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The correction to Z has now become a constant, and may be 
expressed as a correction to the observed declination of "*09 in a 
direction to diminish the value of Z. As the corrections to the 
right ascensions are in the opposite direction, these corrections to 
Y and Z only slightly affect M, but materially alter D. The 
original values of M and ás corrected for ( 1 ) magnitude equation 
and further corrected for (2) +"29 to Y and - to Z.are 
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On the Radiative Equilibrium of the Stars. . 
By A. S. Eddington, M.A., M.Sc., F.R.S., Plumian Professor. 

i. Outline of the Investigation. — The theory of radiative 
equilibrium of a star’s atmosphere was given by K. Schwarzschild 
in 1906.* He did not apply the theory to the interior of a star; 
but the necessary extension of the formulae (taking account of the 
curvature of the layers of equal temperature) is not difficult. It 
is found that the resulting distribution of temperature and density 
in the interior follows a rather simple law. 

Taking a star—a “giant” star of low density, so that the laws 
of a perfect gas are strictly applicable—and calculating from it^ 
mass and mean density the numerical values of the temperature, 
we find that the temperature gradient is so great that there ought 
to be an outward flow of heat many million times greater than 
observation indicates. This contradiction is not peculiar to the 
radiative hypothesis ; a high temperature in the interior is necessary 
in order that the density may have a low mean value notwith- 
standing the enormous pressure due to the weight of the column 
of material above. 

There is a way out of the difficulty, however, if we are ready 
to admit that the radiation-pressure due to the outward flow of 
heat , may under calculable conditions of temperature, density, and 
absorption nearly neutralise the weight of the column, and so 
reduce the pressure which would otherwise exist in the interior. 
For the giant stars it is necessary that only a small fraction of the 
weight should remain uncompensated. (For the dwarf stars, on 
the other hand, radiation-pressure is practically negligible.) 

We thus arrive at the theory that a rarefied gaseous star adjusts 
itself into a state of equilibrium such that the radiation-pressure 
very approximately balances gravity at interior points. This 
condition leads to a relation between mass and density on the one 
side and effective temperature on the other side, which seems to 
correspond roughly with observation. The laws arrived at differ 
considerably from those of Lane and Ritter. 

* Göttingen Nachrichten, 1906, p. 41* 
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Nov, 1916. On the Radiative Equilibrium of the Stars. 17 

The principal results are given in §§ 7-10. The theory enables 
us to estimate the average densities of the giant stars of different 
spectral types ; it shows that the average luminosity will be 
roughly, the, same for the different types, and determines this 
luminosity as compared with the Sun ; it determines the maximum 
effective temperature which a star can attain ; and it indicates the 
extent to which the masses of individual stars are likely to deviate 
from the mean mass. It is scarcely necessary to say that the 
eon elusions here given are tentative, being based on analysis 
which is only concerned with obtaining a probable approximation ; 
but there seems to be a satisfactory accordance with observation, 
so far as is known. The present results also remove an objection 
which might be urged against the theories of Lane and Ritter, viz. 
that they require the heat-energy retained in the star to be much 
greater than that generated by contraction. 

The outermost layers of the star are outside the scope of this 
investigation, and the formulæ here given do not apply to them. 
In speaking of conditions at the boundary of the star, I refer to a 
depth negligible compared with the radius, but deep from the 
point of view of the spectroscopist. Hence the theory has no 
bearing on the • interpretation of spectroscopic results. Frequent 
reference is made to the effective temperature, because it affords 
a measure of the total outflow of radiation; we can use this 
measure without discussing the conditions of the layer which 
actually possesses the effective temperature. 

It is clear that we cannot arrive at much certainty with regard 
to the conditions in a star’s interior, except in so far as the treat- 
ment can be based On the most general laws of nature. There are 
some physical laws so fundamental that we need not hesitate to 
apply them even to the most extreme conditions ; for instance, the 
density of radiation varies as the fourth power of the temperature, 
the emissive and absorbing powers of a substance are equal, the 
pressure of a gas of given density varies as its temperature, the 
radiation-pressure is determined by the conservation of momentum, 
—these provide a solid foundation for discussion. The weak link 
in the present investigation is that I have assumed without much 
justification that a certain product ke is constant throughout a 
star. I have given some evidence that if it is variable the 
general character of the results would not be greatly altered; 
and, as a step towards the elucidation of the problem of stellar 
temperatures, I plead to be allowed provisionally one rather artificial 
assumption.' 

2. Radiative Equilibrium in the case of Spherical Symmetry.— 
Schwarzschild’s treatment deals with the case when the' surfaces of 
equal temperature are parallel planes. We have to consider the 
case when they are concentric spheres. The fundamental principle 
is that the transfer of energy takes place by radiation ; convection 
and conduction are considered negligible. 

Let £ be the distance of a point P from the centre O of a star. 
At P, let the intensity of radiation travelling outwards in a direc- 

* 2 
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i8 Prof, A, S, Eddington, lxxvtt. 

tion making an angle 0 with OP be expressed as a series of zonal 
harmonics, 

(A + B cos 0 + CP2( cos 0) + DPg( cos 0) + « . 

where' dS is the cross-section of the stream of radiation, and dw is- 
the solid angle containing directions near to 0. 

Consider a small cylinder of matter of cross-section dS, and 
with axis ds in the direction 0. The fraction of the radiation 
absorbed in this cylinder will be proportional to the density p, and 
may be set equal to 

Jcpds, 

where Æ is a coefficient of absorption and represents the absorption 
by a cylinder of unit mass and unit cross-section. Assuming that 
each molecule absorbs independently of the others, it will make m> 
difference whether the cylinder is long and of low density, or short 
and of high density. 

Hence the loss of the beam of radiation in traversing the 
cylinder is 

Æpifs(A + B cos 0 + CP2(cos 0) + . . .)d$d(D \ . (i) 

The matter in the cylinder emits energy equally in all directions 
at a rate proportional to (i) the mass contained, (2) the fourth 
power of the temperature T, and (3) the specific emissive power of 
the substance. The last quantity may be set equal to k, since the 
absorbing and emissive powers of a substance are necessarily equal. 
Hence the energy emitted from the cylinder in directions included 
in diû is 

likT^pdsd&diû . . . • i2} 

where p, is an absolute constant of nature, connecting the units of 
energy and temperature. 

The loss (1) and gain (2) together make up the change of 
intensity of the radiation in traversing a length ds. Hence 

J^(A + B cos 0 + CP2(cos 0)-f- . . ,)dsdSdü) 

— — kp(A + B cos 0 + CP2(cos 0) +. . .)dsdSdo) + kp^T^dsdSdu (3)’ 

d _d¿¡ d dO d 
NoW ds^ds di ds dS 

. d sin0 d l 
= cos 0^ - -Ç- ^ by geometry. 

Hence, since A, B, C are functions of f only, (3) becomes 

^A c?B ñ 
sin2 sin Ô d¥~ 

cos^ + cos^ + cos0.P2Ti+ —B--r^C+ . . 

= —kp(A + B cos 0 + CP2 + . . .) + &p^iT4 
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Let us choose a unit of length comparable with the radius of 
the star. Then & is a very large quantity, since radiation must be 
strongly absorbed in a length small compared with the radius. It 
is then found that A, B, C rapidly diminish, so that B is of order 
Ar1 and C of order Jc~2 compared with A. We shall therefore 
neglect C on the left side of (4), retaining it on the right, where it. 
is multiplied by the large factor 7c. 

Arrange the left side in zonal harmonics by using 

cos* 0 = -| + f P2(cos 0), 

sin20 = -f-!P2(cos0), 

and equate coefficients. 
The constant terms give 

” a+/aT4) * • • (5) 

The coefficients of cos 0 give 

pB 

The coefficients of P2 (cos 6) give 

(6) 

which verifies the statement made above that C is small compared 
with B. We shall therefore neglect C henceforth. 

Equation (5) can be written 

|(^) = 3^(-A + ^) . . . (7) 

To interpret the quantity B, we remark that the total radiation 
flowing outwards across unit surface transverse to the radius is 
obtained by integrating (A + B cos 0) cos Odo) over the corresponding 
hemisphere. The factor cos 0 is required, since the cross-section of 
a beam of radiation flowing obliquely through a surface c?S is equal 
to c?S cos 0. The result is 

ttA + ^ttB ..... (8} 

Similarly the amount flowing outwards is 

7rA-§7rB ..... (8a) 

Thus the net flow outwards is ^ttB per unit area, or ^^Bf2 

across the sphere of radius 
In a strictly steady state the total energy between two- 

boundaries must be constant, and therefore the net outward flow 
across all boundaries must be the same. Thus B£2 is constant, and 

ty (7) 
A = /xT4. 
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20 Prof. A. S. Eddington, lxxvii. i, 

In an actual star the stream of energy flowing outwards is 
supplied by slow changes occurring within the star. The simplest 
theory results if we suppose that the energy is produced by radio- 
active processes. Let the amount thus liberated per unit mass 
be 47T€. Then in the steady state the outward flow of heat across 
the outer boundary of a spherical shell will exceed that across the 
inner boundary by the amount of heat generated in the shell* 
That is, 

cf(V7r2B¿2) = 47r€.47rpí2^. 
Hence 

• • • • (9) 

Imagine the successive spherical layers to be expanded or con- 
tracted until the whole star has a uniform density r. Let x be the 
radius in the uniform star, which corresponds to ¿ in the original 

• (io) 

. (ii) 

• (12) 

• (iS) 

• (U) 

If the outflowing energy is produced by contraction instead of by 
radioactivity, it is not so easy to give a precise statement, because, 
strictly speaking, the conditions are changing with the time. We 
may write down equation (13) as a definition of e ; and it will be 
seen that 47r€ is then the net flow of radiation across the spherical 
surface divided by the mass within the surface, i.e. the average 
energy per unit mass generated by contraction. I shall generally 
take € to be constant, representing roughly a state of affairs such 
that the energy of stellar radiation comes from processes going on 
in all parts of the star, and not from a singularity at the centre. 
It must be noticed that, except near the surface, e is extremely small 
compared with //T4, so that in any case A = /¿T4 approximately. 

Let g be the value of gravity at f 

and G the constant of gravitation, 

then • g = f 7tGtíc3/¿2, 

since the numerator gives ' the total mass within a sphere of 
radius f. 

star. Then 

Hence from (6) and (9) 

Integrating (12), 

and 

pPdi; = TX^dx 

i dA. 7 -r,#
2 

- ~mä. ■ T dx 

7 ■ 

B = 

i dA 

T€ 
cc3 

¥ 
Xo 

± __fr = - Jcre-? . 
- t dx 
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The pressure equation is 

i dp _ 

whence by (10) 
P dè 

9, 

i dp x2 

- —-^¿2 r dx 
rv%0 

= 

_ 4 ttGt i dA 

^ kz T dx 
by (14) (iS) 

If k and e are constants, integrating and setting A = ..T4 

p==4^GT4 .... (l6) 

Strictly speaking, there is a small constant of integration, but it 
can be neglected in comparison with the large values of p in the 
interior of the star (see § 5 (b) ). 

Up to this point we have not used the gas-equation. For a 
gaseous star obeying Boyle’s Law, ^ = RTp. Hence from (16}, 
p oc T3 and p oc p*. 

The distribution of density, temperature, and pressure for radia- 
tive equilibrium is identical ivith that occurring in the adiabatic 
equilibrium of a mass of gas for which the ratio of the specific 
heats is -I.* 

A gas for which y — ^ can be at the same time in radiative 
and adiabatic equilibrium ; if y alters, adiabatic equilibrium alters 
but radiative equilibrium does not. 

3. Intensity of the Outward Radiation,—The net outward 
radiation has been found to be ^-t^B^2 

^V67riW by (13). 

If the effective temperature of the star is Tv the outflow is 
equivalent to that due to isotropic radiation of intensity 
By (8) this outflow is ttAj per unit area. Hence 

TT/aTj4.47r£2= \^7T2T€XS 

where x and £ have their surface values. 
Eliminate c between (16) and (17), we obtain 

*3 T4 

kTS^Gr^J- 

rF4 

where is the value of gravity at the surface. 

(17) 

(18) 

* It may be well to restate the restriction, viz. that Ice must be constant. 
This point is discussed in § 5. 
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22 Prof. A. S. Eddington, lxxvii. i, 

This equation gives the relation between the constant of 
absorption and the effective temperature. T and p are any corre- 
sponding values of the temperature and pressure. It is usually 
most convenient to use the central values, T0 and p0, so that 

■(,9> 

4. Numerical Example,—Before discussing possible modifica- 
tions of the somewhat ideal conditions assumed, we shall give an 
example. The necessary tables and formulae are given in Emden’s 
Gaskugeln (pp. 85, 69). Emden actually works out this case 
(regarded as a case of adiabatic equilibrium) for the Sun, but we 
shall take a star in a more perfect gaseous condition. For the 
method of calculation reference, may be made to Emden’s examples 
(P. 96).* 

Let the radius of the star be r = 7 x 1 o11 cm. 

Let the mean density be = 0*002 gm. cm.-3 

Then the mass is M = 2*87 x io83gm. (about 1*5 x Sun). 

The central density in this form of equilibrium is always 
54*2515 times the mean density. In this case 

Central density /o0 = 0*1085, 

so that no serious deviation from Boyle’s Law will occur. 
To calculate the temperature and pressure, the only other 

quantity needed is the molecular weight. I have taken this to 
be 54 as a likely average (e.g. monatomic iron vapour). The corre- 
sponding value of R is 1*536 x io°. I find at the centre 

T0= 1*52 x 108 degrees Centigrade 

y?o = 2‘535 x dynes cm.-2 

At the surface 

9\ = 2>9°'S cm* sec*~2 

Temperature gradient = 6°*3 5 per kilometre. 
(The temperature gradient is nearly uniform for a great distance 

inwards ; it increases slowly to a maximum of 6 J times its surface 
value at a depth equal to fth of the radius.) 

The following formulæ show how the conditions at the centre 
are altered by varying the mean density, mass, molecular weight 
(R_1), or constant of gravitation : 

Po 00 Pm ) 
T0 oc p^M^GR"1 >. . . . (20) 

Po 00 pJMSGr ) 

To calculate k we must assume a value of the effective tempera- 
ture. A star having the assumed mean density would probably be 

* There is a misprint in the formula for ©3 on p. 97. The last bracket 
in the denominator should be squared. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
16

M
N

R
A

S.
.7

7.
..1

6E
 

Nov. 1916. On the Radiative Equilibrium of the Sta/rs. 23 

of type F-G, and have an effective temperature of, say, 6500o 

absolute. 
Substituting in (19) we find 

Tc = 6*2 x 106. 

This value is quite absurd, for it indicates that the radiation would 
be almost wholly absorbed in a path of io^6 cm. at unit density, or 
io-3 cm. at atmospheric density. Such a high opacity can scarcely 
be reconciled with the known properties of matter. 

Inverting the argument and taking a more reasonable value of 
k, say 40, the effective temperature would have to be i3o,ooo°C., 
which is, of course, out of the question. 

A further indication that something is wrong is given by a 
calculation of the total amount of radiant energy contained in the 
star. The radiant energy per unit volume is aT4 ergs, where 
a=7*ixio“16 and T is reckoned in degrees. On integrating 
throughout the volume, we find the total imprisoned radiant 
energy is 

TT . aT0
4GM2 0 52 H = |—0 = 5*85 x 1002 ergs, 

iV* 

whereas the whole energy so far generated by contraction is 

I’lB x 1048 ergs. 

One naturally asks, Wheie has all the radiant energy come from ^ 
The radiant energy probably possesses electromagnetic mass ; 

but this does not give rise to any difficulty. The mass is found 
by dividing H by the square of the velocity of light 

H/c2 = 6*5 x io81 grams, 

which is less than x^th of the whole mass of the star. 
5. Discussion of the Assumptions.—The last paragraph shows 

that the theory has led to improbable results. We therefore 
examine the assumptions made. 

(a) The Radiative Hypotheses.—It can scarcely be doubted that 
at the high temperatures which (on any theory) are held to prevail 
in the star, radiation is far more effective than any other cause in 
transferring heat. Its importance rapidly increases as the tempera- 
ture rises, since it depends on the fourth power of the temperature. 
Convection currents would only arise if the transfer of heat by 
radiation were not sufficiently rapid to prevent the outer parts 
from cooling and sinking ; our difficulty is that the transfer by 
radiation seems to be much too rapid. 

(b) The Boundary Condition.—It will be found that the terms 
A, B, C become of the same order of magnitude near the boundary 
and our equations break down. The stellar atmosphere terminates 
in a way different from what we have supposed, and the correct 
equations are those given by Schwarzschild., The boundary tem- 
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24 Prof, A. 8. Eddington, lxxvii. ir 

perature is, in fact, T2 / ^2 instead of zero, and the pressure-tempera- 
ture relation is more nearly 

p oc T4(i - T^/^T4) ; 

that is to say, a small constant of integration is required in (i6). 
Until we are close to the boundary Ta

4 is very small compared 
with T4, and it is easy to verify that as regards the interior of the 
star the correction is insignificant. Our calculation of & in § 3 is 
not affected by any failure of the equations at the boundary—we 
have not used Tj as the temperature of a definite layer, but as 
measuring the total outflow of heat. The actual outflow must 
evidently be continuous with the outflow across a sphere contained 
a little within the boundary where our equations apply. 

(c) Variation of k.—It has been assumed that k is constant, 
but it may vary with the temperature—either of the absorbing 
matter or of the radiation to be absorbed. 

We can make calculations assuming that k varies as any power 
of the temperature, say T5. If & = /cT5, then instead of (15) 
we have 

dp _ 47rG/¿ i é¿T4 / 

dx 3*€ dx ' ' * ’ 

whence p oc T4_ô. 
The equilibrium is still a form of adiabatic equilibrium, but 

with a different value of the ratio of the specific heats y. Refer- 
ence to the examples worked out by Emden shows that the central 
temperature is not very seriously altered by changing y. We can 
show this best by proceeding at once to an extreme case. Let k 
vary as Ts, then oc T and the star is a sphere of uniform density. 
I find in this case for the star discussed in § 4, 

T0 = 8*9 x 107 degrees Centigrade 

p0 = 2*7 x 1011 dynes cm.-2 

Temperature gradient near surface — 2 50,4 per kilometre. 
It is evident from the slight alteration of the central tempera- 

ture that the outflow of radiation and store of radiant energy will 
again be excessively great. In fact, for an effective temperature 
of 6500° we find 

k — 2%pj x 108 at the centre. 

{d) Variation of e.—Similar small changes are produced if the 
radiated heat is not contributed by all parts equally, but comes 
more from the centre than the exterior layers, or vice versa. There 
are two cases in which we can give exact results :—: 

If € oc (1 - the density is constant. 
If € oc (c2 + £2), where c is a certain constant, the case corre- 

sponds to adiabatic equilibrium with y = i*2.* 

* e is defined by equation (13). 
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The two cases correspond to the heat being generated mainly in 
the interior and mainly in the exterior parts respectively, and give 
some idea of the range that is possible. 

(e) Effect of Scattering.—In the introduction to his theory of 
radiative equilibrium Schwarzschild states that he has neglected 
scattering but it appears that scattering can be included—at least 
in the simple theory given by him. He considers radiation of 
intensity A propagated along the positive direction of and 
radiation of intensity B along the negative direction. The equa- 
tions, taking account of absorption and emission, are then 

J|-= -ÄpA + Äp/xT4' 

dB I • • • (22> 
-ü=-¿pB + ÄwT* 

If there is a coefficient of scattering s, so that, considering the 
radiation A, in a length ^spd£A. is scattered forwards and the 
same amount backwards, the equations become 

dA 

dè 
dB 

dè 

- hpA + Æp/xT4 - ¿spA + ij}SpB 

- Ä*pB + /¿ppT4 - |.9pB + JspA 
. ■ (22a) 

whence J^(A - B) = Äp(2pT4 - A - B) 

= o for the steady state 

~(A + B) = - (Æ + s)p(A - B). 

These differ only from the corresponding equations derived 
from (22) by the replacement of k by {k + s). Thus scattering 
should be included in the absorption coefficient, and the theory 
then applies without modification. 

6. Radiation-Pressure.—It appears then that no modification 
of the assumptions mentioned in § 5 could affect the main result, 
viz. that the interior temperature is so high as to cause much too 
great an outflow of radiation, unless we imagine the material to be 
álmost perfectly opaque. The high temperature in the interior is 
inevitable if the gas—necessarily of moderate density in a giant 
star—is to support the weight of the enormous column of material 
above. 

This points to a way out of the discrepancy—the weight of 
the column may be partly supported by radiation-pressure. In 
introducing radiation-pressure at this stage we do so not as a 
hypothesis to explain the discrepancy, but because in the condi- 
tions we have found radiation-pressure would be extremely 
powerful. Whether radiation-pressure is important or not 
depends on the value of k. If we had arrived at a low value 
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26 Prof. A. S. Eddington, lxxvii. i, 

of h, our neglect of radiation-pressure would have been justified. 
With the high value found radiation-pressure would far out- 
balance gravity, and our neglect of it is clearly illegitimate. 

As there seems to be a rather widespread impression that 
gases are not subject to radiation-pressure, it may be advisable 
to state the theory briefly. The pressure is simply a consequence 
of absorption or scattering. A beam of radiation carries a certain 
forward-momentum proportional to its intensity; after passing 
through a sheet of absorbing medium a weaker beam emerges 
carrying proportionately less momentum ; the difference of 
incident and emergent momentum is retained by the medium 
and constitutes the pressure. The medium, in fact, absorbs the 
momentum of the beam in the same proportion as it absorbs the 
energy. The calculations of radiation-pressure on small solid 
particles are simply calculations of absorption and scattering by 
these particles; it is not possible to apply such methods to 
atoms and molecules, which absorb by some internal mechanism. 
But the relation between absorption and pressure is a perfectly 
general one, depending only on the conservation of momentum. 

Consider a small disc of thickness and let radiation carry- 
ing momentum h fall on it, travelling at an angle 0 to the normal. 
The length of path is <#£sec0. Hence the momentum absorbed 
is kphd^QQQÚ. Resolving along the normal, the normal outward 
momentum absorbed is kphd£, which is independent of 0. 

In the present problem we have energy ttA + fttB flowing out- 
wards and ttA - §7rB inwards across unit surface ; hence the net 
outward momentum absorbed is c. ^irEkpd^, where c is the factor 
relating the momentum and energy of a beam. How the pressure 
on a black body is numerically equal to the density of the energy 
(assumed isotropic). The density of the energy at temperature T 
is aT4, where a is the universal constant y’oó x io-15. The out- 
ward flow of isotropic energy across unit surface is ttA = tt/xT4, and 
the outward flow of momentum is c. tt/^T4. Hence 

aT4 = ctt/aT4, 

so that c = afirp.. 

It follows that the force of radiation-pressure on an element d^ is 

f^hpdè .... (23) 
v- 

= -ÄA by (6) 

= ->*(T4) (24) 

Equation (24) is quite general. Assuming now the constancy 
of &€ so that T4 oc the radiation-force is 

m 4 
- âa^-dp. 

z Po 
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Nov. 1916. On the Radiative Equilibrium of the Stars. 27 

For the star discussed the values of T0 and^>0 in § 4 give 
rr 4 

4-0—0~ = 2*0 X 105, 
Po 

so that radiation-pressure would he 200,000 times stronger than 
gravitation. Of course, the result does not mean that the existing 
radiation-pressure is so strong as this ;. it shows that our conclusions 
contradict our premises, viz. that radiation-pressure was negligible. 

We must now form the modified equations in which radiation- 
pressure is included. The weight of an element gpd£ will be 
partly counterbalanced by the radiation-force (23) 

j-Bkpd£. 
> 

Hence in the pressure-equation we replace g by 

Using (13), this gives 

g - i-B/i. 

X 

¡n-i - 

aJc€ 

ake \ 

ttG/x )=ßg, say (2S) 

We shall suppose as before that Arc is constant, and accordingly ß 
is constant. Evidently the effect of radiation-pressure is exactly 
equivalent to an alteration of the constant of gravitation to /3G. 
We see by (20) that the density distribution will be unaltered, 
but the pressures and temperatures previously calculated must be 
multiplied by ß. Instead of (16) we shall have 

47r/^G T4 
2,ki 

To determine ß we have from (25) 

ake 

(26) 

!-/? = 
7T G/A 

= fa/3— by (26), 
P 

so that 

(26a) 

(27) 

where (T0
4/^0)c refers to the values calculated in § 4 without taking 

account of radiation-pressure. 
Also k is given by changing g1 to ßg^^ in (19) 

sjc_ß9i T4 

or *k = #4 ^ 
4 

(28) 
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28 Prof. A. S. Eddington, lxxvii. i. 

Moreover, from (27) and (28), 

1 — ß = kaTflg-^ .... (29) 

7. Results for a Giant Star.—Substituting in (27) the valuer 
calculated in § 4, we have 

i-ß = [S-29So]ßi. 

I have given the logarithm of the coefficient. Solving thia 
equation 

ß = o,046&, 

so that less than one-twentieth of the weight is left uncompensated. 
It will be seen from (20) that (Tf/p0)c does not depend on the 
density ; thus ß is the same for all giant stars of the same mass. 

Using this value of ß in (29) we obtain 

¿ = 29*5. 

This value should presumably be the same for all stars. It indi- 
cates that the radiation would be reduced in the ratio ije after 
passing through a column containing gm. per sq. cm. section 
(about 25 cm. of air). This seems possible, since it must be 
remembered that at the high temperatures concerned the bulk of 
the radiation is of very short wave-length. 

The new values of the central temperature and pressure are 

T0=7*I2xio6 degrees 

p0= 1*19 x 1012 dynes cm.-2 

Surface temperature gradient = o°-30 per kilometre. 
The total radiant energy imprisoned is 

H = 2*8i x 1047 ergs 

< =0*2380, 

so that it is no longer an excessive amount. 
8. The Relation between Density and Effective Temperature.— 

It appears that a gaseous star must settle itself into a state in 
which radiation-pressure almost balances gravitation. If the 
outward flow of radiation is too strong, so that gravitation is over- 
balanced, the star will blow out, the temperature will fall, and 
radiation will be reduced. On the other hand, if radiation-pressure 
falls much below gravitation the star will contract and the outflow 
of radiation will increase. We can make use of the approximaté 
relation radiation-pressure = gravitation (or the more rigorous 
equation (29)) to determine the variation of effective temperature 
with mean density and mass. 

Since (gravity at the surface) is proportional to Mfy§, we 
have from (29) 

T]4 oc Mfy>l(i - ß), 

whence, approximately 

..... (30) 
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Nov. 1916. On the Radiative Equilibrium of the Stars, 29 

The relation is rigorous as regards p ; and as regards M the correc- 
tion due to the dependence of /? on M is usually insignificant. For 
example, if M is increased eightfold, formula (30) gives an increase 
of ^ in the ratio 1*189, whereas the exact ratio is 1*198. 

The range of mass in stars is believed to be small, and will 
affect Tx only slightly. The following table shows how Tj varies 
with the density for a star of mass 1*5 x Sun. 

Effective Temperature. 
13 ooo° 

10 000 

8 000 

6 000 

4 SO© 
3 000 

Mean Density (Water = i). 
0*128 

*026 

•007 

*0012 

•00022 

*00002 

This seems to correspond fairly well with what we know of 
the densities and temperatures of the giant stars of different 
types. * 

At 10 ooo° the central density should be 54*25 x *026 = 1*4, so 
that deviations from Boyle’s Law will occur near the centre. "We 
may, however, anticipate the results of § 10, and state that it 
is not ' until temperatures above 13 ooo° are reached that the 
deviations from the gas-law begin to influence the effective tem- 
perature. 

The total radiation varies as which by (29) varies as 

9ir2(I — ß)i th-at is, as M(i — /3), and is independent of the density. 
We thus obtain the result that 

The bolometric magnitude of a gaseous star is independent of its 
stage of evolution, cmd depends only on its mass. 

This is in accordance with H. N. Russell’s conclusion that the 
absolute magnitudes of giant stars of different types are nearly the 
same. Differences of one or two magnitudes may occur,' owing 
partly to differences of mass and partly to differences of the ratio 
of the luminous to the total radiation. 

From the table the density of a giant star having the same 
effective temperature as the Sun (6000o) is *0012. The Sun’s 
density is 1*38. Hence by comparing their superficies I find that 
a giant star is 5m*4 brighter than the Sun, which agrees well with 
observation. (According to Russell, the average magnitude of a 
giant star at 10 parsecs distance is probably about zero; that of 
the Sun is usually given as 5m*5, but some recent determinations 
make it about om*5 brighter.) 

* Russell has given the following estimates of the average densities of giant 
stars of different types in terms of the Sun’s density {Nature, vol. xciii. pp. 
282-3):—Type A, 1/10; G, 1/350; K, 1/2800; M, 1/25000. Assuming 
that type G has the same effective temperature as the Sun (6000o), the law. 
Tj oc ¡yp gives the following effective temperatures:—Type A, 108000; G, 
6000o ; K, 4250o; M, 29500.. This agrees almost exactly with the tempera- 
tures usually assigned. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
16

M
N

R
A

S.
.7

7.
..1

6E
 

30 Prof. A. S. Eddington, lxxvii. i, 

Comparison with the Lane-Ritter Theory.—According to Ritter * 
the effective temperature of a star varies as the square-root of the 
mass. Our result is the twelfth root, which seems to accord better 
with the comparatively small range of surface temperatures observed 
in stars of similar density. Ritter further states that the tempera- 
ture is nearly independent of the density, whereas according to 
the present view density is the main determining factor. 

Had Ritter taken y = his formula would have led to 
Tj oc pi, agreeing in this respect with (30). 

Lane’s law, strictly speaking, is not concerned with the effective 
temperature, but with the temperature at any definite point in the 
interior; this is proportional to the cube root of the density on 
Lane’s theory as on the present theory. It has often been recog- 
nised that the effective temperature will follow a different law; 
but I do not think the sixth root has been suggested before. 

Range of Stellar Masses.—We have found that the total 
radiation of a giant star varies as M(i - /?) ; or, since ß is small and 
varies only slightly, the radiation is practically proportional to the 
mass. On this view we must attribute the differences in luminosity 
of individual giant stars of the same spectral type to differences in 
the .masses; and if we knew the range of variation of luminosity 
we should be able to deduce the range of variation of the 
masses. 

H. N. Russell has given provisionally the necessary data for 
giant stars of type M.f He has found that these are distributed 
about a mean absolute magnitude approximately according to the 
law of errors, the “probable error” being ±om,6. By the law 
of errors more than four-fifths of the stars will be included 
within a total range of 2m*4 (i.e. twice the probable error on either 
side). The corresponding range of luminosity is 1:9; and the 
range of the masses must be the same. * 

We conclude that the masses of the stars are dispersed about a 
median mass M, so that four-fifths of the whole number are 
between, the limits and 3M. This result applies primarily to 
the giant M stars; but Russell’s investigation indicates that the 
range is very similar in the other types. This remarkably small 
range of mass is in general agreement with our knowledge derived 
from observation of binary stars. 

9. Energy of a Star.—Former investigators have found a 
difficulty that the heat energy of a star amounts to a large pro- 
portion of the energy acquired by contraction, leaving only a small 
fraction to account for the radiation during past history. Thus 
Perry showed that if y<-| the heat (molecular) energy alone is 
greater than could be acquired by contraction; he neglected the 
imprisoned radiant energy, which would have made the deficit very 
much worse. On the present theory this difficulty is avoided, 
and only about a quarter of the energy of contraction is retained 
within the star. 

* Astrophysical Journal, vol. viii. p. 307. 
* + Observatory, vol. xxxvii. p. 170 ; Nature, vol. xciii. p. 255. 
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Nov. 1916. On the Radiative Equilibrium of the Stars. 31 

Let cv be the specific heat at constant volume, 
y the ratio of specific heats, 

dV an element of volume, 
K the molecular energy of the star, 
H the imprisoned radiant energy, 
O the energy acquired by contraction from infinite diffusion. 

Then K = JevPTdV = | JpdV = ^ JpdV, 

since cv + B, = ycv. 

Also H = |aTMY = jpdV = f.pdY by (26a) 

Now if there were no radiation-pressure we should have 

JpdV = 47rjpè2d£ = -^7rf£zdp = |-0. (Gaskugeln, p. 124). 

But radiation-pressure multiplies the values of p in the ratio ß, 
so that 

JpdV — jfßQ. 

Thus K = ß' 

3(y-i) 
o 

i — B * 
H =  

We cannot estimate K accurately, since we do not know y. 
The material is probably monatomic at the high temperature, but 
it seems unlikely that the usual value y = f is valid for radiating 
atoms. The factor ß in the numerator will make this energy small 
in almost any case. 

Taking Perry’s case, y = §, we have (for mass= i'S x ©) 

K=*o470 H=*2380. 

Altogether 0*285 eneroy contraction is retained within 
the star as heat, leaving plenty of margin for radiation or for the 
formation of radioactive elements. 

It is interesting to note that the greater part (H) of the energy 
resides in the æther. Only a small part of the star’s store of heat 
is represented by the molecular movements ; the bulk of it consists 
of æther-waves travelling in all directions but unable to escape, 
except very slowly, through the meshes of matter which imprison 
them. This condition applies to the gaseous stars only, and not 
to dwarf stars such as the Sun. 

As the star contracts O varies as pi, or as Tj2. Hence, since 
the total rate of radiation remains constant, we ought to have— 

The age of a gaseous star increases as the square of its effective 
temperature. 

I do not place much reliance on this, because it is well known 
that a star cannot have a reasonably long life if its supply of 
energy is due solely to contraction. 
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32 Prof, A. S. Eddington, lxxvii. i, 

io. Dwarf Stars.—If we were to extrapolate the law Tx oc pi 
for a star having the density of the Sun, 1*38, we should find an 
effective temperature of 19 300,° whereas the Sun’s effective 
temperature is about 6000o. The difference is due to the failure of 
the gas-law at this high density, which renders the calculated 
values of (T0

4/p0)c erroneous. It should be noted that we have not 
used the gas-law in deriving equations (27), (28), (29), or indeed 
in any of the numbered equations except (20). Thus the whole 
theory holds for the dwarf stars, except that the calculations of 
§ 4 break down. 

The effect of a failure of the gas-law is to alter the value of 
(T0

4/p0)c, which by (27) alters ß. ß begins to increase. By (29) 
varies as ^/(i - ß). Since ß is at first about 0*05, the increase 

of ß two- or three-fold makes at first but little difference in this 
factor. It is not until long after the internal distribution of 
temperature and density has deviated strongly from that given by 
the gas-law that T1 begins to be affected. 

It is of great interest to determine the turning-point at which 
the effective temperature ceases to increase with the density. 

For high densities and pressures the necessary modification of 
Boyle’s Law is given approximately by Van der Waal’s equation, 
and the gas-equation becomes 

p^pTfi-py. . . . (31) 

where p0 is the maximum possible density of the material. This 
equation must be combined with (26a) 

• ■ • • (s2) 

and 

 (33) 

to determine the interior conditions. An exact solution is, of 
course, impossible ; but we can wdthout much difficulty attain our 
object by quadratures. 

Since it is clear that on this theory the Sun must be compressed 
to something near the maximum density throughout most of its 
mass, I take p0 to be 1*5.* Our object is—given the mass and 
mean density, to find ß. We have to proceed by guessing ß and 
then working from the outside inwards with equations (31), (32), 
and (33) to test whether the value fits. 

For a star of the same mass as before, and density 07, I- find 
that ß must be o*i8. The following table gives the radii oL the 
surfaces of equal density, the mass contained within them, the 
temperature, and the acceleration of gravity there. 

* N. Ekholm gives 1*486. His neglect of radiation-pressure and other 
divergences will make no serious difference in the case of the Sun. See 
Gaskugeln, p. 467, 
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Nov. 1916. On the Radiative Equilibrium of the Stars. 33 

Density. 
o 

0-05 

0-15 

0*25 

o*35 

0*45 
0-55 

0*65 

075 
0- 85 

0*95 

1- 05 

1*15 

Dense Star. 

(Mass =i*5 © ; Density = 07.) 
Interior Mass. Temperature. 
2*87 x 1033 

Radius. 
9*92 x 1010 

9*32 
9*05 

8-87 

870 

8*54 

8'37 
8-i8 

7*95 
7*67 

7-29 

676 

5*86 

2*87 

2*85 

2*8i 

276 

270 

2*62 

2-52 

2*39 
2’22 

I*98 

1-65 
I *i6 

3*4 x 106 

5*o 
6*i 

7*o 

7*8 

8*6 

9*5 
io*4 
11 *3 
12*5 

13*8 

15*4 

Gravity. 
I *94 x 104 

2*20 

2*31 

2*38 

2*43 
2*46 

2*49 
2*51 

252 

2*51 

2*48 

2*41 

2*25 

The mass remaining within the last sphere must correspond 
to a mean density greater than 1*15, and less than the limiting 
density 1*5. The actual value deduced from the table is 1*37, 
and this constitutes our test that the value of ß is correct—we 
have stripped off just the right amount. Had we chosen ß — o'2o, 
the interior density would have been less than i’i5 ; similarly a 
smaller ß would have given a density greater than i^. 

According to formula (30) this star would have an effective 
temperature of 17 300o ; the factor (1 - ß)i reduces this to 16 6oo°. 
It is remarkable that such an extreme deviation from the con- 
ditions of a perfect gas should lead to so small a correction. It is 
clear that 16 6oo° must be about the turning-point of the tempera- 
ture, because when once the term in ß has begun to take effect 
it will soon counterbalance any increase of density. 

By (30) the maximum effective temperature will be pro- 
portional approximately to the twelfth root of the mass. The 
correction depending on ß can be determined from (27), since/or 
the same mean density (T0

4/2?0)c varies as M2, whether the star be 
gaseous or otherwise (c/. (20)). Thus for the same density 

iTl/oc M2. 

Introducing this correction, I find the following results :— 

Mass = 4*5 x Sun. 
1'5 
°*5 

Maximum temperature = 18 6oo° 
16 6oo° 
14 6oo° 

>? 
? > 

These values are perhaps too high. The observational evidence 
of Nordmann and of Wilsing and Schemer seems to point to a 
maximum of about 14 ooo°. But the agreement seems sufficiently 

3 
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34 The Radiative Equilibrium of the Stars, lxxvti. i, 

close to be of interest. Lower maxima, in the ratio five-sixths, 
would have been obtained if EusselPs densities {footnote, p. 29) 
had been used instead of the datum density 0*002 corresponding to 
temperature 6500o. 

The dwarf-stars must be comprised within the range of density 
0*7 to 1*5. The importance of radiation-pressure compared with 
gravitation decreases rapidly as we descend along the dwarf series. 
For the Sun, radiation-pressure is practically negligible. The 
differences of luminosity of the dwarf types must be due mainly 
to differences of effective temperature, since there is not much 
scope for variation of superficial area. 

11. Molecular Weight.—The calculations have been based 
throughout on a molecular weight 54. To illustrate the effect of 
modifying this,' I give some results for a molecular weight 18. 
The gas-constant K becomes multiplied by 3. The central pressure 
becomes multiplied by 3 very approximately, the central tempera- 
ture being almost unaltered. The new value of /3 is *137, so that 
about of gravity is compensated by radiation-pressure, instead of 

The constant of absorption k is slightly reduced to 26*7. The 
results of § 8 are based on the general relation T1 oc M and are 
not altered. The calculations of the internal energy of the star 
in § 9 involve ß, and the numerical results are altered, but they 
are of the same general character ; the molecular energy is, 
however, increased and the radiant energy slightly diminished. 

The most important effect of diminishing the molecular weight 
to 18 is to reduce the maximum possible effective temperature 
and to cause it to occur at a lower mean density. It is not 
possible to give accurate figures without a great deal of labour, 
but it appears that the maximum effective temperature would be 
decreased by about 12000. 

The importance of radiation-pressure in determining stellar 
equilibrium would be reduced if the molecular weight were still 
smaller ; but even for a star composed of helium, it would still be 
intense enough to counterbalance half the gravitation. 

12. The Constant of Absorption.—We have found that k has 
a value about 30 in C.GLS. units, and this should be the constant 
of absorption for stellar material at temperatures chiefly between 
106 and 107 degrees prevailing within stars. Unfortunately, there 
seems no other evidence to indicate whether this value is at all 
near the truth. At temperatures of 106 and 107 degrees the 
radiation of maximum inteùsity is of wave-length 30 and 3 tenth- 
metres respectively—shorter than ordinary spectral radiation, but 
longer than X-rays and y-rays. It has one merit for our purpose— 
it cannot very well experience selective absorption, since no 
spectrum (X-ray or ordinary) contains lines within this range. 

It happens that the experimental values of k for hard X-rays 
absorbed by solid material are usually about equal to the value 
here found.* In the absence of a theory to guide us, we cannot 

* Bragg, X-Rays and Crystal Structure, p, 177. Table A gives k, defined 
as in this paper. 
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infer that the same values would hold at a temperature of 106 

degrees and for considerably longer waves. The agreement is 
probably accidental. The work which seems to bear most nearly 
on the question is J. J. Thomson’s theory of the scattering of 
X-rays.* Tor very short waves the scattering depends only on the 
number of electrons present—for a gas, practically on the mass. 
The theory, confirmed by the experiments of Barkla, gives a 
scattering of *00025 by a cubic centimetre of air. This is equiva- 
lent to h — o'2 only; but this is only the part of the coefficient due 
to scattering, and the full absorption coefficient must be larger. 

Experimental results for the extreme ultra-violet have, I think, 
no application to our problem, for the absorption may be molecular 
and is not likely to persist at high temperatures. 

The Stellar Magnitude Scales of the Astrographic Catalogue. 
Tenth Note. The Melbourne Magnitudes. By H. H* 
Turner, D.Sc., F.RS., Savilian Professor. 

1. During the visit of the British Association to Australia in 
1914 we were glad to learn that the measurement and reduction 
of the Melbourne zones ( - 65o to - 90o, the portion corresponding 
to that undertaken by Greenwich in the northern hemisphere) were 
nearing completion, and that funds had been provided for the 
printing. It is earnestly to be hoped that neither the war nor the 
retirement of Mr. Baracchi from the Directorship will affect the 
availability of these funds, and that the printing may go forward 
rapidly. The Council of the British Association, after constiltation 
with the Council of the Koyal Astronomical Society, drew the 
attention of the Victorian Government to the importance of this 
printing, expressing great satisfaction that the means had been 
promised. 

2. Meanwhile Mr. Baracchi, in kind response to a request, sent 
me the counts of the plates in zone - 65o ; material of great value, 
seeing that nothing similar has yet been published south of -420 

(Cape). Experience of the Vatican plates in similar latitudes and of 
the Oxford plates indicates that the results of a single zone are liable 
to be sensibly affected by accidental errors {Mon. Not., Ixxv. pp. 468 
and 603). Hence the following results may possibly be modified 
when other zones are available. 

3. We will depart a little from previous procedure by con- 
sidering first the magnitude scale as a whole. In Table I. are 
given, first, d, the diameter as measured at Melbourne in units of 
o",25 ; next, N', the total number of stars on all the plates in the 
zone with a diameter greater than d ; and next, log H, the average 
per plate, i.e. log N' - log 80, there being 80 plates in the zone- 

* Richardson, Electron Theory of Matter, p, 485. 
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