 7 15 359 -13 7.024 6.6 -2.6 0.0014 6.9 6.7 XZ Cygni 19 30.4 +56 10 56 +16 0.467 9.7 -0.3 0.0010 10.0 9.6	92	KT Scuti		oi.	351	2	0.496	9.4	-0.3	0.0012	8.7	8.7	
IT Aquilae	93	SZ Aquilae		H	3	1 3	17.136	8.7	0.4-	0.00029	34.5	34.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94	T.F. Aquilae			4	5	13.753	9.2	-3.6	0.00058	17.2	17.1	- 1.5
U Aquilae 19 24.0 -7 15 359 -13 7.024 6.6 -2.6 0.0014 6.9 6.7 XZ Cygni 19 30.4 $+56$ 10 56 $+16$ 0.467 9.7 -0.3 0.0010 10.0 9.6	95	KK Lyrae	22		43	+12	0.567	7.25	-0.35	0.0030	3.3	3.2	
XZ Cygn1 19 30.4 +56 10 56 +16 0.467 9.7 -0.3 0.0010 10.0 9.6	•	U Aquilae	19 24.0		359	-13	7.024	9.9	-2,6	0.0014	6.9	6.7	
	97	_	30		26	91+	0.467	6.7	-0.3	0.00.0	10.0	9.6	+ 2.8

8	U Vulpeculae			0		-	7.000	7.0	-2.8	0.0011	0.1	1.0	1 0.3
00	SU Cygni	10 4	8.04	+29 I	32	+ 2	3.846	9.9	8.1	0.0021	8.4	8.4	+ 0.2
100	η Aquilae			0		— I4	7.176	4.05	-2.62	0.0046	2.2	2.1	1 0.5
IOI	S Sagittae			91		1	8.382	5.8	12.9	8100.0	5.5	5.55	1.0 -
102	X Vulpeculae			56		1	6.319	8.8	-2.4	0.00058	17.2	17.2	6.0
103	XX Cygni			28		+13	0.135	8.11	4.0-	0.00036	27.8	27.0	+ 6.2
104	RW Aquilae		_	15		-11	7.87	8.8	-2.8	0.00048	20.8	20.4	4.0
105	SZ Cygni			46		+3	15.113	9.5	-3.8	0.00025	40.0	40.0	+ 2.1
106	X Cygni			35		1	16.385	6.5	-3.9	0.00083	12.0	12.0	0 I.0
107	T Vulpeculae			27		-11	4.436	5.8	12.0	0.0028	3.6	3.5	1.0 -
108	UY Cygni			30		10	0.561	0.01	4.0-	0.00083	12.0	8.11	7.7
100	VX Cygni		_	39		1	20.125	6.7	14.2	0.00017	58.8	58.6	- 5·I
IIO	RV Capricorni			15		-37	0.468	10.0	-0.3	0.00087	11.5	9.5	6.9 –
III	TX Cygni		_	42		1	14.726	1.6	-3.7	0.00028	35.7	35.7	6.1 –
112	VY Cygni			+39 34		ا	7.859	1.6	-2.8	0.00042	23.8	23.7	- 2.I
113	SW Aquarii			0		-33	0.459	10.4	-0.3	0.00072	13.9	11.7	1.0
114*	β Cephei			2		+I4	0.190	3.3	4.0-	810.0	9.0	0.5	+ o.i
115	VZ Cygni			42		6 1	4.864	8.8	15.0	69000.0	14.5	14.3	- 2.3
116	Y Lacertae			လ္ထ		٦	4.325	0.6	6.1-	99000.0	15.2	15.1	- I.3
117	8 Cephei			22		+	5.366	4.14	-2.19	0.0054	8.1	в. і	0
118	Z Lacertae			+56 I9		I	10.89	8.9	-3.3	0.00036	27.8	27.8	0.5
611	RR Lacertae			55		7	6.412	0.6	-2.4	0.00052	19.2	19.2	1.0 -
120	V Lacertae			55		1 3	4.983	0.6	-2.I	0,0000.0	16.7	16.7	6.0
121	SW Cassiopeiae			28		-	5.44	9.4	-2.2	0.00048	20.8	20.8	1.0.4
122	RS Cassiopeiae			19			6.295	9.6	-2.4	0.00040	25.0	25.0	+ 0.4
123	UU Cassiopeiae	23 4		+60 21			4.314	9.6	6.1-	0.00050	20.0	20.0	1.0 -
124	RY Cassiopeiae		47.I			7	12.328	8.6	-3.5	0.00022	45.4	45.4	0.i.
125	VW Andromedae			34		- 28	0.517	10.3	-0.3	0.00076	13.2	11.7	- 0.2
126†	-Hydrae	12 2	5.5			+37	0.479	10.9	-0.3	0.00057	17.5	14.0	+10.5
127	-Herculis	16 2	2.9	18	3		0.365	10.4	-0.3	0.00072	13.9	II.I	+ 8.4
*	* The possible uncertainty in t	the len	of the	poriod ene	-	- distribution	(A ctentum	che Macheio	die der meh	twin the langth of ranged currented by Cuthnish (defendamicle Nachwithten 106 or 1012: 306. 07 1017) does not affect the adopted	or 1017) de	se not affec	t the adopted

* The possible uncertainty in the length of period suspected by Guthnick (Astronomiche Nachrichten, 196, 357, 1913; 205, 97, 1917) absolute magnitude appreciably.

† These stars were added to the tables after receiving (February 1, 1918) the list of new variables in Harvard Circular No. 201.

TABLE Ia Additions to Table I

Z	N. see	GALA	GALACTIC	PERIOD IN	MED. MAG.	e e	DISTANCE	DISTANCE (UNIT IS 100 PARSECS)	PARSECS)
140.	IVANE	Long.	Lat.	DAYS	VISUAL	FARALLAX	Radial	Projected	From Plane
	169. 1907 Leonis	149°	+55°	0.685	12.0	0,"00033	30.3	17.4	+24.8
621	RR Canum Venaticorum	OII	+82	0.558	0:11	0.00052	19.2	2.7	+ rg.o
.30	S Comae	181	+88	0.587	6.01	0.00055	18.2	9.0	+18.2
131	SX Ursae Majoris	77	9+	0.307	8.01	0,0000	16.7	8.4	+14.5
132	RU Canum Venaticorum	20	+73	0.364	11.1	0.00052	19.2	5.6	+18.4
	W Canum Venaticorum	37	+70	0.552	10.3	0.00072	13.9	4.8	+13.1
	172. 1907 Boötis	28	99+	0.622	10.8	0.00058	17.2	7.0	+15.7
:	X Scuti	346	- 3	4.187	8.6	0.00046	21.7	21.7	1.I
	Z Scuti	355	7	12.9	9.2	0.00029	34.5	34.5	- I.2
137	SX Aquarii	56	-35	0.536	8.11	0.00036	27.8	22.8	-15.9
:	VV Pegasi	46	-32	0.488	11.2	0.00050	20.0	0.71	9.oI –
	RZ Cephei	11	9 +	0.300	9.4	0.0012	8.7	8.6	4 0.9
The second secon		The second secon							The state of the s

207

The period of any star in Table II may be found, if desired, by reading its logarithm from the luminosity-period curve for the corresponding tabulated absolute magnitude; and the adopted median apparent magnitude can be readily computed from the parallax and absolute magnitude. The last five stars of the table were added from Hartwig's 1918 catalogue; see note 1, p. 280. The variables of Table II are not used in the diagrams or in the following discussion.

. TABLE II .
SUPPLEMENTARY LIST OF VARIABLES

No.	Name	Absolute Magnitude	Parallax
I	RX Andromedae	-5.5	0,00010
2	SZ Cassiopeiae	-5.6	0.00008
3	SW Persei	-6.5	0.00008
4	SW Aurigae	-4.7	0.00004
5	RV Tauri	-5.3	0.00000
6	SS Geminorum	-5.5	0.00018
7	V Lyncis	-6.2	0.00000
8	RU Camelopardalis	-4.4	0.00010
9	RS Puppis	-5.3	• 0.00020
10	Z Cancri	-6.2	0.00010
II	RX Ursae Majoris	-6.0	0.00003
12	S Antliae	-0.3	0.0042
13	Z Leonis	-5.8	0.00012
14	S Crucis	-2.0	0.0016
15	W Virginis	-4.0	0.00014
ıŏ	V Ursae Minoris	-6.2	0.00015
17	UV Draconis	-6.3	0.00010
18	TX Scorpii	-o.ŏ	0.0021
Ig	κ Pavonis	-3.0	0.0032
20	S Vulpeculae	-6.I	0.00009
21	TX Aquilae	-5.1	0.00010
22	R Sagittae	-5.I	0.00013
23	V Vulpeculae	-5.2	0.00017
24	TW Pegasi	-6.3	0.00018
25	RY Pegasi	-4.6	0.00010
26	RY Lacertae	−6.o	0.00003
27	W Cephei	-2.4	0.00091
28	X Lacertae	-2.2	0.00076
29	TV Andromedae	-6.o	0.00007
30	RU Aquarii	-6.I	0.00009
31	TZ Persei	-4.0	0.00004
32	U Monocerotis	-5.5	0.00044
33	UU Herculis	-6.0	0.00010
34 · · · · ·	TX Ophiuchi	-6.2	0.00005
35 · · · · ·	AP Sagittarii	-3.3	0.00083

There can be no doubt of the intimate relationship of clustertype variables to the longer-period Cepheids, but in a few characteristics there appear wide differences—discontinuities in the usual progressive connections. One conspicuous discontinuity appears in the frequency of periods, which is illustrated in Table III for the 139 variables of Tables I and Ia. Attention has been previously called to this matter by Hertzsprung and others. The reason for the two maxima in the frequency-curve must be sought in the dynamics of the stars themselves.

TABLE III
FREQUENCY OF THE PERIODS OF 139 CEPHEID VARIABLES

Period in Days	Number of Stars	Period in Days	Number of Stars	Period in Days	Number of Stars
0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0	7 31 4 1	5.0- 5.5 5.5- 6.0 6.0- 6.5 6.5- 7.0 7.0- 7.5	5 6 3 3	13.0-14.0 14.0-15.0 15.0-16.0 16.0-17.0	4 3 4 2
1.0-1.5. 1.5-2.0. 2.0-2.5. 2.5-3.0. 3.0-3.5. 3.5-4.0. 4.0-4.5. 4.5-5.0.	2 I I • 4 . 6	7.5-8.0 8.0-8.5 8.5-9.0 9.0-9.5 9.5-10.0 10.0-11.0 11.0-12.0	2 0 1 2 4	18.0-19.0 19.0-20.0 20.0-25.0 25.0-30.0 30.0-35.0 35.0-40.0	4 1 2

Two other notable differences between the two groups are the space distribution and the space velocities. Hertzsprung has maintained in several notes that the cluster-type stars must be of low luminosity because of the large proper motion of their brightest representative, RR Lyrae ($\mu = 0.25$), and because of the position of many such stars in high galactic latitude. The closely comparable luminosity of the two groups, however, is established by the luminosity-period curve. Moreover, RR Lyrae has a much larger radial velocity than the ordinary Cepheids, $V_0 = 50$ km/sec., and its proper motion may be an indication of great peculiar velocity rather than of large parallax.

This supposition is strongly supported through spectroscopic observations by Adams of four other cluster-type variables. The smallest radial velocity is -52 km/sec. for RS Boötis; the greatest is -196 km/sec. for XZ Cygni, which has an annual proper motion

of o"1, according to a determination kindly made at the writer's request by Professor Tucker. 'If we adopt the parallaxes in Table I, the space velocities of RR Lyrae and XZ Cygni, 400 km/sec., are among the greatest known. The average radial velocity for the longer-period Cepheids is less than 10 km/sec. It is possible,

therefore, that the marked contrast between the wide dispersion of isolated cluster-type stars and the galactic concentration of normal Cepheids arises solely from the fact that the velocities of the former are enormous while those of the latter are moderate, in keeping with the motions of most other red and yellow giant stars.

Table IV contains a summary of the distribution of the variables with periods less than one day. The number of such stars is not large; the data are without doubt incomplete and

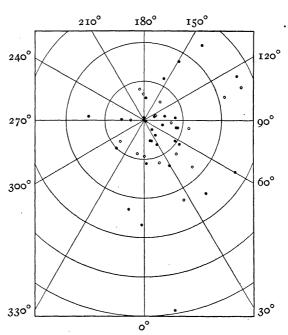


Fig. 1.—Projection on galactic plane of the position of Cepheid variables with periods shorter than one day. The circles are heliocentric, with radii of 1000 parsecs, 2000 parsecs, etc.; galactic longitudes are indicated in the margin. Many of these variables are so far above or below the plane that the diagram does not well represent the distribution in space.

there may be a preference for certain parts of the sky; hence no very definite quantitative conclusions should be based upon the material. The projection of these stars on the galactic plane is illustrated in Fig. 1; the distance from the plane is shown in Fig. 3. The great distances of RU Boötis and SW Herculis, and in particular the significance of the former's position so far from the galactic plane, have been remarked upon previously and will be referred

¹ Publications of the Astronomical Society of the Pacific, 29, 183, 1917.

to again in a subsequent paper. Six cluster-type variables, with $R \sin \beta$ greater than 1750 parsecs, are beyond the bounds adopted as defining the equatorial segment of the Galaxy (Fig. 3). The mean distance from the galactic plane is 960 parsecs for these 45 variables of Table IV; for Cepheids with periods greater than a day it is 150 parsecs—less than one-sixth as much. The parallaxes

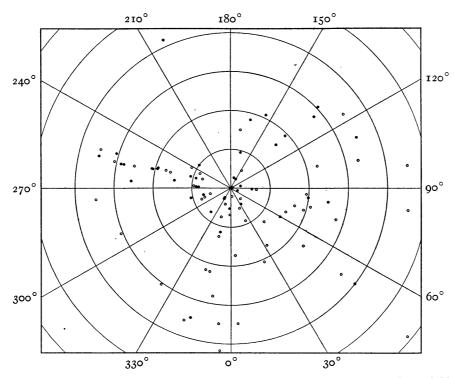


Fig. 2.—Projection on the galactic plane of the positions of Cepheid variables with periods greater than one day. The restriction to the Galaxy is so marked for these stars (see Fig. 3) that the diagram closely represents the distribution in space. The concentration of stars near longitude 255° reflects the systematic study at Harvard of the periods of all Cepheids in a restricted region (Harvard Circular, No. 170); it suggests the incompleteness of our data in other longitudes.

of RS Boötis, RU Boötis, XX Cygni, XZ Cygni, and RR Lyrae are the most accurate.

The distribution in the galactic plane of the 94 variables with periods longer than a day is shown in Fig. 2. The space co-ordinates are treated in some detail in Table V, showing the close restriction of ordinary Cepheids to the galactic plane. As a graphical test of

TABLE IV

DISTANCE FROM GALACTIC PLANE OF 45 CEPHEIDS WITH
PERIODS LESS THAN A DAY*

Limits of Distance	Number	Limits of Distance	Number
>+1500 parsecs	7	<-1000 parsecs	3
+1500 to +1000	7	-1000 to -500.	5
+1000 to + 500 + 500 to 0	9 6	— 500 to o.	8
Total	29	Total	1

* Allowance for the position of the sun north of the Milky Way plane would alter these values slightly but would not change the actual dispersion.

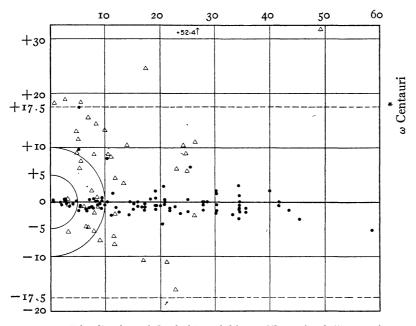


Fig. 3.—Distribution of Cepheid variables. The unit of distance is 100 parsecs. Ordinates are distances from the galactic plane; abscissae are projected distances in the plane; cf. Fig. 5 of the seventh paper. Open triangles and black dots designate respectively cluster-type variables and Cepheids with periods in excess of a day. The nearest globular cluster, ω Centauri, is just outside the boundary of the diagram on the right; RU Boötis, indicated by an arrow, is too far above the plane to fall within the figure. The semicircles with radii of 500 and 1000 parsecs ($\pi=0.002$ and 0.001) indicate how very distant most of these variables are as compared with the average star of the tenth magnitude or brighter ($\pi>0.004$, Kapteyn). Between the broken horizontal lines, ± 1750 parsecs, lies the equatorial galactic region devoid of globular clusters.

the relation of galactic concentration to distance from the sun, the values of $R \sin \beta$ are plotted in Fig. 3, against $R \cos \beta$, triangles for cluster-type variables, and dots for those with periods in excess of a day. It is important to note that for the latter the greatest distance from the plane is attained by the star of shortest period, Z Canum Venaticorum, with $R \sin \beta = +17.4$ and period = 1.890 days. Its space velocity may be high.

Table V and Fig. 3 reveal no conspicuous divergence from the galactic plane with increasing distance. The indications of a contrary result, obtained in the earlier study, was due partly to the inclusion of a few stars of the RV Tauri type; these stars are probably of lower luminosity than typical Cepheids of like period, and in consequence the computed distances, both radial and from the plane, were much exaggerated.

TABLE V

Space Distribution of 94 Cepheids with Periods Greater Than a Day*

		I	IMITS OF R COS	β (IN PARSECS)
		o to 1000	1000 to 2000	2000 to 4000	>4000
	(No. of stars	14	6	,II	2
North of Galaxy	Mean $R \sin \beta \dots$	+ 220	+220	+160	$+1\infty$
North of Galaxy	$Max. R \sin \beta \dots$	+1740	+810	+640	+210
	(Av. dev. from mean	± 320	± 200	±140	±100
South of Galaxy	No. of stars	- ¹⁷	17 100	23 -140	4 260
	$Max. R \sin \beta \dots$	– 160	-240	-400	-510
	Av. dev. from mean	± 40	± 60	± 80	±150
Total No. of Sta	rs	31	23	34	6
Mean $R \sin \beta$	$\begin{cases} \text{Without regard to} \\ \text{sign} \\ \text{With regard to sign} \end{cases}$	+ 60	130 — 20	150 — 40	210 —140

^{*} Distances are given only to the nearest ten parsecs.

The distribution in longitude (Table VI) of variables with periods greater than one day shows some peculiarities which may be due to incompleteness of the data. There are, for instance, at least 50 stars thought to be Cepheid variables for which periods

¹ Astrophysical Journal, 40, 432, 1914.

have not been determined, and probably a great number for which types are not yet known also belong to this class.

The greater number of Cepheids south of the galactic plane is easily accounted for by assuming the sun to be slightly to the

TABLE VI

DISTRIBUTION IN GALACTIC LONGITUDE—NUMBER OF STARS

	o° to 30°	30° to 60°	60° to	90° to 120°	120° to 150°	150° to 180°	180° to 210°	210° to 240°	240° to 270°	270° to 300°	300° to 330°	330° to 360°	Total
North	o	2	3	3	3	5	1	0	10	2	1	3	33
South	6	7	9	3	3	1	0	I	13	5	2	11	61
Total	6	9	12	6	6	6	1	I	23	7	3	14	94

north. In fact the Cepheids should afford a good determination of the distance of the sun from the galactic plane when a more complete list becomes available.

SUMMARY

- 1. Through the use of the luminosity-period curve the absolute magnitudes and parallaxes have been determined for 174 variables, 139 of which are believed to be perfectly typical members of the Cepheid class (Tables I and Ia). The average probable error is estimated at 20 per cent.
- 2. Forty-five variables belong to the cluster type, with absolute luminosities a little more than one hundred times the brightness of the sun. Ninety-four are ordinary Cepheids with periods longer than a day and with luminosities ranging from two hundred to ten thousand times that of the sun. For 35 stars either the type of variation, or the period, or the magnitude is not certain or regular enough to yield final parallaxes (Table II).
- 3. The distances of Cepheid variables are considerably greater than have been obtained heretofore for individual stars. Less than one-third of them have parallaxes greater than a thousandth of a second. The most distant Cepheids now known are nearly 20,000 light-years from the sun. The nearest globular cluster is at a distance of about 21,000 light-years. (Cf. ω Centauri in Fig. 3.)

4. The numerical evaluation of the distribution in space confirms both the well-known concentration toward the galactic plane of Cepheids with periods greater than a day and the indifference of cluster-type variables to that plane. A plausible explanation of the wide dispersion of the latter is to be found in their relatively very high velocities in space.

Mount Wilson Solar Observatory
December 1917