Nova Geminorum 2 (Enebo) ; its Position for 1900.0, together with those for 102 Stars surrounding the Nova, as deduced from Measures on a Photograph taken at the University Observatory, Oxford. By F. A. Bellamy, M.A.

This star was discovered without a telescope by M. Sigurd Enebo, of Dombaas, on March 12, at $8^{\mathrm{h}} 3^{2}{ }^{\mathrm{m}}$ mean mid-Europe time. Owing to moonlight and cloudy weather no photograph was obtained at this Observatory (with the astrographic telescope of 13 inches aperture) until March 25, when two exposures of $6 \frac{1}{2}$ and $6 \frac{1}{4}$ minutes were given at $\mathrm{I}^{\mathrm{h}} 28^{\mathrm{m}}$ west hour-angle; the night was fairly good for photographic work, and a satisfactory plate was obtained.

The plate shows stars to the twelfth magnitude; the images of the Nova are very large, being exposed about the period of its: second increase in brightness. The object of this note is to record its position, also those of a number of faint stars near the Nova, for future use. The area in which all the stars visible on the plate have been measured is situated within about ten minutes of arc radius from the Nova; these are mostly stars of the tenth to the twelfth magnitudes. The bright stars on the plate were observed at Leiden ; these have been measured and form the basis of the plate-constants: other stars from the eighth to the tenth magnitudes have been measured so as to obtain positions of sufficient stars to afford a good sequence of magnitudes from the seventh to the twelfth, when the Nova fades between those limits.

The adopted plate centre is $+32^{\circ} 0^{\prime}$ and $6^{\mathrm{h}} 49^{\mathrm{m}}$ for $1900^{\circ} \mathrm{O}$. The rectangular co-ordinates ξ and η have been computed with this centre and referred to the corner of the plate by the addition of $\mathrm{II} \cdot 0000$ réseau intervals to the calculated $\xi^{\prime} s$ and η 's in order to get ξ^{\prime} and η^{\prime}. These standard co-ordinates are given in Table IV., the sixth and seventh columns.

The plate-constants have been determined from 21 stars in the Leiden A.G. Catalogue, reduced to epoch 1900.0, well, scattered over the plate. The standard co-ordinates ξ^{\prime} and η^{\prime} were calculated by the usual formula by means of MS. tables for \circ° to $+64^{\circ}$ existing at this Observatory, and of similar construction to those already printed in the Astrographic Catalogues (Oxford) for $+25^{\circ}$ to $+31^{\circ}$, to which reference may be made for the formulæ used. The residuals for these 2 I stars, as well as twelve other Leiden stars not included in the equations from which the plate-constants were determined, are shown in Table I. Notes relating to seven of these stars follow at the end of the Table.

The region under consideration falls on the edges of two plates, Nos. 46 and 47, printed in the Potsdam Astrographic Catalogue, vol. iv. The position of the Nova would be $+8 \cdot 5$ intervals in x from the centre of plate 46 ; it is outside plate 47.

There are 56 stars, of the 102 mentioned in this paper, that are common to Oxford and Potsdam plates; most of these are the bright stars (Leiden Catalogue) upon which the constants for the plates are based. In the restricted area around the Nova I give 45 stars to the twelfth magnitude ; 9 of these are on the Potsdam plates. A number of the stars south of $+32^{\circ} \circ^{\prime}$ are also in the Oxford Astrographic Catalogue, vol. i., plate 212 I .

In Table I. the Potsdam plate and number and B.D. numbers are added for convenience of easy reference.

Table I.

$\begin{aligned} & \text { Oxford } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Leiden } \\ \text { A.G. Cat. } \end{gathered}$	$\begin{aligned} & \text { Potsdam } \\ & \text { IV. } \end{aligned}$	B.D.	Oxfor	den.
I	2841	46, 10I	32, 1418	$\begin{gathered} \stackrel{8}{0} \\ -\quad \stackrel{ }{9} \end{gathered}$	$-{ }_{-0}{ }^{\prime \prime}$
2	2843	46, 107	32, 1419	- 03	- I. 6
3	2844	46, 120	32, 1420	- 08	- 6
4	2845	46, 123	32, 142 I	-00	$+\cdot{ }^{\prime}$
5	2850	...	33, 142I	- 05	-7
6	2852	46, 157	32, 1424	- 03	- 8
8	2857	46, 185	31, 1428	- ${ }^{\text {- }}$	- 4
14	2861	46, 215	3I, 1433	+ ${ }^{\circ} \mathrm{O}$	- ${ }^{2}$
19	2862	46, 22 I	32, 1433	+ 03	$+\cdot \mathrm{I}$
20	2863	...	33, 1428	+ 04	+ $\cdot \mathrm{I}$
21	2864	46, 223	32, 1434	+ 02	$+7$
25	2865	46, 227	3I, 1434	+ 04	-7
28	2866	46, 229	32, 1436	+ 04	$+9$
42	2867	46, 243	33, 1429	- -03	$+3$
49	2868	46, 245	32, 1437	+ 08	+10
50	2870	46, 246	3I, 1438	- - 01	$+1$
59	2872	46, 262	31, 1442	$+{ }^{\circ} \mathrm{IO}$	$+\mathrm{I} 9$
61	2873	46, 265	31, 1443	- $\cdot 08$	-0.1
72	2876	$\begin{array}{lr} 46, & 268 \\ 47, & 3 \end{array}$	3I, 1446	$+\cdot 12$	+0.4
8I	2880	$\begin{aligned} & 46,275 \\ & 47, \quad 11 \end{aligned}$	32, 144I	+ 04	00°
82	2883	$\begin{array}{rr} 46, & 276 \\ 47, & 14 \end{array}$	32, 1442	-42	-3.4
83	32, 1442	- 34	-7.3
87	2887	47, 30	31, 1449	-.08	+ 8
89	2889	47, 39	32, 1447	-.05	$+2.0$
90	2895	47, 54	31, 1453	+ 05	$+1$
91	2896	47, 55	32, 1448	+ 02	+2.I
92	2899	47, 69	33, 1438	+ 08	- I'6
93	2901	47, 73	31, 1457	$-\cdot 27$	+1. 1

Table I.-continued.

$\begin{gathered} \text { Oxford } \\ \text { No. } \end{gathered}$	Leiden. A.G. Cat.	Potsdam IV.	B.D.	Oxford-Leiden.	
94	2902	47, 79	32, 1449	$\stackrel{\mathrm{s}}{\mathrm{O} 2}$	+ I'0
95	2903	47, 80	32, 1450	+ ${ }^{\text {IO }}$	$\cdot 3$
98	2906	47, 107	3I, 1460	+ 08	- 7
99	2909	\ldots	33, 1446	- '03	+ 7
101	2911	47, 128	3r, 1463	+ ${ }^{15}$	+ $\mathrm{I}^{\circ} \mathrm{I}$
102	2916	47, I54	3I, 1466	$+\cdot 07$	$+2.7$

Notes.--Nos. 5, 20, and 99 are outside the regions printed in Potsdam astrographic zones in vol. iv.

No. 8. There are three stars within 2^{8} and $50^{\prime \prime}$; in the Potsdam plate 46 they are given as 185 (8.8 mag .), $186(9.2)$, and 187 (10.5); only the brightest of the three has been measured at Oxford for this paper.

Nos. 82, 83. These form the double-star $\Sigma 984$. Apparently the star was observed as one mass for the Leiden A.G. Catalogue; as there is a footnote, "Keine Bemerkung über Duplicität." Only one other star has been measured at Potsdam on plates 46 and 47 , and no note as to duplicity is given. On the Oxford plate 2891 the image of the fainter star coalesces with the brighter image, but it is quite easy to measure; the difference in R.A. is $\circ^{8 \cdot 12}$ and in Dec. $3^{\prime \prime}: 9$, and the photographic magnitudes are 8.5 and 9.9 ; the companion is s.f. It would have been better had this star, Leiden 2883, been omitted from the equations upon which the plateconstants are based; but the whole of the calculations were completed before the magnitude of the residuals was noticed ; only the brighter star measured on the Oxford plate has been used in the equations.

No. 93. There is a fainter companion to this star ; it is s.f., about 9 " and $11 \cdot 7$ mag.

Only the first exposure was measured. Each star was measured in the direct and reversed position of the plate, and the mean of the measures was taken; these measures were corrected for the plate-constants, and, from these corrected measures (ξ^{\prime} and η^{\prime}), the R.A. ${ }^{\text {s }}$ and Dec. ${ }^{\text {s }}$ for 19000° were deduced for the convenience of those who still prefer the results in these co-ordinates. Both sets of results, together with the magnitudes and B.D. number, are given in Table IV.

The formula used for obtaining the magnitudes from the measured diameter (a) in units of $00 \mathrm{r}(0 \prime 3)$ of the réseau is $m=a-b \sqrt{d} ; a$ and b are constants for this plate, and the photographic magnitude scale adopted is

$$
\text { photo-mag. }=13^{\circ} 9-\mathrm{I}^{\circ} 02 \mathrm{~V} \mathrm{~d} .
$$

This gives a very fair agreement with Argelander's magnitudes when we assume that his $8.5=8.6$ and $9.5=9^{\circ} 9$ as indicated by Professor Pickering in his photometric work. I have only found one star, No. 19 or B.D. $+32^{\circ}$ 1433, in the Harvard photometric results that is among the 102 stars used in this paper: that is given as 6.89 mag. It is also the only star given by Muiller and Kempf in the Potsdam Observatory's photometric review of B.D. stars; the number is 4243 in vol. xvii., and the star is noted as 7.22 mag. At least two measures of the diameter of each star have been made, and the mean taken to the nearest half unit; these are given in Table IV., second column, and the deduced magnitudes are in the third column.

In addition to the B.D. stars, whose magnitudes and positions are given in Table IV., I have measured the diameters of all the other B.D. stars on the plate, and obtained their magnitudes by the sameformula. Collecting those stars corresponding to the 9.5 mag. B.D. stars, the following results are obtained :-

10.4	10.4	$9 \circ 9$	9.6	10.3
10.2	10.4	10.3	10.3	10.5
10.4	9.9	10.2	9.2	9.6
10.1	9.7	10.4	9.5	9.6
9.5	9.6	9.4	9.7	

The mean mag. is $10^{\circ} 0$; the groups collected under other magnitudes have insufficient stars. There are only three B.D. stars on the plate with magnitudes brighter than $8 \cdot 0$: they are 7.8 (B.D. $7 \cdot 8$), $7 \cdot 3$ (B.D. $7 \cdot 8$), and $6 \cdot 9$ (B.D. $7 \cdot 0$).

The mean diameter of the Nova from ten measures of the first exposure is 80 ; this, by the same formula, is equal to magnitude 4.8 . The semi-diameter, besides the diffusion from the photographic spreading of the image, is $\mathbf{1} \mathbf{2}^{\prime \prime}$; thus all stars within a radius of quite $15^{\prime \prime}$ are lost in the image of the Nova.

The following notes upon some of the Argelander stars may be of use:-B.D. $+31^{\circ} 1425$ is given as $9^{\circ} 2$ mag. ; it is photographically much brighter and, by the size and intensity of the image, is brighter than B.D. $+31^{\circ} 1433$ ($7 \cdot 8$ mag.). B.D. $+3^{\circ} 3$ 14I9, given as 9.4 mag., consists of two stars; one is 10.2 and the other $n . f . *$ is 10.8 . B.D. $31^{\circ} 1440$ is given as $9^{\circ} 2$; there are two stars, 94 and 10.3 n.p. about $33^{\prime \prime}$. B.D. $3 \mathrm{I}^{\circ}$ r 445 , mag. 9.5 , consists of two faint stars, 10.9 and the other 1 I \circ. $n . f$. B.D. $3 \mathrm{I}^{\circ} 1454$, mag. $90^{\circ} 4$; there are two stars, mags. 9.5 and ェi.6 n.p. about $5^{\prime \prime}$. Other notes are appended to Tables I. and III.

For convenience in comparing positions from photographs or from other instruments, the precessions and secular variations for $1900^{\circ} 0$ have been computed from Dr. Downing's Tables. Table II. contains this information for a number of points, so.

Apr. I912. its Position for 1900.00. 501
that precessions for intermediate positions can be readily interpolated.

Table II.
Precessions and Secular Variations for $1900^{\circ} 0$.
In Right Ascension.

	$+3 r^{\circ} 0^{\prime}$	$+31^{\circ} 30^{\prime}$	$+32^{\circ} 0^{\prime}$	Precession $+32^{\circ} 30^{\prime}$	${ }^{\mathbf{n} .}+33^{\circ} \mathrm{o}^{\prime}$	$+33^{\circ} 30^{\prime}$	$\begin{gathered} \text { Sec. Var. } \\ +31^{\circ} o^{\prime} \end{gathered}$	$\begin{gathered} \text { oo years). } \\ +33^{\circ} \mathrm{o}^{\prime} \end{gathered}$
hm	s	s	s	s	s	s	s	s
644	$+3.8605$	$+3.8762$	$+3 \cdot 8920$	$+3.9080$	$+3 \cdot 9242$	$+3.9406$	- 0006 I	--0068
646	. 8592	$\cdot 8748$	-8906	-9066	-9227	-9391	64	71
648	-8578	$\cdot 8734$.8891	-905 1	-9212	-9375	67	75
650	.8563	-8719	. 8876	'9035	-9196	-9359	70	78
652	. 8547	-8703	. 8860	-9019	-9179	-9342	73	81
654	$+3.8531$	$+3 \cdot 8686$	$+3 \cdot 8843$	$+3.9002+$	$+3.9162$	$+3.9324$	- -0077	- 0085

In Declination.

	Precession.	$+31^{\circ} \mathrm{O}$	Sec. Var. (roo years). $+32^{\circ} \mathrm{o}^{\prime}$	$+33^{\circ} \mathrm{o}^{\prime}$
${ }_{6} \mathrm{~m}$.	"	"	
644	-3.825	--0.551	-0. 555	-0.560
646	3.997	'550	-54	559
648	4•168	-548	-553	-557
650	$4 \cdot 339$	-547	-551	-556
652	4.509	546	'550	-555
654	-4.680	-0. 544	-0.549	- ${ }^{\circ} 55$

The position of the Nova deduced from the ten bisections of image, is for

	R.A.	ξ^{\prime}.	Dec.	η
	m s	R.I.		R.I.
1900\%	$64^{8} 25{ }^{\circ} \mathrm{O} 73$	9.5230	+3215 57.54	14.1928
1912.0	64911.834		+3215 6\%	

The size of the image, approximately $30^{\prime \prime}$ in diameter, renders the bisections difficult.

In the last two numbers of the Astronomische Nachrichten, Nos. 4563 and 4564 , some positions of the Nova have been published.

It may be of interest to collect these, as some are obtained by means of the meridian instrument, some by micrometer comparisons from one or two bright stars, and from photographs.
1912 $0 . \quad$ I912.
 from 2 Leiden stars， 2864 and 2886.

Oxford 649 II $83 \quad 32156 \%$ Photograph．Referred to 21 Leiden stars．
Leiden 649 II $66 \quad 32$ I5 5．8 Meridian．J．Voûte．Berl．Jahr．and Leiden 2845 used．
Copenhagen 649 II $82 \quad 3215 \quad 5 \cdot 5$ Meridian．J．Braae．
Rome $\quad 649$ II•82， 32156.2 Micrometer．E．Millosevich，from Leiden 2845.
Bamberg＇ 649 II． 84 32 15 6．0 Micrometer．E．Hartwig，from Leiden 2862.
Hamburg 649 II79 32 I5 5% Micrometer．K．Graff，from Leiden 2845.

Leiden 649 II 7o．+32 I5 5• Micrometer．J．Voûte，from Leiden 2845.

In Table I．I give the corrections to each Leiden star（or the residuals O－L）obtained from this plate．Leiden 2845 （Oxford No．4）has ${ }^{8.00}$ and $+{ }^{\prime \prime} \cdot 1$ ；Leiden 2862 （Oxford No．19）has $+{ }^{\mathrm{B} .03}$ and $+^{\prime \prime} \cdot{ }^{\circ} \mathrm{I}$ ；and Leiden 2864 （Oxford No．21）has $+{ }^{\mathrm{s} .02}$ and $+{ }^{\prime \prime} \cdot 7$ ；Leiden 2886 is outside plate 2891．

The two faint stars， 13 and 15 mags．，close to the Nova， indicated by Dr．Max Wolf as having been measured on one of Dr．Kopff＇s plates taken in r909，are lost in the large image of the Nova on the Oxford plate．

The magnitude and colour were noted by F．F．Yetersen，of Copenhagen，as 5.4 reddish on March 20， 4.7 bluish on March 25， 4.9 on March 26，and 5.8 reddish on March 26．I took plate 289 I on March 25，may this colour effect account for the large image？

Dr．Max Wolf in the Astronomische Nachrichten，No．4562，gives a chart of the region and specially indicates $\mathbf{1 2}$ stars；these stars are included in the 102 stars in Table IV．，and the following Table III． contains the Oxford number and magnitudes corresponding to the 12 stars in his list，together with the B．D．number and magnitude．

Oxford．	
No．	Photo．
IO	$9 \cdot 8$.
II	$9 * 3$
19	$6 \cdot 9$
21	$8 \cdot 4$
23	10.4
28	$9{ }^{\circ} 4$
49	$8 \cdot 5$
73	$9{ }^{\circ} 4$
80	$9^{\circ} 7$
81	$8 \cdot 8$
82	$8 \cdot 4$
85	$9^{\circ} 2$

Table III． Max Wolf．

Oxford No. 23 is photographically faint, at least it is so on plate 289 r .

Table IV. has been explained in the preceding remarks. It contains the results of the measures of roz stars, besides the Nova, tabulated in a convenient form for reference.

Table IV.

${ }^{\text {Oxford. }}$			Standard Co.ordinates.					$\begin{aligned} & \text { Dec. } \\ & \text { sgoo. } \end{aligned}$
No.	Diam.	Mag.	No.	Mag.	ξ^{\prime}.	η^{\prime}.		
			-		R I.	R.I.	h m	- 1 ${ }^{\text {- }}$
1	40	$7{ }^{\circ} 4$	32, 1418	$8 \cdot 3$	-0.908	21.480	$64416 \cdot 47$	+32 $523 \cdot 8$
2	22.5	$9^{\circ} \mathrm{I}$	32, 1419	9'I	-0.65I	11.486	6442511	$\begin{array}{llll}32 & 2 & 7\end{array}$
3	24	89	32, 1420	$9^{\prime \prime} 1$	+0.314	I I 636	$64447 \cdot 85$	$\begin{array}{llll}32 & 2 & 55 \%\end{array}$
4	42'5	713	32, 142 I	7.8	0×493	14.357 .	64451.47	32 16 3199
5	34	7*9	33, 1421	9°	$2 \cdot 543$	$25 \cdot 948$	$645 \quad 37 \cdot 83$	$331433 * 4$
6	30	$8 \cdot 3$	32, 1424	$8 \cdot 8$	3.336	$22 \cdot \mathrm{Or} 5$	$645 \quad 57.45$	325455%
7	25	$8 \cdot 8$	31, 1427	9.2	3.745	$4 \cdot 8 \mathbf{2 4}$	$646 \quad 9 \cdot 88$	'2
8	$27 \cdot 5$	$8 \cdot 6$	31, 1428	$8 \cdot 8$	4.928	$6 \cdot 007$	$64637 \cdot 47$	3134571
9	30	$8 \cdot 3$	31, 1432	$9^{\circ} 2$	$6 \cdot 747$	0.256	$647 \quad 20 \cdot 68$	3 I 6 14\%7
10	$16 \cdot 5$	$9 \cdot 8$	32, 1431	9^{\prime} I	$6 \cdot 862$	$15 \cdot 125$	$64722 \cdot 06$	3220351
II	20	$9 \cdot 3$	32, 1432	$9 \cdot 2$	6.894	13983	$64722 \cdot 92$	321452.6
12	$5 \cdot 5$	II 5			$7 \cdot 082$	15.897	$647 \quad 27 \cdot 20$	2
13	4	II.9	..		7•134	13.424	$64728 \cdot 64$	32
14	36	7	31, 1433	$7 \cdot 8$	$7 \cdot 189$	I ${ }^{\text {941 }}$	$64730 \cdot 87$	$311440 \cdot 5$
15	9	$10 \cdot 8$			$7 \cdot 285$	14.905	$64732{ }^{\circ} 09$	$\begin{array}{llll}32 & 19 & 29.6\end{array}$
16	3	12.2			$7 \cdot 347$	14	$64733 \cdot 56$	32 I9 15*2
17	4	II 9	\ldots		$7 \% 414$	14	$64735 \cdot 17$	321754.6
18	19.5	$9{ }^{\circ} 4$...		$7 \cdot 424$	13.044	$64735 \cdot 52$	32 IO II
19	47.5	6	32, 1433	$7{ }^{\circ}$	7*508	18.6I7	64737.08	3238
20	$42 \cdot 5$	$7{ }^{\circ} 3$	33, 1428	$8 \cdot 3$	7715	24.514	64741×58	$33 \quad 7 \quad 32 \cdot 2$
21	29.5	8.4	32, 1434	$8 \cdot 6$	$7{ }^{721}$	16.353	$64742 \cdot 30$	3226444
22	13	10×2			$7 \cdot 892$	15.326	$64746 \cdot 42$	$322136 \cdot 5$
23	12	$10^{\circ} 4$	32, 1435	$9 \cdot 3$	7'919	18.738	$64746 \cdot 84$	$323^{8} 40 \cdot 0$
24	7	1192	7 \%932	I $5 \cdot 860$	64747×34	$322416 \cdot 7$
25	23.5	$9^{\circ} 0$	31, 1434	$8 \cdot 5$	7 911	6.531	64747×46	$31373^{8.0}$
26	10	10×7			$8 \cdot 013$	14.843	$64749 \cdot 32$	3219117
27	6	II* 4	$8 \cdot 083$	$15 \% 13$	6475092	3223327
28	19.5	$9{ }^{\circ} 4$	32, 1436	$8 \cdot 9$	8.094	17793	6475 F -05	$323356 \cdot 7$
29	8	II'O	\ldots	...	$8 \cdot 091$	14.571	64751×18	$321750 \cdot 1$
30	3	12.2	\ldots	...	$8 \cdot 135$	12.596	$647 \quad 52 \cdot 35$	327577
31	18	$9^{\bullet} 6$..,	\ldots	$8 \cdot 266$	15.141	64755.29	$322041 \% 2$
32	$3 \cdot 5$	$12{ }^{\circ} \mathrm{I}$	8-396	13.310	$64758 \cdot 47$	$321132 \cdot 1$

504 Mr. Bellamy, Nova Geminorum 2 (Enebo); LxxiI. 6,
Table IV.-continued.

Standard Co.ordinates.								
	$\underbrace{\text { Oxford. }}$		D.					
No	Diam.	Mag.	No.	Mag.	ξ^{\prime}.	η^{\prime}.		
						R.I.	${ }^{\text {h m m }}$	
33	8	110			8.490	13760	$\begin{array}{lll}648 & 0.66\end{array}$	$321347 \cdot$
34	4.5	11.8			$8 \cdot 523$	14.688	$648 \quad 140$	$3^{2} 1825$
35	3	12.2		..	$8 \cdot 563$	14.553	$648 \quad 2 \cdot 35$	321745°
36	5	11.6			8.824	15.370	$\begin{array}{lll}648 & 8\end{array}$	32
37	19.5	$9 \cdot 4$			8.853	$14 * 093$	$\begin{array}{lll}648 & 9.23\end{array}$	3215
38	17	97			$8 \cdot 864$	$16 \cdot 392$	$\begin{array}{llll}648 & 9 & 39\end{array}$	322656
39	$6 \cdot 5$	113			8.928	14*059	$648 \mathrm{II} \times 0$	3215
40	$8 \cdot 5$	10*9			$8 \cdot 929$	13.766	648 II 004	3213
41	8	II ${ }^{\circ}$			9.042	$15 \% 82$	$648 \quad 13.63$	3223
42	23.5	9*	33, 1429	$8 \cdot 9$	9×067	22.793	$648 \quad 13 \times 93$	$325^{8} 57^{\circ}$
43	7	11.2			9'175	$13 \cdot 832$	$64816 \cdot 86$	3214
44	$6 \cdot 5$	113			9•176	12.993	648 16.91	32957%
45	5	11.6			$9 \cdot 185$	13*965	64817×09	3214
46	3	12.			$9 \cdot 386$	12.073	648 21•91	32
47	$3 \cdot 5$	12.1			$9 \cdot 387$	12.593	6482101	$32757 \cdot$
48	6	11.4			9437	12.806	64823.08	329
Nova	80	$4 \cdot 8$			$9 \cdot 524$	$14 \cdot 152$	64825 \% 7	$321557 *$
49	28	$8 \cdot 5$	32, 1437	$8 \cdot 0$	9.538	18.331	$64825{ }^{\circ} \mathrm{O}$	323638
50	29	$8 \cdot 4$	31, 1438	$8 \cdot 8$	9.696	$5 \cdot 266$	648 29*41	3131
5 I	21	9.2	31, 1437	94	9718	I 854	648 30.02	3 I 14
52	7	11.2	...		9.785	14.150	$64831 \cdot 27$	321544.
53	4.5	118	...		9.987	14.448	$64836 \cdot 04$	321714.
54	15	$9 \cdot 9$			10'052	12.079	$64837 \cdot 62$	$32 \quad 523$.
55	8	11	.		$10 \cdot 322$	13.550	$64843{ }^{\circ} 98$	$321244{ }^{\circ}$
56	3	12	...		$10 \cdot 386$	14.233	$64845{ }^{\circ} 4^{8}$	3216
57	9	10.8	...		10.411	13.471	$64846 \cdot 08$	3212
58	14	10.1	...		10.527	12.543	$64848 \cdot 83$	327
59	29	8.4	31, 1442	$8 \cdot 6$	10•667	9×528	$64852 \cdot 16$	3152
60	12	10.4			10'704	12.188	64853 이	325
61	27×5	$8 \cdot 6$	31, 1443	$8 \cdot 6$	10'92I	$2 \cdot 158$	$64858 \cdot 15$	$311547 \cdot 5$
62	3	12.2	11.217	15.516	$649 \quad 5{ }^{6} 14$	322234
63	19	94	...		11.22I	23.756	$649 \quad 5 \cdot 27$	33346
64	5	11.6	\ldots	\ldots	11.296	$12 \cdot 665$	$649 \quad 6 \cdot 99$	32819
65	13	10.2		.	11.475	13.741	649 I1 23	321342
66	4.5	11.8		\ldots		14.954	6491209	321946
67	5	11.6	\ldots	\ldots	11×565	$12 \cdot 690$	64913.34	32826.
68	6	114	1i.651	13.728	64915.39	3213

Table IV.-continued.
Standard Co-ordinates.

	Oxford.		B.D.				R.A.	Dec.
No.	Diam.	Mag.	No.	Mag.	ξ^{\prime}.	η^{\prime}.		
69	23	$9^{\circ} 0$	$\stackrel{ }{\circ}$...	$\begin{gathered} \text { R.I. } \\ \text { I } 1.678 \end{gathered}$	$\begin{gathered} \text { R.I. } \\ 21 \cdot 923 \end{gathered}$	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ 6 & 49 & \mathrm{I} 6^{\circ} \mathrm{I} 5 \end{array}$	$3^{\circ} 54^{\prime} \quad 36^{\prime \prime} \cdot 6$
70	7	II 2	I I 688	14.017	649 16•27	32 I $5 \quad 5^{\circ}$
71	5	1 I 6	I I 694	12:246	649×638	$\begin{array}{llllll}32 & 6 & 13.7\end{array}$
72	18.5	9.5	31, 1446	$8 \cdot 8$	I I 764	8.057	6491797	$3 \mathrm{I} 4517{ }^{\circ} \mathrm{O}$
73	19.5	$9{ }^{\circ} 4$	32, 1439	$9^{\circ} 5$	1 1.801	18.187	649 19*OI	$323556 \cdot 0$
74	10	$10 \cdot 7$	-...	...	1 19.916	1 3.959	$64921 \cdot 66$	
75	10.5	10.6	$12 \cdot 055$	12.740	$649 \quad 2492$	$32 \quad 8 \quad 41 \cdot 9$
76	I4	10*1			12•196	17.529	$649 \quad 28 \cdot 37$	$\begin{array}{llll}32 & 32 & 38 \cdot 4\end{array}$
77	9	$10 \cdot 8$	\ldots	...	12.416	17.641	$64933 \cdot 59$	3233 II'9
78	$6 \cdot 5$	II 3	. ${ }^{\text {a }}$	\ldots	12.439	$17 \cdot 271$	64934×13	32 31 $20 * 9$
79	6	II ${ }^{\prime} 4$	\ldots	...	12.448	$17{ }^{\circ} 470$	6493434	$32322^{\prime} 26$
80	17	9*7	32, 1440	$9^{\circ} 2$	12.588	17*349	$64937 \cdot 66$	$+3231443$
81	25:5	$8 \cdot 8$	32, 144I	$8 \cdot 7$	$12 \cdot 727$	I I 298	$6 \cdot 49 \quad 40 \cdot 73$	32 I $29{ }^{\circ} \mathrm{O}$.
82	29.5	$8 \cdot 4$	32, 1442	$8 \cdot 6$	$13^{\circ} \mathrm{OO} 3$	17917	64947.52	$\begin{array}{llll}32 & 34 & 34\end{array}$
83	15	$9^{\circ} 9$...	\ldots	I $3 \cdot 008$	17904	$64947{ }^{\circ} 60$	$32 \quad 34 \quad 30 \cdot 6$
4	20	$9^{\circ} 3$	31, 1448	$9 \cdot 2$	13.086	4*153	$64948 \cdot 89$	$\begin{array}{llll}31 & 25 & 45^{\circ} 4\end{array}$
85	21.5	9°	32, I443	$9 * 2$	13:315	$18 \cdot 387$	64954.96	$\begin{array}{llll}32 & 36 & 55 \%\end{array}$
86	23	$9^{\circ} \mathrm{O}$	33, I43I	$9^{\circ} 2$	13.379	22.705	$64956 \cdot 70$	$32 \quad 58 \quad 30 \cdot 3$
87	$30 \cdot 5$	$8 \cdot 3$	3 1, 1449	$8 \cdot 3$	14.310	5.182	65017×64	$3 \mathrm{l} 3053{ }^{\prime}$
88	2 I	$9^{\circ} 2$	32, 1445	$9 \cdot 5$	14*268	21'711	$6 \quad 5017 \cdot 82$	3253 31.5
89	$3^{1} 5$	$8 \cdot 2$	32, 1447	$8 \cdot 3$	15060	16.052	$650.36 \cdot 18$	$32 \quad 25133$
90	$28 \cdot 5$	$8 \cdot 5$	3I, 1453	$8 \cdot 5$	16.588	3•168	$65110 \cdot 84$	$312046 \cdot 3$
9 I	$18 \cdot 5$	$9 \cdot 5$	3I, I455	$9^{\circ} 2$	16.598	10.788	6 5I. II 98	$31585{ }^{3} \mathbf{5}$ I'
92	$30 \cdot 5$	$8 \cdot 3$	33, 1438°	$9^{\circ} 0$	I7 ${ }^{1} 81$	23.118	$65 \mathrm{I} 27 \times 37$	33 - 29.6
93	32	8•1	31, 1457	$8 \cdot 5$	17.940	$5 \cdot 783$	$65 \mathrm{~L} 42 \cdot 88$	$313348 \cdot 4$
94	16.5	$9 \cdot 8$	32, 1449	$9^{\circ} 3$	$18 \cdot 191$	17×045	6 5I 50.50	$32 \quad 30 \quad 6 \cdot 3$
95	$24^{\circ} 5$	$8 \cdot 9$	32, 1450	$9^{\circ} \mathrm{O}$	18.338	19.631	65 I 54.40	$3243{ }^{32} \mathrm{I}^{\prime} 7$
96	17.5	$9^{* 7}$	32, I45I	$9^{\circ} 5$	19.326	12.505	652 16*6I	$32722{ }^{\circ} \mathrm{O}$
97	18.5	9.5	3I, I459	9*5	$19 \cdot 835$	I 469	$65226 \cdot 55$	311210.6
98	24.5	$8 \cdot 9$	31, 1460	$9^{\circ} 2$	$20 \cdot 629$	$4 \cdot 396$	6524572	$312646 \cdot 5$
99	40	74	33, 1446	$8 \cdot 0$	21•133	$25 \cdot 375$	$653 \quad 2 \cdot 12$	33 II $37 \cdot 3$
100	20	$9 ` 3$	32, I453	$9 * 4$	21.493	I7'II4	$6 \quad 53 \quad 8 \cdot 83$	$32 \quad 3018 \cdot 8$
IOI	19	$9{ }^{\circ} 4$	31, 1463	$9^{\bullet} 3$	22052	$8 \cdot 876$	$653 \quad 20 \cdot 13$	$3149 \quad 6 \cdot 3$
102	18.5	$9 \cdot 5$	$3 \mathrm{r}, 1466$	$9^{\circ} 4$	23.988	1.804	$654 \quad 3 \cdot 76$	3 I I3 39*

University Observatory, Oxford :
1912, April 10.

Observations of the Vew Star in Gemini made at the Radcliffe Observatory, Oxford.

(Communicated by Arthur A. Rambaut, M.A., Sc.D., F.R.S., Radcliffe Observer.)
The Kiel telegram announcing the discovery of this star was received on March I3, and since then observations of its brightness have been made at the Radcliffe Observatory on every evening when the weather permitted. On the 13 th, unfortunately, some time was lost in consequence of a mistake in the telegram which stated that the new star was situated in the neighbourhood of η Geminorum, and by the time the error was discovered by Mr. Barrett and the star had been picked up near θ, a short break in

Magnitudes of Nova Geminorum No. 2.
an overcast sky began to close up, and thus an exact determination of brightness became impossible.

From the date of discovery up till March 25 the observations of magnitude were made with the naked eye, and afterwards with the 2.7 -inch finder (power 13) of the ro-inch Barclay equatorial. Observations of the colour and character of the image, as described in Mr. Robinson's notes of March 25 and subsequent dates, were made chiefly with the ro-inch refractor (power 85), and on one occasion with the 18 -inch refractor (power 290).

In Table I. below are given the reference numbers, the names of the stars used for comparison, and the Harvard magnitudes on which our estimates are based. This is followed by the separate estimations of magnitudes and the observers' remarks; whilst Table II. gives for each evening the mean result obtained by each observer.

