OBSERVATIONS OF STANDARD VELOCITY STARS WITH THE LOWELL SPECTROGRAPH (1905)

By V. M. SLIPHER

In the present paper are given the results of my observations of the list of "Standard Velocity Stars,"^I made with the Lowell Spectrograph during the summer and autumn of the present year. Owing to the circumstance that the time that the spectrograph is available for stellar radial velocity work is limited, I have not been able to follow closely the recommendation^I that the three observations of each star be made at the beginning, middle, and end of the two months symmetrical about the date of the star's opposition with the Sun. Inasmuch as *a Crateris*, the faintest star of the regular list, has been, and will be for some time yet, too near the Sun for observation, I have substituted for it γ *Cephei*, the faintest star of the supplementary list, in order to bring these observations to an early conclusion. The ten stars that I have observed are, then, the following:

a	Arietis	β	Ophiuchi
a	Persei	γ	Aquilae
β	Leporis	ε	Pegasi
β	Geminorum	γ	Piscium
ı	Boötis	γ	Cephei

I have secured, as was suggested, extra spectrograms of a Persei and a Boötis; and, in order to check the performance of the spectrograph, I have measured at frequent intervals the spectrographic velocities of Venus, Mars, and the Moon.

The spectrograph,² as employed in these observations, consists essentially of a collimator of 30 mm aperture and 400 mm focus, a train of three 63° dense flint prisms and a camera of 35 mm aperture and 471 mm focus, the whole inclosed in a box supplied with

¹ See Frost on "Coöperation in Observing Radial Velocities of Selected Stars," Astrophysical Journal, 16, 169, 1902.

² A detailed description of this instrument was published in the Astrophysical Journal for July, 1904 (20, 1-20).

electrical heating. The construction of this instrument partakes of the universal type, having a device for automatically keeping the prisms in the position of minimum deviation, a feature almost indispensable in our varied program of spectroscopic work. But there is an insufficient number of clamp screws to hold the prisms rigidly without causing injurious pressure on the glass of the prisms, each prism being clamped by only one screw, which presses centrally upon the top plate of its mounting. When this screw is clamped too tightly, unequal pressure is transmitted to the prism, destroying its homogeneity. Although realizing that by so doing I was impairing the definition of the spectrograms, I have nevertheless turned down very tightly the clamp screws and thus insured the rigidity of the prisms. I have in this way obtained entirely trustworthy spectrograms, but, as might be supposed, the definition in the spectrum is rather inferior, being no better on Seed 23 plates than it should be on the coarser 27 emulsion. The full power of the spectrograph has therefore not been realized, and the agreement of the velocities from different lines of the same plate is not so close as it should be with a spectrograph of this size.

In these observations, the prisms have been used set at minimum deviation for wave-length 4415. The linear dispersion at different points through the part of the spectrum covered by my measures is as follows:

Wave-Leng	th				•							Тe	enth	-Meters per mm
4250	•		•	•	•		•	•		•	•	•		9.9
4300	•	•	•					•	•	•	•	•	•	10.6
4350	•					•		•		•	•	•	•	11.4
4400	•	•	•			•	•	•	•	•	•	•	•	12.3
4450	•	•	•	•			•	•			•	•	•	13.2
4500	•		•					•	•	•				14.1
4550														15.0

The star spectrum usually has a width on the plates of one-third of a millimeter, and is separated from the two parts of the comparison spectrum by about a tenth of a millimeter.

All the details relative to the making of the spectrograms are given in the accompanying table, which will be readily understood. The date of the observation is given in Greenwich Mean Time. Except in the case of a few of the short exposures, the comparison

Remarks	Spectrograph readjusted	Spectrograph readjusted	Spectrograph readjusted
Seed's No. of Plates	888 888 10 10 10 10 10 10 10 10 10 10 10 10 10	27 N. H. 27 N. H. 27 N. H. 27 N. H. 23 23 23 23 23 23 23 23 23 23 23 23 23	23 23 27 N. H. 27 N. H. 27 N. H. 27 N. H.
Seeing Sky Image	Poor 3 3 3 3 4 2 3 3 3 3 3 3 3 3 3 3	4 4.00 0 9 9 4	4 1-2 3-4 3-4 3 1-2 4 3 3-4 1-2 3 3-4 1-2 3 3-4
Temperature Inside Prism-Box	12°47-12°56 8.13-8.18 11.43-11.43 15.00-15.02 24.73-24.70 24.72-24.70 22.38-22.45 19.26-10.15	10.20-10.21 18.20-18.23 19.90-19.08 17.90-18.02 19.40-19.55 19.50-19.45 21.20-21.15	21.37-21.55 20.65-20.70 19.66-19.70 15.70-15.74 17.56-17.56 20.16-20.10 20.10-20.13
Comparison Spectrum	Ti, Cr Ti, Cr Fe, Ti, Cr Mo, Fe Mo, Fe Mo, Fe Mo, Fe	$\begin{array}{c} M, C, L, C, C,$	<i>Не, V</i> <i>Не, V</i> <i>Не, V</i> <i>Не, V</i> <i>Не, V</i> <i>Не, V</i>
Slit-Width	o ^{mm} o19 0.020 0.022 0.022 0.025 0.018 0.018	0.028 0.028 0.028 0.028 0.020 0.020	0.025 0.025 0.022 0.022 0.022 0.022
Length of Exposure	57 ^m 37 70 72 120 128 8 36	110 90 120 30 120 120	40 58 120 120 60
Date, 1905	April 7 ^d 17 ^h om 14 20 15 28 18 42 May 18 16 30 July 5 21 5 11 0 21 13 18 35	Aug. 10 19 19 19 15 19 50 15 19 50 12 16 6 12 19 28 15 16 8 15 17 50	29 15 34 29 15 34 30 23 6 30 23 6 31 15 31 31 15 31 8 16 32 12 20 48 12 20 48
Plate Number	L 1833 L 1833 L 1850 L 1868 L 1868 L 1868 L 1921 L 1926 L 1937 L 1937	L 1947 L 1948 L 1952 L 2007 L 2011 L 2013 L 2013 L 2013	L 2043 L 2043 L 2049 L 2053 L 2053 L 2058 L 2058 L 2058
Object	B Geminorum a Boötis Mars Mars Y Aquilae Venus. Moon	 P. Prementing Y Aquilae Y Aquilae K Boötis Moon B Ophiuchi 	a Boötis. a Persei. a Boötis. e Pegasi. g Ophiuchi a Arietis

320

JOURNAL OF OBSERVATIONS

1905ApJ....22...318S

V. M. SLIPHER

						1			
Object	Plate Number	Date, 1905	Length of Exposure	Slit-Width	Comparison Spectrum	Temperature Inside Prism-Box	Secing Sky Imag	e of Plates	Remarks
	T 2070	Sent ord 20h 10m	30m	mm 20. C	Fe, V	13,10-13,10	4	27 N. H.	Spectrograph
7364	L 2080	27 17 28	8.8	0.027	Fe, V	16.66-16.66	• 4 • 4	27 N. H.	readjusted
scium	L 2081	27 IQ I5	120土	0.029	Fe, V	16.67-16.63	3-0 4	27 N. H.	Clouds
ietis	L 2085	Oct. 2 20 8	50	0.020	Fe, V	I3.62-I3.68	4 3	27 N. H.	
boris	L 2087	2 23 57	83 83	0.026	Fe, V	I3.56-		27 N. H.	1
n	L 2001	5 I5 40	50±	0.020	Fe, V	18.17-18.11		23	Hazy
ietis	L 2004	5 IŠ 54	50	0.024	Fe, V	18. IO-18. 14	3 3	27 N. H.	
	L 2006	6 I3 52	55	0.024	Fe, V	18.80-18.76	3	27 N. H.	
rsei.	L_{2100}	7 22 53	20	0.024	Fe, V	I5.96-I5.96	3-4 2	27 N. H.	:
minorum.	L 2IOI	7 23 39	28	0.022	Fe, V	1 15.96-16.00	3-4 I-	2 27 N. H.	Guiding inter-
ohei.	L 2100	I2 20 42	105±	0.027	Fe, V	I3.98-I3.95	4 3-	4 27 <u>N</u> . <u>H</u> .	rupted
boris	L 2111	I2 23 2I	88	0.026	Fe, V	13.90-13.87		27 N. H.	-
	L 2113	I3 I I5	12土	0.020	Fe, V	I3.96-I4.00		23	Clouds
minorum.	L 2117	IS I S	20	0.023	Fe, V	9.60- 9.64	4 3	27 N. H.	Spectroaranh
ci um	τ 2122	7 18 70	150	0.020	Fe, V	11.00-11.07	4.3-	4 27 N. H.	readjusted
4 hoi	T. 2122	27 20 45	120	0.020	Fe, V	11.00-11.08	4 3	27 N. H.	
	L, 2124	27 22 7	٦Z	0.029	Fe, V	11.06-11.04	4 3	27 N. H.	
horis	Τ, 2125	27 23 I7	84	0.020	Fe, V	11.01-10.94	4 3	27 N. H.	1
cium	L 2120	Nov. 2 17 3	125±	0.029	Fe, V	8.90- 9.00	3-0-2 2	27 N. H.	Clouds
hhei	T. 2120	2 10 50	+02	0.028	Fe, V	0.12- 0.14	3-0	27 N. H.	Clouds

OBSERVATIONS OF STANDARD VELOCITY STARS

V. M. SLIPHER

has been photographed at the beginning and end of the star exposure. The table gives in one column two readings of a large-scale thermometer whose bulb is inside the prism-box near the base of the middle prism. For the most part, the two readings are those made at the beginning and end of the exposure, but for the later plates they are the highest and lowest readings of the thermometer. The temperature control has worked well, and the range in the readings of the prism thermometer for the longest exposures ordinarily does not exceed 0°1 C. and frequently is less than 0°05. The double column headed "Seeing" gives the condition of the sky as regards transparency and the character of the stellar image, both on a scale increasing from 0 to 5, where 5 means perfection. The remark "Spectrograph readjusted" means that the spectrograph has been used for other lines of work requiring different adjustments, during the interval against which that note is placed. I have endeavored to keep all adjustments the same throughout this series of observations.

The electric spark has furnished the comparison spectrum. The induction coil supplying the high potential current receives its power from a 104-volt alternating current. A condenser is inserted in the secondary from the coil. To insure the complete illumination of the collimator lens with the light from the spark, a ground glass has been interposed between the electrodes and the slit.

Except for a few of the earlier plates, I have employed for comparison the spectrum of an alloy containing 10 per cent. of vanadium and 90 per cent. of iron. By occulting the twelve bright lines from λ 4379 to λ 4415 during the greater part of the exposure to the spark with a projection on the slide working in the end of the camera tube, an excellent series of uniformly spaced comparison lines is obtained. With only fairly well-timed exposures, there are many more good lines than are needed, so that it is always possible to choose for measures those lying nearest the best star lines.

I have employed throughout Rowland's wave-lengths for the comparison lines; for the vanadium lines, the arc values;^r and for the iron lines, the arc values for those lines whose arc wave-lengths

¹ Published by Rowland and Harrison in *Astrophysical Journal*, 7, 273, April 1898.

he has published,¹ for the others, the values given in his table of solar wave-lengths.

Rowland's solar wave-lengths have been used for the wavelengths of the stellar lines. I have, as far as possible, measured single lines, but have also employed a number of composite lines which appear single, and well suited to measurement, on my spectrograms. For the wave-lengths of these composite, or blended, lines, I have, as is customary, used the values resulting from giving to the wave-length of each component of the blend the weight of its intensity given in Rowland's table, and taking the weighted mean. The weakest line ordinarily taken into account is that of "o" intensity, which has generally been given a weight of one-half.

On some of the last Moon and planet plates, I have measured a rather large number of lines, both single and blended, for the purpose of seeing how the velocities from the blended lines compare with those from single lines. To the same end, I have also measured the strong solar lines at $\lambda\lambda$ 4326, 4384, 4405, and 4415. A comparison of the results from single and from blended and from the very strong lines shows that measures on the single lines are not noticeably more accurate than on the blends and heavy lines, and also that the values for the wave-lengths of the blended lines are reliable. Of course, with stars of the advanced solar type of spectrum, the class to which most of the "Standard Velocity Stars" belong, the relative intensities of lines must frequently be different from what they are in the Sun, and therefore the wave-lengths of the blends in such cases must be inaccurate. I have observed, for instance, that the blend shows are specified and the sum of 4352.908 (4) Fe in cast of the sum of the blends in such cases must be inaccurate.

blend $\lambda_{4352.935}$ $\begin{cases}
4352.908 (4) Fe \\
4352.044 (1)^2 V
\end{cases}$ in certain stars gives a larger

positive velocity than the mean value of the other lines. However, similar uncertainties must attach to some of the lines which are single in the Sun. As an example of this kind may be mentioned the line at λ 4468.663, an excellent single in the Sun, of intensity 5, due to

¹ "A New Table of Standard Wave-lengths," Astronomy and Astrophysics, 12, April 1903; and Frost's Scheiner's Astronomical Spectroscopy, p. 363.

² The vanadium lines are generally stronger in these stars than in the Sun, and in this blend I have given the V component weight I, although its intensity is given as o by Rowland. I have used this wave-length for the blend, with Moon and planets, as well as with the stars.

titanium, which appears as a single on the star plates but which, in *a Boötis* for example, gives a too large positive velocity.¹

I continued to measure certain stellar lines after I knew solar wave-lengths were not entirely applicable and that they were giving spurious velocities. The employment of such lines, however, has only slightly affected the velocity of a plate and they can at any time be excluded or their velocities corrected when the wave-lengths have been more accurately determined. The inclusion of such lines by the different co-operators in their first year's observations would give provisional corrections to their wave-lengths, thus making the lines useful for velocity observations of these and other stars of the same spectral type. I am of the opinion that, after all, one of the most important results of this co-operation in radial velocity observations will be the knowledge gained of the wave-lengths of the star lines.

The plates have been measured with a screw microscope² designed especially for measurement of spectrum plates. The screw, which has a pitch of half a millimeter, was examined for errors. Periodic errors were not revealed by the tests, although errors of run were quite apparent, and were of such a character as would be explained by a tapering of the screw from the middle toward the ends. I have not attempted to apply corrections to the measures to take up this error (which accumulates at a rate of about 0.3 μ per revolution), for the reason that its gradual change would practically affect equally the star and near-by comparison line. I do not consider that the measures are appreciably affected by this imperfection of the screw. I have always measured the plate in both positions, violet-right and violet-left, under the microscope, making generally four settings on the star line and two each on the upper and lower part of the comparison line. The best star lines have been measured, regardless of whether or not they existed in the comparison spectrum. The comparison lines lying nearest the measured star lines have been selected, the distance between the star and the comparison line amounting only in exceptional cases to as much as 3 tenth-meters. This close proximity of the spark and the star line practically renders inoperative the errors in run of the micrometer screw.

¹ Frost's and Adams's velocities verify my own as regards the wave-length of this line.

² This instrument was made by Gaertner & Co., of Chicago, and is a duplicate of those used by Frost and Adams.

A magnification of 21 diameters has been used in the measurements.

The measures in the two positions of the plate have not been reduced separately, but have been combined and the mean taken before the reduction was begun.

I have adopted the method of reducing each plate independently of every other, by computing for each plate a new Hartmann formula in the simple form

$$\lambda - \lambda_{\circ} = \frac{C}{R - R_{\circ}}$$
,

where R denotes the screw reading. The constants R_{o} , C, and λ_{o} of the formula are computed (in the order given) from the observed screw-readings and known wave-lengths of three comparison lines so selected that there is one near each end and the third near the middle of the portion of spectrum measured. By casting away a factor to make the reading on one of the lines zero, and by the use of logarithms, the constants are derived in about eight minutes. The wave-lengths of all star and comparison lines are then computed. The differences between the computed and normal wave-lengths of the numerous comparison lines furnish the necessary corrections for reducing the star wave-lengths to the true dispersion-curve of the plate. I have applied these corrections to the star lines without the use of a curve, making linear interpolations where needed; the mean of the errors of two neighboring comparison lines frequently being employed for the correction to the intervening star line. The differences between these corrected stellar wave-lengths and their normal values are then taken as the velocity displacements for the star lines. These displacements are speedily converted into velocity in the line of sight by a Crelle's table suitably supplied with notes.

The theoretical velocities of the planets and the Moon have been computed from data given in the American Ephemeris, by the aid of Professor Campbell's convenient formulæ. In the reduction of the star velocities to the Sun, Schlesinger's line-of-sight constants have been employed for computing the factor V_a due to the Earth's orbital velocity. The other factor, V_d , due to the Earth's diurnal rotation, is read from a table. In the case of the earlier plates the correction for prismatic curvature has been applied to the mean velocity, and appears at the foot of the reduction table. In the other cases it has been introduced earlier in the reductions and affects the velocities of the individual lines.

	NT			VELOCITY		No. of	Quality of
Object	of Plate	Greenwich M. T.	Obs.	Comp.	Residu'ls O.—C.	Lines	Plate
Mars Mars Venus Moon Moon Moon Venus	L 1868 L 1881 L 1937 L 1944 L 2013 L 2091 I. 2090 I. 2113	1905 April 28 ^d 18 ^h 42 ^m May 18 15 30 July 11 0 21 13 18 35 Aug. 12 19 28 Oct. 5 15 40 6 13 52 13 1 15	$\begin{array}{r} km \\ - 8.39 \\ - 1.10 \\ + 13.72 \\ + 1.30 \\ + 0.53 \\ + 0.55 \\ + 9.02 \\ + 8.70 \end{array}$	$\begin{array}{r} km \\ -7.92 \\ -1.62 \\ +13.42 \\ +0.52 \\ +0.25 \\ +0.65 \\ +9.16 \\ +8.64 \end{array}$	km -0.5 +0.5 +0.3 +0.3 +0.3 -0.1 -0.1 +0.1	21 17 26 27 26 24 35 36	Good Good Underexposed Good Excellent Good Excellent

The results from all the planet and Moon plates, made at intervals to test the performance of the spectrograph, are here summarized in a brief table. These check plates cover the whole period during which the "Standard Velocity Stars" have been under observation. The last two of these plates are also printed in detail to show the lines measured and to illustrate the character of the results from the individual lines. The mean value of O.-C. = +0.15 km is doubtless only accidental as it is due to the rather large positive value of one of the less reliable plates. (I consider plates having V comparison lines much more reliable than those having the *Mo* lines.) It seems safe to conclude from these tests that the spectrograph has not been affected by appreciable systematic errors during the period covered by this series of velocity observations.

In the following pages are given in tabulated form the detailed reductions of all the plates of the "Standard Velocity Stars." The date of the plate is given in Greenwich Mean Time, above the table. The hour angle is also added. Just over the head of the table is a note descriptive of the quality of the plate. The first column of the table contains the wave-length of the star line and the second column, the velocity deduced for the line, given to the tenth of a kilometer per second. At the foot of these columns is given the mean of the velocities from the several lines, followed by V_a and V_d , the reductions to the Sun; and next the value of the star's radial velocity. Below these will be found the mean error $\epsilon = \pm \sqrt{\frac{\Sigma v^2}{n-1}}$ of the determination of the velocity from a single line, and the mean

1905ApJ....22..318S

error $\epsilon_{o} = \pm \sqrt{\frac{\Sigma_{v^2}}{m(n-1)}}$ of the final velocity of the star deduced from the plate.

The stars are arranged in the order of their right ascensions and the plates of each are given in chronological order.

1905 Oct. 6 ^d Hour angle V lanet spectrum parison lines (V	$13^{h} 52^{m}$ $V 1^{h} 27^{m}$ good; com- <i>(, Fe)</i> good.	1905 Oct. 13 Hour angle I Planet spectrun comparison lin excelle	$\begin{array}{rrr} -1.22113 \\ \mathbf{f} & \mathbf{f} & \mathbf{f} & \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} & \mathbf{f} \\ f$
Line λ (Solar)	Velocity	$I ine \lambda$ (Solar)	Velocity
4274.911	+ 11.7 ^{km}		• clocity
93.241	11.7	4238.070	$\pm 0.1^{\mathrm{km}}$
94.273	8.7	30.075	6.7
4307.938	6.9	45.455	6.3
14.321	8.2	47.580	11.2
15.178	9.I	50.287	8.2
18.817	9.7	50.050	7.2
25.951	9.4	54.505	5.5
37.216	6.6	71.934	7.6
40.634	10.7	74.911	8.4
52.006	9.3	93.241	7.7
52.935	8.7	94.273	7.7
59.784	9.1	4306.938	6.8
76.107	5.8	14.321	10.2
78.419	11.9	15.178	7.4
79.390	5.5	18.817	9.6
80.883	12.3	25.951	7.2
83.720	8.5	40.634	8.4
95.280	7 .• 4	52.006	9.1
4404.951	7 · 1	52.935	8.9
00.810	0.7	59.7 ⁸ 4	7.0
07.851	7.2	83.720	7.2
08.549	7.1	95.286	8.3
15.244	10.2	4404.951	7.0
27.420	9.1	07.851	6.4
35.104	7.5	08.549	10.8
42.510	10.5	27.420	9.8
43.970	13.0	35.184	9.9
47.092 56.020	10.0	42.510	8.0
50.204	10.7	43.970	10.8
68.662	8.3	47.892	10.3
76.214	8.5	50.030	11.2
82.376	11.0	59.304	9.8
04.738	6.4	08.003	9.9
94.13-		70.214	11.1
Aean Computed vel	$+9.02^{km}$. +9.16	4528.798	11.0
О.—С.	-0.1 ^{km}	Mean Computed vel	+8.70 ^{kn} +8.64
No. of Martia No. of comp.	n lines 35 lines 32	0.—C.=	+0.1 ^{km}
-		No. of <i>Venus</i> No. of comp.	lines 30 lines 30

.

a ARIETIS		4407
W MIGLEI IS	d ash .0m	4407
Hour angle]	- 20- 40- Ετ ^h 20 ^m	00
Star spectrum fa	ur: compari-	27
son lines (V, F)	e) excellent.	28
		41
Tine) (Solar)	Velocity	42
	vegocity	47
1075 758	- ar akm	56
4315.170	-35.3	60
10.017	33.5	66
28.080	35.0	68
37.210	35.2	76
40.634	33.7	82
52.006	36.3	04
52.935	33.6	94
59.784	37.7	97
76.107	38.4	4501
05.286	37.7	28
4407 851	20 4	Moon
08 540	22 7	Ivican IZ
00.349	33.1	Va +
27.420	33.5	$\frac{Vd}{D}$ +
28.711	30.7	Red. to
42.510	35.9	
47.892	35.0	Rad.
59.304	32.3	NT 6
68.663	34.0	No. of
76.214	35.7	No. of
91.620	34.6	
4505.003	31.0	
28.708	35.5	
	05.5	
		- 1D
Mean	-35.26km	a AR
$\frac{1}{Mean}$	- 35.26 ^{km}	a A R 1905
$ \frac{Mean}{V_a + 20.80} $ $ \frac{V_d + 0.12}{V_d + 0.12} $	- 35.26 ^{km}	a AR 1905 Hour
$ \frac{Mean}{V_a + 20.80} $ $ \frac{V_d + 0.12}{Red to Sun} $	-35.26km	a AR 1905 Hour Star spec sion
$ Mean V_a + 20.80 V_d + 0.12 Red. to Sun $	-35.26km +20.92	a AR 1905 Hour Star spec- sion
$ \frac{Mean}{V_a + 20.80} $ $ \frac{V_d + 0.12}{Red. to Sun} $ Rad vel	$\frac{-35.26^{\text{km}}}{-35.26^{\text{km}}}$	a AR 1905 Hour Star spec
$ Mean V_a + 20.80 V_d + 0.12 Red. to Sun Rad. vel. $	$\frac{-35.26^{\text{km}}}{+20.92}$ -14.3 ^{\text{km}}}	α AR 1905 Hour Star spec sion
$ Mean V_a + 20.80 V_d + 0.12 Red. to Sun Rad. vel. No. of star lin $	$ \begin{array}{r} -35.26^{\text{km}} \\ +20.92 \\ \hline -14.3^{\text{km}} \\ \text{nes.} \qquad 22 \end{array} $	α AR 1905 How Star species
	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25	a AR 1905 How Star species ion Line A 4318
$ \begin{array}{c c} \hline \\ \hline \\ \hline \\ Mean \\ \hline \\ V_d + 0.12 \\ \hline \\ Red. to Sun \\ \hline \\ Rad. vel. \\ \hline \\ No. of star lin \\ No. of comp. \\ \hline \\ \hline \\ \epsilon + 2 \end{array} $	$ \begin{array}{r} -35.26^{\text{km}} \\ +20.92 \\ \hline -14.3^{\text{km}} \\ \text{nes.} 22 \\ \text{lines} 25 \\ 2.05 \\ \end{array} $	$a AR$ 1905 How Star spec sion Line λ 4318 28
$ \begin{array}{r} \hline Mean \\ V_a + 20.80 \\ V_d + 0.12 \\ Red. to Sun \\ Rad. vel. \\ No. of star lin \\ No. of star lin \\ No. of comp. \\ \epsilon \pm 2 \\ \epsilon_{a} + \epsilon \end{array} $	$ \begin{array}{r} -35.26^{\text{km}} \\ +20.92 \\ \hline -14.3^{\text{km}} \\ \text{nes.} 22 \\ \text{lines} 25 \\ 2.05 \\ 2.05 \\ 0.43 \\ \end{array} $	$a AR$ 1905 How Star spec sion Line λ 4318 28 39
$ \begin{array}{c} \hline \\ \hline \\ \hline \\ Wean \\ V_a + 20.80 \\ V_d + 0.12 \\ \hline \\ Red. to Sun \\ \hline \\ Rad. vel. \\ \hline \\ No. of star lin \\ No. of star lin \\ No. of star lin \\ No. of comp. \\ \hline \\ \epsilon \pm 2 \\ \epsilon_0 \pm 0 \end{array} $	-35.26^{km} +20.92 -14.3^{km} nes. 22 lines 25 2.05 -43	$a AR$ 1905 How Star spectrum Line λ 4318 28 39 40
$ \begin{array}{r} \hline Mean \\ V_a + 20.80 \\ V_d + 0.12 \\ Red. to Sun \\ Rad. vel. \\ No. of star lin \\ No. of comp. \\ \epsilon \pm 2 \\ \epsilon_0 \pm c \end{array} $	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43	$a AR$ 1905 How Star spectrum Line λ 4318 39 40 52
$ \begin{array}{c} \hline \\ \hline \\ \hline \\ Mean \\ V_{d} + 20.80 \\ V_{d} + 0.12 \\ \hline \\ Red. to Sun \\ \hline \\ Rad. vel. \\ \hline \\ No. of star lin \\ No. of star lin \\ No. of comp. \\ \hline \\ \epsilon \pm 2 \\ \hline \\ \epsilon_{0} \pm c \\ \hline \\ a \ ARIETIS \end{array} $	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 2.285	a AR 1905 How Star species ion Line & 4318 28 39 40 52
$ \begin{array}{c} \hline \\ \hline \\ \hline \\ Mean \\ V_a + 20.80 \\ V_d + 0.12 \\ \hline \\ Red. to Sun \\ \hline \\ Rad. vel. \\ \hline \\ No. of star lin \\ No. of star lin \\ No. of comp. \\ \hline \\ \epsilon \pm 2 \\ \hline \\ \epsilon_0 \pm c \\ \hline \\ a \ ARIETIS \\ \underline{1905} \ Oct. 26 \\ \hline \end{array} $	-35.26^{km} +20.92 -14.3^{km} nes. 22 lines 25 2.05 2.43 -L 2085 4.20 ^k 8 ^m	a AR 1905 How Star spectric Line A 4318 28 39 40 52 52
$ \begin{array}{c} \hline \\ \hline \\ \hline \\ Mean \\ V_a + 20.80 \\ V_d + 0.12 \\ \hline \\ Red. to Sun \\ \hline \\ Rad. vel. \\ \hline \\ No. of star lin \\ No. of star lin \\ No. of comp. \\ \hline \\ \epsilon \pm 2 \\ \epsilon_0 \pm 0 \\ \hline \\ \hline \\ \hline \\ \epsilon_0 \pm 0 \\ \hline \\$	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 2.53 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.55 2.55 2.54 2.55 2.54 2.55 2.54 2.55 2.54 2.55 2.54 2.55	a AR 1905 How Star spec sion Line λ 4318 28 39 40 52 52 59 76
$\begin{array}{c c} \hline \\ \hline $	-35.26^{km} +20.92 -14.3^{km} nes. 22 lines 25 2.05 2.05 2.43	$a AR$ 1905 How Star spec sion Line λ 4318 28 39 40 52 52 59 76
Mean V_a + 20.80 V_d + 0.12 Red. to Sun Rad. vel. No. of star lin No. of comp. $\epsilon \pm 22$ $\epsilon_0 \pm 02$ $a \ ARIETIS$ 1905 Oct. 22 Hour angle D Star spectrum go son lines (V,	-35.26^{km} +20.92 -14.3^{km} nes. 22 lines 25 2.05 2.05 2.43 2.12855 1.20 ^k 8 ^m E o ^h 3 ^{om} od; compari- <i>Fe</i>) good.	a AR 1905 How Star spectrum Line λ 4318 28 39 40 52 52 52 59 76 95
$ \begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \hline \\$	-35.26^{km} +20.92 -14.3^{km} nes. 22 lines 25 2.05	a AR 1905 How Star species ion Line λ 4318 28 39 40 52 52 59 76 95 99
$ \begin{array}{c} \hline \\ \hline $	-35.26^{km} + 20.92 - 14.3^{km} nes. 22 lines 25 2.05 2.05 2.43 - L 2085 4 20 ^h 8 ^m E 0 ^h 30 ^m od; compari- <i>Fe</i>) good. Velocity	a AR 1905 How Star spension Line & 4318 28 39 40 52 52 52 52 59 76 95 99 4406
$ \begin{array}{c} \hline \\ \hline $	-35.26^{km} + 20.92 - 14.3^{km} nes. 22 lines 25 2.05 2.43 - L 2085 4 20 ^h 8 ^m 2 0 ^h 30 ^m od; compari- Fe) good. Velocity	α AR 1905 How Star spect sion Line λ 4318 28 39 40 52 52 59 76 95 99 4406 07
	$ \begin{array}{c} -35.26^{\text{km}} \\ +20.92 \\ \hline \\ -14.3^{\text{km}} \\ \text{nes.} 22 \\ \text{lines} 25 \\ 2.05 \\ \hline \\ 2.05 \\ \hline \\ 2.43 \\ \hline \\ -L 2085 \\ \frac{1}{20^{\text{h}} 8^{\text{m}}} \\ \text{e oh } 30^{\text{m}} \\ \text{od; compari-} \\ \hline \\ Fe) \text{ good.} \\ \hline \\ $	α AR 1905 How Star spec sion Line λ 4318 28 39 40 52 52 59 76 99 4406 07 27
	-35.26^{km} + 20.92 - 14.3^{km} nes. 22 lines 25 2.05 2.05 2.43 - L 2085 4 20 ^h 8 ^m E o ^h 3 ^{om} od; compari- Fe) good. Velocity - 29.7^{km} 24.9	α AR 1905 How Star spec sion Line λ 4318 28 39 40 52 52 59 76 95 99 4406 07 27 28
$\begin{tabular}{ c c c c c } \hline \hline Mean & V_a & \pm 20.80 \\ \hline V_d & \pm 0.12 \\ \hline Red. to Sun \\ \hline Rad. vel. \\ \hline No. of star lin \\ \hline No. of comp. & ϵ ± 2 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 2-L 2085 3 20 ^h 8 ^m od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9	a AR 1905 How Star species ion Line λ 4318 28 39 40 52 52 59 76 95 99 4406 07 27 28 35
$\begin{tabular}{ c c c c c } \hline \hline Mean & V_a & \pm 20.80 \\ \hline V_d & \pm 0.12 \\ \hline Red. to Sun \\ \hline Rad. vel. \\ \hline No. of star lin \\ \hline No. of comp. & ϵ ± 2 \\ \hline ϵ_0 $\pm c$ \\ \hline ϵ	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 $-L 2085$ $4 20^{\text{km}}$ E o ^h 30 ^m E o ^h 30 ^m od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9 27.3	a AR 1905 How Star spension Line λ 4318 28 39 40 52 52 52 59 76 95 99 4406 07 27 28 33
	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 $-L 2085$ $4 20^{\text{h }8^{\text{m}}}$ E oh 30^{\text{m}} od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9 27.3 26.0	a AR 1905 How Star spension Line λ 4318 28 39 40 52 52 52 59 76 95 99 4406 07 27 28 35 99 4406
$\begin{tabular}{ c c c c c } \hline \hline Mean & V_a & \pm 20.80 \\ \hline V_a & \pm 0.12 \\ \hline Red. to Sun \\ \hline Rad. vel. \\ \hline No. of star lin \\ \hline No. of comp. & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 2-L 2085 4 20 ^h 8 ^m C -L 2085 4 20 ^h 8 ^m c od; compari- Fe) good. Velocity -29.7^{\text{km}} 24.9 25.9 27.3 26.9 30.6	a AR 1905 How Star spec sion Line λ 4318 28 39 40 52 52 59 76 95 99 4406 07 27 28 35 41 43
$\begin{array}{r} \hline \text{Mean} \\ V_a + 20.80 \\ V_d + 0.12 \\ \text{Red. to Sun} \\ \text{Rad. vel.} \\ \text{No. of star lin} \\ \text{No. of comp.} \\ \epsilon \pm 2 \\ \epsilon_0 \pm 0 \\ \epsilon$	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 $-L 20855$ $\frac{1}{20^{h}} \frac{8^{m}}{8^{m}}$ E o ^h 3 ^{om} od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9 27.3 26.9 30.6 27.2	α AR 1905 How Star spec sion Line λ 4318 28 39 40 52 52 59 76 99 4406 07 27 28 35 41 43 47 76
Mean V_a + 20.80 V_d + 0.12 Red. to Sun Rad. vel. No. of star lin No. of comp. $\epsilon \pm 22$ $\epsilon_0 \pm c$ a ARIETIS 1905 Oct. 2 Hour angle 1 Star spectrum go son lines (V, Line λ (Solar) 4315.178 18.817 28.080 40.634 41.530 52.035 50.784	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.05 2.043 $F = 2085$ $\frac{1}{20^{\text{h}}8^{\text{m}}}$ od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9 27.3 26.9 30.6 27.2 200	a AR 1905 How Star species ion Line λ 4318 28 39 40 52 52 59 70 95 99 4406 07 27 28 35 41 43 47 56
$\begin{array}{r} \hline \\ \hline $	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 $-L 2085$ $4 20^{\text{km}} \text{ Be of 30^{\text{m}}}$ $E of 30^{\text{m}} \text{ od; compari-}$ $Fe) \text{ good.}$ $Velocity$ -29.7^{km} 24.9 25.9 27.3 26.9 30.6 27.2 30.9 30.9	a AR 1905 How Star species sion Line λ 4318 28 39 40 52 52 59 76 95 99 4406 07 27 28 31 43 43 43 43 43 43 43 43 45 65 68 86 68 86 86 87 87 87 87 87 87 87 87 87 87
	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 $-L 2085$ $4 20^{\text{h }8^{\text{m}}}$ E oh 30^{\text{m}} od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9 27.3 26.9 30.6 27.2 30.9 28.5	a AR 1905 How Star spension Line λ 4318 28 39 40 52 52 52 59 76 95 99 4406 07 27 28 35 41 43 47 56 68 76
	-35.26^{km} $+20.92$ -14.3^{km} nes. 22 lines 25 2.05 2.43 $-L 2085$ $4 20^{\text{h }8^{\text{m}}}$ $E o^{\text{h }30^{\text{m}}}$ od; compari- <i>Fe</i>) good. Velocity -29.7^{km} 24.9 25.9 27.3 26.9 30.6 27.2 30.9 28.5 28.0	a AR 1905 How Star species ion Line λ 4318 28 39 40 52 52 59 76 95 99 4406 07 27 28 35 41 43 47 56 68 76 82

28.711 41.881 42.510 47.892 56.030 60.460 66.701 68.663 76.214	24.1 25.5 26.4 29.8 23.6 24.8 26.5 23.5 25.3 25.8 25.6	– M Va Re
82.376 94.738 97.046 4501.422 28.798	25.0 27.5 26.3 30.9 24.8	No
Mean V_a +12.81 V_d + 0.05 Red. to Sun Rad. vel.	-26.88^{km} $+12.86$ -14.0^{km}	
No. of star line No. of comp. 1 $\epsilon \pm 2$ $\epsilon_0 \pm c$ a ARIETIS	es 28 ines 27 2.21 0.42 —L 2094	
Hour angle I Star spectrum go sion lines (V,	$\begin{array}{c} {}^{18^{n}} 54^{m} \\ {}^{E} {}^{1h} 40^{m} \\ {}^{od}; compari- \\ Fe) good. \end{array}$	
Hour angle I Star spectrum go sion lines $(V,$ Line λ (Solar)		

4490.950 97.046 97.842	- 27.6 ^{km} 24.9 23.5
$\begin{array}{r} \text{Mean} \\ V_a + 11.47 \\ V_d + 0.15 \\ \text{Red. to Sun} \end{array}$	- 26.08 ^{km}
Rad. vel.	-14.5 ^{km}
No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_{\circ} \pm c$	es 26 lines 27 2.17 2.43
a PERSEI- 1905 August 3 Hour angle tar spectrum go son lines (Fe, U	-L 2049 ${}^{od} 23^{h} 6^{m}$ E 1 ^h 0^{m} od; compari- T) excellent
Line λ (Solar)	Velocity
$\begin{array}{r} 4308.023\\ 13.034\\ 37.216\\ 59.784\\ 76.107\\ 83.720\\ 94.225\\ 95.201\\ 4404.927\\ 16.985\\ 27.420\\ 43.976\\ 47.892\\ 59.301\\ 66.727\\ 68.663\\ 76.214\\ 82.376\\ 94.738\\ 4501.448\\ c8.455\\ 15.508\\ 28.798\\ \end{array}$	- 26.0km 29.0 25.4 22.3 27.4 30.8 27.5 26.1 28.0 29.9 23.6 26.0 25.2 25.5 28.0 28.9 20.9 24.3 30.7 26.2 23.9 24.4 27.3
Mean Curve corr. $V_a + 25.29$ $V_d + 0.06$ Red. to Sun	- 26.89 ^{km} - 0.50 + 25.35
Rad. vel.	— 2.0 ^{km}
No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_{\circ} \pm 2$	es 23 lines 19 2.10 0.40

1905ApJ....22...318S

a PERSEI- 1005 Sept. 12 Hour angle D Star spectrum of comparison (V, Fe) g	-L 2068 $d_{21h} 50^{m}$ $E_{1h} 20^{m}$ over-exposed; a lines pood.	4395.201 96.008 4404.927 16.985 43.976	-24.6 ^{km} 22.9 24.3 24.0 22.8	4468.663 69.545 76.214 81.400 82.376	-22.6 ^{km} 23.4 21.9 20.1 19.4
Line λ (Solar)	Velocity	50.054 59.301	23.4 21.4	89.351 91.570	20.9 19.5
4294.273 4300.211 03.419 05.871 08.023 13.034 15.178 25.939	-23.1km 21.6 26.0 28.9 24.0 27.4 23.0 23.3	$\begin{array}{c} 66.727\\ 68.663\\ 91.570\\ 94.738\\ 4501.448\\ 08.455\\ 15.508\\ 20.397\\ 28.798\end{array}$	23.8 24.8 25.2 27.2 21.4 23.0 24.5 21.5 21.5 24.1	$94.73897.0234501.44808.45515.50820.39728.798MeanV_a + 18.32$	$23.6 \\ 18.0 \\ 21.9 \\ 19.4 \\ 20.9 \\ 22.4 \\ 22.4 \\ -21.14^{\text{km}}$
40.034 52.006 83.720	24.0 28.1 28.9	34.139 49.767 54.211	23.8	$V_d - 0.07$ Red. to Sun	+ 18.25
91.146 95.201 4404.927 16.985 27.420 59.301	24.8 26.1 28.8 27.3 22.9 26.3	$\frac{54.211}{\text{Mean}}$ $\frac{V_a + 21.59}{V_d + 0.10}$ Red. to Sun	+21.69	Rad. vel. No. of star lin No. of comp. \vdots $\epsilon \pm i$ $\epsilon_0 \pm 0$	$ \begin{array}{c} - 2.9^{\text{km}} \\ \text{es} & 36 \\ \text{lines} & 28 \\ .94 \\ .32 \end{array} $
76.214 81.400 91.570 4508.455 15.508 28.798	25.8 31.3 29.6 26.9 26.2 27.8	No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_0 \pm 2$	- 2.4km les 30 lines 28 2.12 0.39	a PERSEI- 1905 Oct. 27 Hour angle V Star spectrum ra comparison lines	-L 2124 $d 22h 7m$ $V Ih 47m$ ather strong; $(V, Fe) good.$
$ Mean V_a + 24.04 V_d + 0.08 Red. to Sun $	$-26.18^{\rm km}$	a PERSEI- 1905 Oct. 7 ^d Hour angle V Star spectrum ver parison lines good	$\begin{array}{c} -L 2100 \\ & 2^{2h} 53^{m} \\ W 1^{h} 10^{m} \\ ry good; com- \\ s(V, Fe) \\ d \end{array}$	4308.023 13.034 14.321	-12.0^{km} 12.5 11.5 12.7
Rad. vel.	— 2.1 ^{km}	Line λ (Solar)	Velocity	40.634 52.008	13.7 14.9 11.6
No. of stars li No. of comp. $\epsilon \pm 2$	ne 23 lines 20	4294.273 4308.023	-21.1 ^{km} 17.9	76. 107 83. 720 95. 201	13.1 15.4 15.0
a PERSEI-	-L 2079	13.034 14.321 15.178	21.4 20.0 20.6	4404.927 16.985 43.976	15.8 16.4 13.9
Star spectrum go son lines (V,	$E \xrightarrow{\text{1h}} 35^{\text{m}}$ od; compari- <i>Fe</i>) good.	25.183 25.939 38.084 40.634	21.4 20.1 25.3 22.9	47.892 50.654 59.301 76.214	15.4 13.6 15.5 17.4
Line λ (Solar)	Velocity	52.006 52.908 50.784	24.I 19.9 15.2	4501.448 28.798	15.7 15.9
4294.273 4300.211 08.023 13.034 15.178	23.0 26.3 28.7 23.2	59.704 76.107 83.720 94.225 95.201	23.0 23.1 20.5 20.5	Mean $V_a + 11.18$ $V_d - 0.11$ Red. to Sun	- 14.40 ^{km}
25.939 40.634 52.006 52.908	24.8 24.0 29.2 22.0	4404.927 16.985 17.884 43.976	22.0 21.3 19.8 23.2	Rad. vel. No. of star lin No. of comp.	$\frac{-3\cdot 3^{\rm km}}{18}$
83. 7 20	25.9	50.654	21.2	$\epsilon \pm 1$	• 74

1905ApJ....22..318S

SLIPHER

00-	3	3	Ó	
-----	---	---	---	--

330		<i>V</i> . <i>M</i> .
B LEPORIS		A22T 51
TOOS Oct. 2d	22h 56m	4331.70
Hour angle E	o ^b 8 ^m	40.0
Star spectrum go	od; compari-	. 41.33
son mes (V,	<i>re)</i> good.	· 50.78
Line & (Solar)	Velocity	79.30
		. 83.72
4315.178	- 33.6km	4404.95
25.951	29.7	06.81
28.080	30.4	07.85
37.216	32.3	08.54
40.634	30.8	27.42
41.530	33.9	35.18
52.000	32.4	43.97
52.935	32.5	47.09
59.704	34.7	59.30
82 720	32.0	68 66
03.720	35.0	76.21
4404.051	33.0	04.73
06.810	32.4	4501.42
07.851	32.8	08.45
15.244	33.5	15.47
27.420	34.3	28.79
42.510	35.2	
47.892	30.0	Iviean
50.030	34.7	$V_a + 10$ $V_a + 0$
59.304	32.5	$Red_{to} S$
66 70T	31.3	ited. to 5
68 662	30.3	Rad. ve
76.214	33.6	
82.376	33.0	No. of star
85.846	32.9	
94.738	34.0	e F-
4500.480	32.7	-0
01.422	32.5	RIEPO
15.475	30.5	p IDDI O
28.798	31.8	Hour an
Mean	$-32.67^{\rm km}$	Star spectru
$V_a + 19.84$	5 7	
V_d + 0.01		Line & (Sol
Red. to Sun	+ 19.85	
		4315.17
Rad. vel.	- 12.8 ^{km}	25.95
No. of star line	es 32	28.08
No. of comp. 1	ines 30	40.63
ε±ι	· 57	52.00
ϵ_{\circ} ±0	. 28	52.93
-		59.78
β LEPORIS-	L 2111	79·39
1905 Oct. 12 ^d	23 ^h 20 ^m	03.72
Hour angle I Star spectrum som	ewhat weak •	95.20 • 4404.05
comparison lines (Fe, V) good.	06.81
I		08.54
Line λ (Solar)	Velocity	25.60

-30.3^{km}

32.9

4314.321

25.951

	•		
1331.762	$1 - 30.7^{km}$	4459.304	-25.2km
40.634	31.0	68.663	28.0
41.530	32.1	76 214	22.6
52.025	22.2	4501 422	23.0
5-1933	32.2	4501.422	24.9
59.704	33.0	08.455	20.1
79.390	33.9	22.853	23.0
83.720	33.9	28.798	24.3
404.951	32.6	Mean	an 6.km
06.810	31.7	TVICan	-27.04 ^{km}
07.851	31.4	$\frac{Va}{14.75}$	
08.540	22.2	Vd - 0.07	
27 420	33.3	Red. to Sun	+14.68
27.420	32.0		
33.104	20.4	Rad. vel.	— 13.0 ^{km}
43.970	29.4	No of star lin	
47.892	30.1	NO. OI Star III	es 24
59.304	32.8	No. of comp.	lines 24
60.460	33.2	$\epsilon \pm 2$	2.56
68.663	31.5	$\epsilon_{\circ} \pm c$	0.52
76.214	20.0		
04 728	20.0	₿ GEMINC	ORUM
94.730	30.0	L 18	3.3
.501.422	30.2	1005 April 7	1 17 ^h o ^m
08.455	29.8	Hour angle V	V 2 ^h 58 ^m
15.475	30.7	Star spectrum fa	ir; compari-
28.798	28.8	son lines $(Ti,$	Cr) weak.
an	— 31.38 ^{km}	Line λ (Solar)	Velocity
+ 18.22			
+ 0.01		1274 OTT	+ 26 okm
l. to Sun	+ 18.23	4274.911	25.5
	<u> </u>	93.241	33.5
lev be	— Ta akm	94.273	30.5
tau. vei.	-13.2-	4300.938	32.0
of star lin	es 26	14.321	37.5
of comp	lines 25	15.178	30.9
e ±		18.817	35.9
e <u>_</u> 1	.50	28.080	33.3
€ ₀ ±0	.30	30.731	32.7
		40 624	25 7
<i>LEPORIS</i>	L 2125	40.034	33.7
005 Oct. 27	l 22h T7m	49.107	31.1
Iour angle \	V 0 ^h 47 ^m	52.000	34.5
spectrum fa	ir; compari-	52.935	35.1
son lines (Fe	V) good.	59·784	31.9
		99.903	31.0
λ (Solar)	Velocity	4406.810	31.0
		07.851	34.6
215 178	27 Tkm	08.540	32.3
25 051	27.1	27.420	30.8
25.951	20.7	42 510	22.0
28.080	29.1	42.310	33.0
40.034	24.9	57.050	33.7
52.000	29.6	59.304	32.2
52.935	29.9	Mean	Las form
59.784	28.4	· Comment	+33.00
70.306	31.4	Curv. cor.	- 0.60
82 720	21 2	$V_a - 29.40$	
05.720	31.3	$V_d - 0.23$	
93.200	20.7	Red. to Sun	- 29.63
+04.954	20.7		
00.010	32.9	Rad. vel.	$+3.4^{km}$
08.549	28.8	No of stor line	
25.608	24.6	INO. OI STAT line	es 22
27.420	26.6	No. of comp. 1	ines 13
42.510	27.0	€ ±2	. 13
47.802	20.0	$\epsilon_{\circ} \pm \circ$. 45
/			-

0.160

1.110

-5

1.0.1

inter-

.

2

-

100.00

10.0

.

1

100

-

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	β GEMINC	DRUM—	4328.080	-28.9 ^{km}	Mean	— 4 · 59 ^{km}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L 2101		52.935	29.0	Curv. corr.	— o. 50
How angle E is som som parison lines (V, Pe) good.5g. 2862g. 9Vd ± 0.00Line A (Solar)Velocity27.42023.5Rad. vel0.374408.32.41-27.8km47.89223.3No. of star lines194304.321-27.8km47.89223.3No. of star lines194314.32123.165.03022.4e± 1.6025.95126.682.37626.2a BOOTIS-L 201125.95126.682.37625.0a BOOTIS-L 201137.21627.794.73824.5Mean59.75426.827.794.73824.559.75427.4Mean-26.30km4406.81025.3Rad. vel3.4km99.90329.0Red. to Sun+29.6951.24425.020.776.34km27.42025.026.76.32.03699.92326.76.32.03615.24425.025.027.42028.0No. of star lines20.9325.710.627.42028.728.37629.639.30423.642.51025.682.37625.775.2426.727.42028.728.37629.627.42029.628.37629.779.30629.744.45.81029.627.42029.638.37029.744.45.81029.644.52.768.000715-L 1	1005 Oct. 7d	23 ^h 30 ^m	59.784	29.9	$V_a - 0.37$	
Shar spectrum fair only: comparison lines (7, 7, 8) parison lines (7, 7, 8) 4407, 821 25.5 Red. to Sun -0.37 4407, 821 25.5 Red. to Sun $-0.374407, 821 25.5$ Red. to Sun $-0.374407, 821 25.5$ Red. to Sun $-0.374407, 821 25.5$ Red. to Sun $-0.37407, 822 35.5$ Red. to Sun $-0.37407, 822 35.5$ Red. to Sun $-0.37407, 822 35.5$ Red. to Sun $-0.37407, 821 25.5$ Red. -5.5 Km 407, 821 25.5 Red. to Sun $-0.37407, 821 25.5$ Red. to Sun $-0.37407, 821 25.5$ Red. -5.5 Km 407, 624 29.0 25.5 Red. -5.5 Km $407, 624 29.0$ 25.5 Red. -5.7 $407, 738 24.5$ Hour angle W_3 8.5 m ³ 52.905 26.6 27.7 $4507, 422 25.6$ Star spectrum excellent; com- $52.905 26.6 27.7$ $V_a + 29.66$ 59.784 27.6 09.033 17.5 52.905 29.74 27.4 Red. to Sun $+29.69$ 59.784 $17.24346, 810 25.5$ Red. -3.4 Red. -3.4 km 79.396 17.5 19.3 $19.320.0$ 01.440 15.1 17.2 19.3 $19.315.244 26.0$ No. of fourph lines 20 90.140 16.1 $17.042.510 25.0$ No. of fourph lines 20 90.140 15.1 17.2 4406 Rol 17.5 19.3 17.5 19.3	Hour angle 1	E 2 ^h 22 ^m	95.286	25.9	V_d ±0.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Star spectrum fai	ronly; com-	4407.851	26.2	Red. to Sun	-0.37
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	parison mes (v	, <i>Fe</i>) good.	08.540	23.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			27.420	25.5	Rad. vel.	-5.5^{km}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Line λ (Solar)	Velocity	28.711	27.8	No. of stor lin	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	01	47.802	23.3	No. of star in	les 19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4293.241	-27.8km	56.030	23.2	No. of comp.	intes 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4314.321	21.0	57.656	26.4	e ±1	. 09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.178	28.2	68,663	24.7	$\epsilon_{\circ} \pm c$	P · 37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.817	23.1	76.214	26.5	a BOÖTIS-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.951	26.6	82.376	26.2		-6h 6m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28.080	27.7	04.738	24.5	Hour angle V	W 3 ^h 50 ^m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37.216	27.7	450T 422	25.6	Star spectrum ex	cellent; com-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40.634	29.6	28.708	25.0	parison lines (F	Fe, V) good.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	52.006	28.4	20.790	23.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	52.935	26.8		<u> </u>	Line λ (Solar)	Velocity
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59.784	27.4	Mean	— 26.30 ^{km}		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	83.720	27.7	$V_a + 29.66$		4244 507	+ 10.6 km
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	95.286	27.4	$V_d + 0.03$		+3++·397	10.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	99.903	29.9	Red. to Sun	+ 29.69	52.935	19.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4406.810	25.5			59.704	20.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	08.549	25.3	Rad. vel.	-3.4^{km}	70.206	20.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.244	26.0			79.390	17.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.420	28.0	No. of star lin	les 20	90.149	10.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.510	25.0	No. of comp.	lines 20	4406 810	17.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.892	26.7	$\epsilon \pm 2$	2.08	4400.010	19.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59.304	23.6	$\epsilon_{o} \pm c$	0.46	18:400	17.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	68.663	25.2			10.499	21.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.214	27.6			27.420	20.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	82.376	25.6		•	20.711	17.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	85.846	23.8	a BOOTIS-	—L 1850	35.051	17.0
Hour angle oh of MeanHour angle oh of star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- star spectrum fair only: com- data spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) to the form of the weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) spectrum fair only: com- parison lines (Ti. Cr) to the form of the weak.Hour angle for star spectrum fair only: com- parison lines (Ti. Cr) to the form of the weak.Hour angle for star spectrum fair only: com- star spectrum fair only: com- star spectrum fair only: com- parison lines (Ti. Cr) to the form of	4528.798	25.7	1905 April 14	d 20 ^h 15 ^m	41.001	10.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 17		Hour angle	o ^h o ^m	42.510	19.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	- 26 46km	parison lines (T	$i C_r$ weak.	47.092	21.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.40			50.030	21.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{4} + 29.41$ $V_{4} + 0.20$		Time) (Calar)	Wala sites	57.050	20.0
Red. to Sult $+29.01$ 4293.241 -5.5 km 60.400 18.3 Rad. vel. $+3.2$ km 4293.241 -5.5 km 68.663 19.9 No. of star lines 26 52.006 5.2 82.376 21.1 No. of comp. lines 22 52.935 1.2 97.046 20.6 $\epsilon \pm 1.98$ 52.006 5.2 82.376 21.1 $\epsilon_{0} \pm 0.39$ 76.107 5.6 28.798 20.7 $\epsilon_{0} \pm 0.39$ 79.396 5.5 29.774 19.7 β GEMINORUM 94.161 6.0 34.953 20.6 1005 Oct. 15^{d} 1^{h} 5^{m} 99.903 4.8 Curv. corr. -0.55 Hour angle E h^{h} 20^{m} 66.810 6.5 $V_{d} - 0.30$ star spectrum fair only; comparison lines (V, Fe) a 27.420 4.3 Rad. vel. -4.0 km 4314.321 -27.2 km 47.892 2.4 No. of star lines 28 4314.321 -27.2 km 57.656 7.4 No. of comp. lines 29 15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ $\epsilon_{0} \pm 0.28$	$V_a + 0.20$ Rod to Sup	± 20 67	Line A (Solar)	Velocity	59.304	20.0
Rad. vcl. $+ 3.2^{km}$ 4293.241 4318.817 -5.5^{km} 08.003 19.9 19.5 No. of star lines26 52.006 5.2 82.376 21.1 No. of comp. lines22 52.935 1.2 97.046 20.6 $\epsilon \pm 1.98$ 59.784 4.4 4501.422 20.8 $\epsilon_{0} \pm 0.39$ 76.107 5.6 28.798 20.7 $\rho GEMINORUM$ 94.161 6.0 34.953 20.6 $L 2117$ 95.286 5.5 $Mean$ $+19.30^{km}$ 1005 Oct. 15^{d} 1^{h} 5^{m} 99.903 4.8 Curv. corr. -0.55 Star spectrum fair only; comparison lines (V, Fe) a trifle weak. 27.420 4.3 420.512 20.6 Line λ (Solar)Velocity 45.641 2.0 Rad. vel. -4.0^{km} 4314.321 -27.2^{km} 57.656 7.4 No. of star lines 28 15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ $\epsilon_{0} \pm 0.28$	Keu. 10 Sun	+ 29.01		1	68 66 -	18.3
No. of star lines26 52.006 5.2 82.376 21.1 No. of star lines22 52.935 1.2 97.046 20.6 No. of comp. lines22 52.935 1.2 97.046 20.6 $\epsilon \pm 1.98$ 59.784 4.4 4501.422 20.8 $\epsilon_0 \pm 0.39$ 79.396 5.5 29.774 19.7 β GEMINORUM— 94.161 6.0 34.953 20.6 1005 Oct. 15^d 1^h 5^m 99.903 4.8 Curv. corr. -0.55 1005 Oct. 15^d 1^h 5^m 4400.615 3.5 $V_a - 22.40$ 1005 Oct. 15^d 1^h 5^m 6.810 6.5 $V_d - 0.30$ Star spectrum fair only; comparison lines (V, Fe) a 27.420 4.3 Rad. vel. -4.0 km $110e \lambda$ (Solar)Velocity 45.641 2.0 Rad. vel. -4.0 km 4314.321 -27.2 km 57.656 7.4 No. of star lines 28 15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ $\epsilon_0 \pm 0.28$	Pad val		4293.241	$-5 \cdot 5^{\text{km}}$	08.003	19.9
No. of star lines26 $5^2 \cdot 000$ 5.2 $6^2 \cdot 370$ 21.1 No. of comp. lines22 $5^2 \cdot 935$ 1.2 $97 \cdot 046$ 20.6 $\epsilon \pm 1.98$ 59.784 4.4 4501.422 20.8 $\epsilon_0 \pm 0.39$ 76.107 5.6 28.798 20.7 $\rho - 10.39$ 79.396 5.5 29.774 19.7 $\rho - 10.39$ 99.903 4.8 20.6 $L 2117$ 99.903 4.8 $Curv. corr 0.55$ Hour angle E $o^h 20^m$ 99.903 4.8 $Curv. corr 0.55$ Star spectrum fair only; comparison lines (V, Fe) a 27.420 4.3 $urifle weak.$ 27.420 4.3 -22.70 $urifle weak.$ 27.420 4.3 -4.0 km 4314.321 -27.2 km 57.656 7.4 No. of star lines 4314.321 -27.2 km 57.656 7.4 No. of comp. lines 15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ 8.817 27.5 -27.2 km 57.656 5.2	Kau. vei.	+ 3.2	4318.817	3.3	70.214	19.5
No. of comp. lines22 $5^2 \cdot 935$ 1.2 97.640 20.0 $\epsilon \pm 1.98$ 59.784 4.4 4501.422 20.8 $\epsilon_{0} \pm 0.39$ 70.396 5.5 29.774 19.7 $\beta GEMINORUM$ 94.161 6.0 34.953 20.6 $L 2117$ 95.286 5.5 29.774 19.7 1005 Oct. 15^{d} 1^{h} 5^{m} 4400.615 3.5 $V_{d} - 22.40$ Hour angle E o^{h} $20m$ $o6.810$ 6.5 $V_{d} - 0.30$ Star spectrum fair only; comparison lines (V, Fe) a trifle weak. 27.420 4.3 Line λ (Solar)Velocity 45.641 2.0 A314.321 $-27.2km$ 57.656 7.4 No. of star lines 4314.321 $-27.2km$ 57.656 7.4 No. of comp. lines 15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ 8.817 27.5 68.663 6.2 $\epsilon \pm 1.45$	No. of star lir	ies 26	52.000	5.2	82.370	21.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	No. of comp.	lines 22	52.935	I.2	97.040	20.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε + 1	 8	59.784	4.4	4501.422	20.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\epsilon_{2} + \epsilon_{2}$	0.30	76.107	5.6	28.798	20.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-0		79.396	5.5	29.774	19.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B GEMIN(ORUM	94.161	6.0	34.953	20.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ι. 21	17	95.286	5.5	Mean	+ 10.30km
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<u>- / </u>	99.903	4.8	Curv. corr.	- 0.55
Star spectrum fair only; comparison lines (V, Fe) a trifle weak. 06.810 6.5 $V_d - 0.30$ Main fill weak. 27.420 4.3 -22.70 Inter λ (Solar) Velocity 45.641 2.0 4314.321 $-27.2km$ 57.656 7.4 No. of star lines 28 15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ $\epsilon_0 \pm 0.28$	1905 Oct. 1	5 ^a I ^h 5 ^m Feh com	4400.615	3.5	$V_a - 22.40$	55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Star spectrum fa	ir only: com-	06.810	6.5	$V_{d} - 0.30$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	parison lines	(V, Fe) a	08.549	2.5	Red. to Sun	- 22.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	trifle w	eak.	27.420	4.3		·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			42.510	4.4	Rad. vel.	— 4.0 ^{km}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Line λ (Solar)	Velocity	45.641	2.0		T
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			47.892	3.4	No. of star lir	ies 28
15.178 29.8 68.663 6.2 $\epsilon \pm 1.45$ 18.817 27.5 $\epsilon_0 \pm 0.28$	4314.321	$-27.2^{\rm km}$	57.656	7.4	No. of comp.	lines 29
$18.817 27.5 - \epsilon_0 \pm 0.28$	15.178	29.8	68.663	6.2	εĹ	.45
	18.81 7	27.5		•	$\cdot \epsilon_{\circ} \pm c$	0.28

1905ApJ....22...318S

a BÖÖTIS-	–L 2016	43
1905 Aug. 15 Hour angle V Star spectrum go sion lines (V,	^d 16 ^h 8 ^m V 4 ^h 10 ^m od; compari- Fe) good.	44
Line λ (Solar)	Velocity	
4352.935 59.784 79.396 89.413 4406.810 07.851 18.499 27.420 28.711 35.851 41.881 42.510 47.892 57.656 60.460 61.818 66.701 68.663 76.214 82.904 94.738 97.046 4501.422 28.798 34.953 Mean Curv. corr.	+ 18.8km 15.0 15.0 15.7 16.3 15.1 19.2 19.9 14.0 14.9 18.1 19.9 18.1 19.6 20.4 19.7 18.6 19.7 19.9 21.4 18.7 20.7 18.6 + 18.20km - 0.45	Mea Curv Va Vd Red. No. No. No.
Curv. corr. $V_a = 21.79$ $V_d = 0.32$ Red. to Sun	- 0.45 - 22.11	
Rad. vel.	— 4.4 ^{km}	43
No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_0 \pm 2$	les 25 lines 22 2.08 0.42	
a BOÖTIS- 1005 Aug. 20 Hour angle V Star spectrum ex parison spect (V, Fe) ex	-L 2043 d 15 ^h 34 ^m W 4 ^h 30 ^m cellent; com- rum lines ccellent	44
Line λ (Solar)	Velocity	
4352.006 52.935 59.784 79.396 89.413	+ 13.6km 16.9 14.2 12.1 15.0	

$\beta = \frac{V_d}{V_d}$ Red. Ra No. c No. c No. c No. c
im Line
m
, , , , , , , , , , , , , , , , , , ,
$\begin{array}{c} \text{cm} \\ 45\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

ean 1 rv. corr. a -17.62 a - 0.33 ed. to Sun Rad. vel. c. of star lin c. of comp. 1 $\epsilon \pm 1$ $\epsilon_0 \pm 0$	$ + 14.07^{\rm km} - 0.60^{\rm km} - 17.95^{\rm km} - 4.5^{\rm km} $ es 20 lines 20 .60 .36
$\beta OPHIU$ L 194 1905 July 14 ^d Hour angle V r spectrum fa son lines (<i>Mo</i>	CHI 47 47 4 19 ^h 10 ^m V 1 ^h 45 ^m ir; compari- , Fe) fair.
ine λ (Solar)	Velocity
$\begin{array}{c} 4352.006\\ 52.935\\ 59.784\\ 79.396\\ 4406.810\\ 07.851\\ 08.549\\ 27.420\\ 38.510\\ 42.510\\ 42.510\\ 47.892\\ 57.656\\ 59.304\\ 60.460\\ 68.663\\ 76.214\\ 90.950\\ 97.046\\ 4528.798\\ 34.953\\ \end{array}$	$\begin{array}{c} +0.3^{km} \\ 4.0 \\ 2.3 \\ -1.4 \\ 1.5 \\ +1.7 \\ 1.8 \\ 2.1 \\ -1.1 \\ +1.8 \\ 2.4 \\ 4.6 \\ 2.6 \\ 3.4 \\ -0.5 \\ 0.5 \\ 1.3 \\ +1.3 \\ 0.5 \\ -1.9 \end{array}$
tean urv. corr. a - 12.25 d - 0.16 ed. to Sun	+ 1.03 ^{km} -0.55 -12.41
Rad. vel.	—11.9 ^{km}
o. of star lin o. of comp. $\epsilon \pm 1$ $\epsilon_{o} \pm c$	lines 20 lines 21 1.95 0.44

1.101

.

10.00 T 10.00

β OPHIUCHI—
L 2017
1005 Aug. 15 ^d 17 ^h 50 ^m
Star spectrum good; compari
son lines (Fe, V) strong.

Line λ (Solar)	Velocity
$\begin{array}{c} 4328.080\\ 39.731\\ 49.107\\ 52.006\\ 52.935\\ 59.784\\ 79.396\\ 89.413\\ 99.903\\ 4406.810\\ 07.851\\ 08.549\\ 27.420\\ 42.510\\ 47.892\\ 57.656\\ 59.304\\ 60.460\\ 68.663\\ 76.214\\ 90.950\end{array}$	+ 15.0km 10.8 14.2 10.5 13.1 11.9 10.1 12.6 9.4 11.4 13.0 13.2 13.5 10.5 8.1 13.9 14.0 11.3 14.8 12.7 11.0
Mean Curv. corr. $V_a - 22.33$ $V_d - 0.23$ Red. to Sun Rad. vel.	$+ 12.14^{\text{km}}$ - 0.42 - 22.56 $- 10.8^{\text{km}}$
No. of star lin No. of comp. $\epsilon \pm 1$ $\epsilon_0 \pm c$	lines 21 23 2.71 2.37
β OPHIU L 20 1905 Sept. 8 ^d Hour angle V Star spectrum fr son lines (Fe,	$CHI - 58$ $V_{2h}^{16h} 32^{m}$ $V_{2h}^{35m} 35^{m}$ air; compari- V) good.
Line λ (Solar)	Velocity
$\begin{array}{r} 4328.080\\ 31.762\\ 52.006\\ 52.935\\ 59.784\\ 69.868\\ 79.396\end{array}$	$ + 14.8^{\rm km} \\ 12.7 \\ 12.8 \\ 15.4 \\ 13.8 \\ 18.4 \\ 12.4 $

$\begin{array}{c} 4406.810\\ 08.549\\ 15.244\\ 27.420\\ 28.711\\ 42.510\\ 47.892\\ 59.304\\ 60.460\\ 69.549\\ 76.214\\ 82.376\\ 94.738\\ 4522.853\\ 28.798 \end{array}$	- 13.9km 16.9 13.6 18.1 16.0 11.9 16.5 14.3 18.4 18.0 19.4 14.6 18.1 12.7 15.3 14.4
Mean Curv. corr. $V_a - 25.89$ $V_d - 0.22$ Red. to Sun	+ 15.31 ^{km} - 0.45
Rad. vel. No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_0 \pm c$	-11.3^{km} es 23 lines] 23 .32 .48
γ AQUILAR 1905 July 5 Hour angle V Star spectrum go	E—L 1921 ¹ 21 ^h 5 ^m
son lines (Ti, J overexp	$W \circ f_{50}^{m}$ od; compari- Mo, Cr, Fe osed.
son lines (Ti , Joverexp Line λ (Solar)	V oh 50 ^m od; compari- <i>Mo, Cr, Fe</i>) osed. Velocity

Mean Curv. corr. $V_a + 6.89$ $V_d - 0.08$ Red. to Sun	-9.00 ^{km} -0.50 +6.81
Rad. vel.	— 2.7 ^{km}
No. of star line No. of comp. 1 $\epsilon \pm 2$ $\epsilon_{\circ} \pm 0$	es 20 ines 14 .30 .51
γ AQUILAE 1905 July 7 ^d Hour angle V Star spectrum goo son lines (Mo,	$\begin{array}{c} -L 1926 \\ {}_{20^{h} 25^{m}} \\ V o^{h} 20^{m} \\ od; compari- \\ Fe) weak. \end{array}$
Line λ (Solar)	Velocity
$\begin{array}{c} 4328.080\\ 31.762\\ 39.731\\ 52.935\\ 59.784\\ 69.933\\ 79.396\\ 95.286\\ 4407.851\\ 27.420\\ 42.510\\ 47.892\\ 57.656\\ 59.304\\ 68.663\\ \end{array}$	$ \begin{array}{c} -4.9^{km} \\ 6.9 \\ 7.1 \\ 6.6 \\ 7.4 \\ 7.2 \\ 9.7 \\ 9.1 \\ 12.4 \\ 3.9 \\ 9.9 \\ 8.8 \\ 10.5 \\ 7.1 \\ 5.9 \\ \end{array} $
Mean Curv. corr. V_a + 6.08 V_d -0.03 Red. to Sun	-7.83 ^{km} -0.50 +6.05
Rad. vel.	-2.3 ^{km}
No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_0 \pm 2$	es 15 lines 18 2.23 2.57

1905ApJ....22...318S

1

-

	_				
γ AQUILAI	E—L 1952	4468.663	-6.7^{km}	4512.906	-0.8km
1905 July 15	1 19 ^h 50 ^m	76.214	11.3	14.513	0.9
Hour angle	W o ⁿ 15 ^m	82.376	9.1	15.475	3.0
son lines (Mo	(Fe) fair.	82.904	10.3	28.798	$-\tilde{1}.7$
		4501.422	9.5		
Line) (Solar)	Valasita	05.003	8.7	Mean	± 0.20 km
Lille ~ (Solar)	velocity	28.798	10.7	Curv. corr	-0.39
		29.774	10.0	$V_a + r 6r$	0.45
4328.080	-2.4 ^{km}			$V_d = 0.08$	
49.107	1.8	Mean	- 10. 20km	Red to Sun	
52.935	2.2	Curv. corr	- 0.50	itea. to buil	1 3 . 37
59.784	2.4 .	$V_{a} + 16.77$	0.30	Rad vel	
62.262	6.9	$V_{d} + 0.01$		Itad. VCI.	
76.107	2.7	Red to Sun	⊥т6 8т	No. of star lin	les 24
79.396	3.7	Red. to Sull	10.01	No. of comp.	lines 25
4400.615	2.7	Rad vel	⊥ 6 rkm	$\epsilon + 2$	2.01
06.810	4.6	Rau. vei.	+ 0.1	$\epsilon_{0} + \epsilon_{0}$	2.21
07.851	5.2	No. of star lin	es 21	-0	34
27.420	2.2	No. of comp.	lines 17	€ PEGASI-	-L 2054
42.510	4.9	€ ± 2	. 18	Toor Sept 6	
47.802	6.5	$\epsilon_{o} \pm c$	• 47	Hour angle	$W o^h 45^m$
56.030	6.7			Star spectrum go	od; compari-
57.656	6.6	e PEGASI-	–L 2007	son lines $(V,$	Fe) fair.
60.460	7.I	1005 AUS 10	d 20h 42m		
68,663	0.7	Hour angle V	N oh 50m	Line λ (Solar)	Velocity
72.056	1.1	Star spectrum ver	y good; com-		
195-		parison lines (1	<i>i</i> , <i>Fe</i>) good.	4331.762	+15.5km
Mean	1 rokm			40.107	12.5
Wiean	-4.10am	Line λ (Solar)	Velocity	52.025	т6.т
$V_a + 2.77$				50.781	T4.2
$V_d = 0.02$		4218 817	± 1.6 km	76.107	TT.2
Ked. to Sun	+2.75	28 080	T 2	70.206	TT.O
Ded wel	1rm	20.000	1.2	80 412	14.0
Rad. vel.	-1.3 ^{km}	47 402	4.2	01 146	14.0
No. of star lin	es t8	47.403		05 286	TA 7
No of comp	lines I2	49.107 52.025	±2 T	08 272	14.7
F + 2	2 06	52.935	2 5	4427 420	т6.т
6. ±0	. 40	76 107	-2.0	4427.420	75 8
~ <u>-</u>	••49	70.107	2.9	42.510	15.0
	T 0	79.390	1.9	47.092	TE 8
€ PEGASI-	–L 1948	09.413	1.2	50.030	15.0
1905 July 14 ^d	21 ^h 18 ^m	91.140	2.9 1 T T	59.304	10.0
Star spectrum go	od: compari-	94.101 of 286	- 1.1	68 662	11.7
son lines (Fe,	Mo) good	95.200	0.4	00.003	10.7
		4400.810	-1.4	70.214	12.2
Line & (Solar)	Velocity	07.051	1.4	02.370	13.9
Line K (bolai)	velocity	27.420	+0.4	94.730	12.5
	(lem	41.001	-1.5	4515.475	10.0
4331.702	-12.0km	42.510	2.0	20.790	14.9
52.935	7.9	45.041	+2.4		
59.784	0.1	47.892	0.9	Mean	+14.10 ^{km}
70.107	11.4	57.050	-2.8	$V_a - 6.74$	
79.390	10.9	59.304	+0.9	$V_d = -0.08$	
4407.851	9.7	00.400	-1.7	Red. to Sun	-6.82
33.390	9.0	08.003	+1.4		<u> </u>
41.881	15.0	70.214	0.4	Rad. vel.	$+7.3^{km}$
42.510	11.5	85.840	2.5	NT 1 . 1	
45.641	10.0	97.040	1.0	No. of star lin	les 22
50.030	14.0	4500.480	+3.4	No. of comp.	unes 23
57.656	10.2	05.003	1.8	ε ± 1	· ·7 9
59.304	8.3	12.063	0.1	$\epsilon_{o} \pm c$	o. 39

S
m ²
ω
-
m
· :
•
•
\sim
21
()
•
•
. •
Ь
0
3
RL
ß
0
š
01
-

PECASI	Τ		e Skm	1507 100	km
e I LGASI-	-1. 2080	4359.704	-7.8	4501.422	-9.4-m
Hour angle V	$V_{\rm oh} 48^{\rm m}$	70.107	0.8	08.455	10.1
Star spectrum go	od: compari-	79.390	5.3	28.798	11.9
son lines (Fe , V) somewhat	83.720	5.5	······	<u> </u>
strong	ç.	95.280	8.1	Mean -	+10.19 ^{km}
		4400.810	2.3	$V_a = -20.99$	
Line λ (Solar)	Velocity	08.549	3.I	$V_d - 0.20$	
		15.244	2.5	Red. to Sun	-21.10
4328.080	$+ 18.7^{km}$	27.420	4.3		
40.107	TO. 3	41.881	1.5	Rad, vel.	- T. okm
52 025	22 0	42.510	1.0		1.0
52.935	23.0	45.641	0.2	No. of star lin	nes 24
50.110	19.9	47.802	4.0	No. of comp.	lines 24
59.704	10.4	57.656	3.1	$\epsilon \pm 2$	2.60
70.107	19.0	50.304	T.7	$\epsilon_{0} + c$	0.53
69.413	21.2	. 68 662	5.0	-0 ±-	
90.149	19.8	76.214	3.0	~ PISCIUM	
95.280	18.0	80.214	3.0	/1100101A	4 h
4406.810	19.8	82.370	1.4	1005 Nov. 2 Hour angle V	
07.851	22.I	88.303	0.0	Star spectrum fa	air: compari-
27.420	24.9	94.738	4.9	son lines $(V,$	Fe) good.
28.711	19.3	97.040	0.0		1
35.851	20.8	Mean	- 3.86km	Line & (Solar)	Velocity
41.881	20.0	$V_{a} = 7.70$	5.22	Time x (Solar)	Velocity
42.510	23.4	$V_{4} = 0.12$		4202 241	
45.641	23.3	\mathbf{P}_{u} 0.13 Red to Sun	- 7.02	4293.241	11.0
47.802	22.0	Red. to Sun	7.92	94.273	10.0
57.656	23.7	Rad, vel.	-TT.8km	4300.938	11.4
57.050	24.2			15.170	11.0
68 662	26.2	No. of star lin	nes 30	25.951	12.3
76 at 4	20.2	No. of comp.	lines 23	31.702	10.0
70.214	21.7	· e ± 2	2.56	37.210	13.8
02.370	25.0	$\epsilon_{o} \pm c$	0.45	40.634	12.3
94.738	10.4	-		52.006	9.0
97.040	23.0	γ PISCIUM	<i>I</i> —L 2122	52.935	14.3
Moon	+ ar arkm	TOOL 0CT 27	d TSh 22m	59.784	8.3
Wiean I	1 21.35	Hour angle	W 2 ^h 10 ^m	77.407	12.3
$V_a = 15.71$		Star spectrum fa	air; compari-	95.286	10.0
$V_d - 0.00$		son lines $(V,$	Fe) good.	4404.051	0.8
Red. to Sun	-15.79		1	08.540	12.3
Dod vol	- r 6km	Line λ (Solar)	Velocity	27.420	11.2
Rau. vei.	+ 5.0		· · · · · · · · · · · · · · · · · · ·	4T 88T	TT 6
No. of star lin	ies 25	4204.273	+15.0km	42.510	12.0
No. of comp.	lines 25	4315.178	12.0	42.510	12.9
$\epsilon + 2$	2.21	28.080	13.4	41.094	13.1
$\epsilon_{\alpha} + c$	0.44	40.624	II.O	57.050	12.4
-0	1.1	=2.00h	13.0	59.304	12.0
γ PISCIUM	—L 2081	52.000	-3·9	00.400	12.9
1005 Sept. 27	^d 10 ^h 15 ^m	52.935	-4.4	70.214	15.4
Hour angle	W 1 ^h 25 ^m	59.704	9.3	82.376	1 15.4
Star spectrum fa	ur; compari-	78.419	9.2	4501.422	12.0
son lines $(V,$	Fe) good.	79.390	7.3	28.798	15.5
	Í	83.720	9.3		
Line λ (Solar)	Velocity	95.280	7.0	Mean	$+ \tau_2 \cdot \tau_2^{km}$
	· ·	4404.951	0.3	$V_a - 23.08$	
4314.321	— 4.0 ^{km}	06.810	12.0	$V_{d} = 0.12$	
15.178	8.4	07.851	8.0	Red to Sun	- 22 20
25.951	3.7	08.549	9.0	itea, to built	23.20
28.080	3.0	15.244	13.9	Rad wal	
37.216	5.4	27.420	10.9	Mau. Vel.	
40.634	5.7	42.510	10.0	No. of star lin	nes 26
41.530	0.7	68.662	8.4	No. of comp.	lines 24
52.006	7.5	76.214	7.2	ε±	1.88 '
•					~ ~ ~

1905ApJ....22...318S

V. M. SLIPHER

γ CEPHEI 1005 Oct. 12 Hour angle Star spectrum fa son lines (V,	$\begin{array}{c}L \ 2109 \\ {}^{d} \ 20^{h} \ 45^{m} \\ W \ 3^{h} \ 5^{m} \\ air; \ compari- \\ Fe) \ good. \end{array}$	No. of star lin No. of comp. $\epsilon \pm 2$ $\epsilon_{o} \pm 2$	ues 27 lines 28 2.60 5.50	γ CEPHEI- 1905 Nov. 2 ^d Hour angle V Star spectrum w symmetrical; c lines (V, Fe	$\begin{array}{c} -L 2130 \\ 10^{h} 50^{m} \\ Y 3^{h} 35^{m} \\ eak and un- \\ omparison \\) good. \end{array}$
Line λ (Solar)	Velocity	γ CEPHEI- 1005 Oct. 27	$-L_{2123}$	Line λ (Solar)	Velocity
4293.241 94.273 4315.178	-50.8^{km} 49.4 52.4	Star spectrum fa son lines (V,	Fe) good.	4315.178 28.080 52.000	$-47.9^{\rm km}$ 48.2
18.817 28.080	49.8 48.2	Line & (Solar)	Velocity	52.935 50.784	46.9
37.216 39.731	50.9	4315.178 28.080	$\begin{array}{c} -45 \cdot 9^{\mathrm{km}} \\ 44 \cdot 5 \end{array}$	4408.549	49.6
52.006 52.935	49.1 47.8	40.634 52.935	44.4 46.0	15.244	43.2
59.784 77.407	51.5 44.8	59.784 79.396	$47 \cdot 4$ $49 \cdot 5$	28.711	48.5
95.286 4406.810	50.2 48.3	95.286 4408.549	46.1 49.2	59.304 66.701	49.0
07.851 08.549	51.8 40.0	27.420 28.711	46.7 49.3	75.026	42.9
27.420 28.711	46.4 49.8	47.892 59.304	47.1 45.1	82.376 4528.708	42.0
42.510 43.976	47.7 46.5	68.663 76.214	$47 \cdot 2$ $47 \cdot 7$	4520.790 	47.0
47.892 57.656	46.3 43.3	94.738 96.046	47.6 49.8	$V_a + 3.91$	-40.00 ^{km}
59.304 68.663	48.0 51.6	4501.422 28.798	49·9 47·9	Red. to Sun	+ 3.84
76.214 82.376	45.9 44.9	Mean V + f If	-47.30 ^{km}	Rad. vel.	-43.0 ^{km}
97.046 4528.798	$44 \cdot 5 \\ 47 \cdot 7$	$V_d = +5.15$ $V_d = -0.08$ Red. to Sun	+5.07	No. of star lin No. of comp.	es 17 lines 18
$ \frac{Mean}{V_a + 7.96} $	-48.50 ^{km}	Rad. vel.	-42.2 ^{km}	$\epsilon_{\circ} \pm c$.58
$V_d = 0.06$ Red. to Sun	+ 7.90	No. of star lin No. of comp.	ies 18 lines 19		
Rad. vel.	-40.6 ^{km}	$\epsilon \pm 2$ $\epsilon_0 \pm 0$	2.00 0.47		

The resulting velocities for the different plates tabulated above are here collected into a table. The first part of this table contains the values of the velocity deduced from each star plate, followed by their unweighted mean, which is given as the velocity of the star. In the second part of the table are given for comparison the results by other observers of the same star.

It will be noticed that I have in general measured many more lines than is common in such observations. This has increased the accuracy of my velocities by decreasing the effect of accidental errors of measurement, which arise from the somewhat inferior definition

OBSERVATIONS OF STANDARD VELOCITY STARS 337

in the spectrograms. Although fairly accurate results are obtained in this way, the extra labor in the measurement and reduction is quite considerable. The spectrograph is soon to be remodeled so as to improve the definition and to render accurate velocity observations possible with less labor.

SLIPHER	٤	O	THER OBSERVERS		
Date, 1905	Velocity	Observer	Velocity	No. of Plates	Range
Sept. 12 ^d 21 ^h Oct. 2 20 Oct. 5 19	- 14.3 ^{km} - 14.0 - 14.5	Frost ¹ Adams ¹ Adams ² Campbell ³	-13.5^{km} -13.9 -13.7 -14.1	$\left \right \left \left \begin{array}{c} 3 \\ \mathbf{I} \\ 4 \right \right $	0.8 ^{km} 0.7 0.6
Mean	-14.3	Newall4 Lord and Maag ⁵ Lord ³ Newall ⁶	$ \begin{array}{r} -14.3 \\ -12.47 \\ -14.0 \\ -16.4 \end{array} $	3 5 2 8	2.8 1.8 2.7 6.3
	· · · ·	a PERSEI			
Aug. 30 ^d 23 ^h Sept. 12 22 Sept. 25 21 Oct. 7 23 Oct. 27 22	$ \begin{array}{r} - 2.0^{\text{km}} \\ - 2.1 \\ - 2.4 \\ - 2.9 \\ - 3.3 \\ \end{array} $	Frost Adams Campbell ⁸ Bélopolsky ⁹ Lord and Maag Newall	$ \begin{array}{r} - 2.3^{\text{km}} \\ - 2.0 \\ - 2.2 \\ - 2.9 \\ + 0.6 \\ - 2.6 \\ \end{array} $	<pre>} 3 10 8 5 14</pre>	1.6 ^{km} 1.3 2.0 3.7 3.7 5.7
Mean	- 2.5	Vogel ¹⁰ Newall	-3.2 -4.6	13 5	$3 \cdot 3$ $5 \cdot 5$
		β LEPORIS			
Oct. 3^{d} oh Oct. 12 23 Oct. 27 23 $\frac{3}{23}$	12.8 ^{km} 13.2 13.0	Frost Adams	— 12.2 ^{km} — 12.6) I	^{kn}
Mean	-13.0				

	ADIETIC
u	ANILIIS

physical Journal, 18, 273, 1903.

² Ibid., 15, 24, 1902. 3. Ibid., 8, 150, 1898.

5 Astrophysical Journal, 21, 297, 1905.

⁶ Monthly Notices, **65**, 651, 1905. 4 Monthly Notices, 63, 298, 1903. 7 See footnote 2, page 339.

⁸ Lick Bulletin, No. 4, p. 24.

9 Astrophysical Journal, 19, 85, 1904.

¹⁰ Ibid., **13,** 322, 1901.

1905ApJ...22..318S

April 7 ^d 17 ^h Oct. 8 o Oct. 15 I Mean	$ + 3.4^{km} + 3.2 + 3.4 + 3.4 + 3.3 + 3.$	Frost Adams Lord and Maag Bélopolsky Newall	$ + 3.2^{km} + 3.7 + 5.3 + 3.4 + 2.0 $	$\left.\begin{array}{c}3\\5\\9\\6\end{array}\right $	0.6 ^{km} 0.2 5.4 1.4 3.0
		a BOÖTIS		9	
April 14 ^d 19 ^h Aug. 12 16 Aug. 15 16 Aug. 29 16 Aug. 31 16	$ \begin{array}{r} - 5.5^{\text{km}} \\ - 4.0 \\ - 4.4 \\ - 5.0 \\ - 4.5 \\ \hline - 4.7 \\ \end{array} $	Frost Adams Bélopolsky Lord and Maag Frost and Adams ¹ Newall Newall	$\begin{array}{r} - & 4.7^{\rm km} \\ - & 4.9 \\ - & 6.1 \\ - & 3.2 \\ - & 4.3 \\ - & 5.8 \\ - & 6.6 \end{array}$	<pre></pre>	I.3 ^{km} 0.9 3.3 3.2 I.8 2.7 4.5

β GEMINORUM

V. M. SLIPHER

β OPHIUCHI

SLIPHER	L	0	THER OBSERVERS		
Date, 1905	Velocity	Observer	Velocity	No. of Plates	Range
July 15 ^d 18 ^h Aug. 15 18 Sept. 8 17	- 11.9 ^{km} - 10.8 - 11.3	Frost Adams Newall	-11.3^{km} -10.9 -15.9	<pre>} 3 2</pre>	0.8 ^{km} 0.7 1.9
Mean	-11.3				

γ AQUILAE

July 5 ^d 21 ^h July 7 20 July 15 20	$-2.7^{\rm km}$ -2.3 -1.3	Frost Adams Béłopolsky Newall	- 1.4 ^{km} - 2.2 - 2.0 - 1.9	$\left \begin{array}{c} 3 \\ 10 \\ 4 \end{array} \right $	0.7 ^{km} 1.0 3.8 4.2
Mean	- 2.I				

€ PEGASI

July Aug. Sept. Sept.	14 ^d 21 ^h 10 21 6 19 27 17	+ 6.1^{km} + 5.5 + 7.3 + 5.6	Frost Adams Campbell ² Bélopolsky Lord and Maag	+ 6.2^{km} + 6.2 + 5.7 + 6.0 + 6.1	<pre>3 4 7 5</pre>	0.5 ^{km} 0.4 1.2 1.4 5.8
N	Iean	+ б.т	Newall	+ 3.3	3	2.6

¹ Publications of the Yerkes Observatory, Vol. II, Part 4, p. 35, 1903. ²Loc. cit.

Sept. 27 ^d 20 ^h Oct. 27 18 Nov. 2 17	— II.8 ^{km} — II.0 — II.I	Frost Adams	— 10.7 ^{km} — 11.1	} 3	0.4 ^{km} 1.1
Mean	-11.3				

γ PISCIUM

γ	CEP	H	EI
	ULL.		

Oct. 12 ^d 21 ^h	-40.6km	Frost	41.0 ^{km}	$\left \begin{array}{c} 3 \\ 4 \end{array} \right $	1.0 ^{km}
Oct. 27 21	-42.2	Adams	41.4		0.2
Nov. 2 20	-43.0	Bélopolsky	39.9		2.7
Mean	-41.9				

As regards the quality of the plates, the velocity of γ Cephei is subject to the greatest inaccuracy, due to the weak character of the last plate. The velocity of γ Aquilae is also somewhat uncertain, owing to lack of knowledge of the wave-lengths of the Mo lines, there being apparent disagreement between the arc¹ and spark values.

Comparison of my results with those of other observers seems to point toward slightly greater negative values for my velocities.² But as this depends largely upon the value got for γ *Cephei*, the most discordantly observed star of the ten, I consider it only apparent and due to accidental causes. It might, however, be interesting in this connection to point out that there is a slight difference between the arc wave-lengths ³ of the V lines (λ 4300–4500) and Rowland's solar wave-lengths of the lines assigned to V, the latter being about 0.0025 tenth-meters greater than the former.

The performance of the 24-inch glass has been, in these observations, entirely satisfactory, as may be judged from a comparison of the exposure times with those of the same stars by Frost and Adams with the great Yerkes refractor. The altitude of this observatory and the transparency of the sky must contribute very greatly

¹ The wave-lengths of the *Mo* lines in the arc were published by Hasselberg in the *Astrophysical Journal*, **17**, 20, January 1903.

² Mention should be made here that Professor Lord has called attention to the fact that his and Mr. Maag's velocities are systematically too large positive by about two kilometers.

3 Rowland and Harrison, Astrophysical Journal, 7, 273, 1898.

V. M. SLIPHER

to the light-power of the equipment. Under fair conditions, with good guiding, satisfactory spectrograms of *a Persei*, for example, would be made (through a 0.025 mm slit) with a 15-minute exposure. My last plate of this star was given that length of exposure and was amply timed, whereas the shortest exposure given this star with the Yerkes equipment was 30 minutes. My earlier plates of this series were, in general, rather over-timed.

In conclusion, I wish to acknowledge my indebtedness to Professor Lowell for encouragement in carrying on these observations, and to Mr. J. C. Duncan, fellow in this observatory, for checking the reductions to the Sun and assisting in preparing the tables for the press.

Lowell Observatory, Flagstaff, Ariz., November 7, 1905.