OBSERVATIONS OF STANDARD VELOCITY STARS WITH THE LOWELL SPECTROGRAPH (1905)

By V. M. SLIPHER

In the present paper are given the results of my observations of the list of "Standard Velocity Stars," ${ }^{\text {I }}$ made with the Lowell Spectrograph during the summer and autumn of the present year. Owing to the circumstance that the time that the spectrograph is available for stellar radial velocity work is limited, I have not been able to follow closely the recommendation ${ }^{1}$ that the three observations of each star be made at the beginning, middle, and end of the two months symmetrical about the date of the star's opposition with the Sun. Inasmuch as a Crateris, the faintest star of the regular list, has been, and will be for some time yet, too near the Sun for observation, I have substituted for it γ Cephei, the faintest star of the supplementary list, in order to bring these observations to an early conclusion. The ten stars that I have observed are, then, the following:

a Arietis	β Ophiuchi
a Persei	γ Aquilae
β Leporis	ϵ Pegasi
β Geminorum	γ Piscium
a Boötis	γ Cephei

I have secured, as was suggested, extra spectrograms of a Persei and a Boötis; and, in order to check the performance of the spectrograph, I have measured at frequent intervals the spectrographic velocities of Venus, Mars, and the Moon.

The spectrograph, ${ }^{2}$ as employed in these observations, consists essentially of a collimator of 30 mm aperture and 490 mm focus, a train of three 63° dense flint prisms and a camera of 35 mm aperture and 47 I mm focus, the whole inclosed in a box supplied with

[^0]electrical heating. The construction of this instrument partakes of the universal type, having a device for automatically keeping the prisms in the position of minimum deviation, a feature almost indispensable in our varied program of spectroscopic work. But there is an insufficient number of clamp screws to hold the prisms rigidly without causing injurious pressure on the glass of the prisms, each prism being clamped by only one screw, which presses centrally upon the top plate of its mounting. When this screw is clamped too tightly, unequal pressure is transmitted to the prism, destroying its homogeneity. Although realizing that by so doing I was impairing the definition of the spectrograms, I have nevertheless turned down very tightly the clamp screws and thus insured the rigidity of the prisms. I have in this way obtained entirely trustworthy spectrograms, but, as might be supposed, the definition in the spectrum is rather inferior, being no better on Seed 23 plates than it should be on the coarser 27 emulsion. The full power of the spectrograph has therefore not been realized, and the agreement of the velocities from different lines of the same plate is not so close as it should be with a spectrograph of this size.

In these observations, the prisms have been used set at minimum deviation for wave-length 4415 . The linear dispersion at different points through the part of the spectrum covered by my measures is as follows:

The star spectrum usually has a width on the plates of one-third of a millimeter, and is separated from the two parts of the comparison spectrum by about a tenth of a millimeter.

All the details relative to the making of the spectrograms are given in the accompanying table, which will be readily understood. The date of the observation is given in Greenwich Mean Time. Except in the case of a few of the short exposures, the comparison
JOURNAL OF OBSERVATIONS

Object	Plate Number	Date, 1905	Length of Exposure	Slit-Width	$\underset{\text { Spectrum }}{\substack{\text { Comparison }}}$	Temperature Inside Prism-Box	$\mathrm{Sky}^{\mathrm{Se}}$	$\begin{aligned} & \text { ing } \\ & \text { Image } \end{aligned}$	Seed's No. of Plates	Remarks
β Geminorum.	L 1833	April $7^{\text {d }} 7^{\text {h }}$ \% ${ }^{\text {m }}$	57^{m}	$\bigcirc{ }^{\text {mmola }}$	Ti, Cr	$12.47-12.56$			23	
a Boötis.	L 1850	142015	37	0.020	Ti, Cr	8.13-8.18		or	23	
Mars.	L 1868	$28 \quad 1842$	70	0.02	$\mathrm{Fe}, \mathrm{Ti}, \mathrm{Cr}$	II. 43 -II. 43	3	3	23	
Mars.	L I88r	May I8 16 30	72	0.022	Mo, Fe	$15.00-15.02$	3	3	23	
γ Aquilae.	L 1921	July $\begin{array}{llll}5 & 21 & 5\end{array}$	120	0.025	$\mathrm{Mo}, \mathrm{Ti}, \mathrm{Fe}, \mathrm{Cr}$	24.73-24.76	4	2	27	readjusted
$\boldsymbol{\gamma}$ Aquilae.	L i926	72025	128	0.028	Mo, Fe	24.72-24.70	4	2-I	27	
Venus..	L 1937	11021	8	0.018	Mo, Fe	22.38-22.45	3	3	23	
Moon.	L 1944	13 I8 35	36	0.020	Mo, Fe	19.26-19.15			23	
β Ophiuchi	L 1947	14 I9 10	IIO	0.028	Mo, Fe	18.20-18.21			27 N. H.	
є Pegasi..	L 1948	$1425 r_{18}$	90	0.028	Mo, Fe	18.20-18.23			27 N. H.	
γ Aquilae.	L 1952	15 19 50	12	0.028	Mo, Fe	19.90-19.98	4	3	27 N. H.	
ϵ Pegasi.	L 2007	Aug. 102042	120	0.028	Fe, V	17.90-18.02	4	2	27 N. H.	Spectrograph readjusted
a Boötis.	L 2011	$\begin{array}{llllllllllll}12 & 16 & 6\end{array}$	40	. 020	Fe, Cr, V	19.40-19.55	5	2	23	
Moon.	L 2013	$12 \begin{array}{lll}19 & 28\end{array}$	30	0.020	$\mathrm{Fe}, \mathrm{Cr}, \mathrm{V}$	19.50-19.40	5	4	23	
a Boötis.	L 2016	15 16 8	40	0.020	Fe, V	21.20-21.18			23	
β Ophiuchi...	L 2017	151750	120	0.027	Fe, V	21.14-21.15			27 N. H.	
a Boötis.	L 2043	29 I5 34	40	0.024	Fe, V	21.37-2I. 55	4	I-2	23	Spectrograph readjusted
a Persei.	L 2049	30236	58	0.025	Fe, V	20.65-20.70	3-4		23	
a Boötis.	L 2053	$31 \quad 15 \quad 31$	40	0.022	Fe, V	19.66-19.70	3		23	
${ }_{\text {¢ Pegasi.. }}$	L 2054	Sept. 6 I8 48	120	0.028	Fe, V	15.70-15.74	4		27 N. H.	
β Ophiuchi.	L 2058	8 r6 32	120	0.028	Fe, V	17.56-17.56	3-4		27 N. H.	
a Arietis.	L 2067	$\begin{array}{llll}12 & 20 & 48\end{array}$	60	0.022	Fe, V	20.16-20.10	3-4		27 N.H.	
a Persei.	L 2068	122159	40	0.024	$F e, . V$	20.10-20.13	3		27 N. H.	

JOURNAL OF OBSERVATIONS－Continued

Object	Plate Number	Date， 1905	Length of Exposure	Slit－Width	Comparison Spectrum	Temperature Inside Prism－Box	$\begin{gathered} \text { See } \\ \text { Sky I } \end{gathered}$	ng mage	Seed＇s No． of Plates	Remarks
a Persei．	L 2079	Sept． $25^{\text {d }} 20^{\text {h }} 49^{\text {m }}$	30^{m}	$\begin{gathered} \mathrm{mm} \\ 0.025 \end{gathered}$	$F e, V$	I3 ${ }^{\circ}$ IO－13 $3^{\circ} \mathrm{IO}$		3	27 N．H．	Spectrograph
¢ Pegasi．	L 2080	$\begin{array}{rrrr}27 & 17 & 28\end{array}$	60	0.027	$F e, V$	16．66－ı6．66			27 N．H．	readjusted
γ Piscium	L 2081	27 19 15	120土	0.029	$F e, V$	ェ6．67－ェ6．63			27 N．H．	Clouds
a Arietis．	L 2085	Oct． 2208	50	0.020	$F e, V$	13．62－13．68		3	27 N．H．	
及 Leporis．．．．	L 2087	$2 \begin{array}{llll}2 & 23 & 57\end{array}$	83	0.026	$F e, V$	13．56－			27 N．H．	
Moon．．．．．．．	L 2091	5 I5 40	$50 \pm$	0.020	Fe，V	18． $17-18 . \mathrm{II}$			2	Hazy
a Arietis	L 2094	5 18 54	50	0.024	Fe， $F e, V$	18．10－18．14 18．80－18．76	3		${ }_{27}{ }_{2} \mathrm{~N}$ N．H．	
Mars．	L 2096	6 13 5^{2}	55	0.024	$F e, V$ $F e, V$	18．80－18．76	3	2	${ }_{27}{ }_{27} \mathrm{~N} . \mathrm{H} . \mathrm{H}$.	
a Persei．	L 2100	$7 \quad 2253$	20	0.024	$F e, V$	I5．96－15．96			${ }_{27}{ }^{7}$ N．H．	Guiding inter－
$\boldsymbol{\beta}$ Geminorum．	L 2101	$\begin{array}{llll}7 & 23 & 39\end{array}$	28	0.022	$F e, V$	I 5.96 －r6．00	3－4		${ }_{27}{ }^{7}$ N．H．H．	rupted
$\boldsymbol{\gamma}$ Cephei．．．．	L 2109	$\begin{array}{llll}12 & 20 & 42\end{array}$	$105 \pm$	0.027	$F e, V$	I $3.98-13.95$ I $3.90-13.87$		3－4	${ }_{27} 27$ N．H．	
β Leporis．．．．．	L 2III	$\begin{array}{llll}12 & 23 & 2 \mathrm{I}\end{array}$	88	0.026	Fe， Fe，V	13．90－13．87 I $3.96-14.00$			$27 \mathrm{~N} . \mathrm{H}$. 23	Clouds
Venus．．．．．．．	L 2113	$\begin{array}{llr}\text { I } 3 & \text { I } & \text { 5 }\end{array}$	12 20	0.020 0.023	Fe，V $F e, V$	$13.96-14.00$ $9.60-9.64$			${ }_{27} \stackrel{23}{\mathrm{~N}}$ ．H．	Clouds
β Geminorum．	L 21I7	15 I 5	20	0.023	Fe，V	9．60－9．64		3	$27 \mathrm{N.H}$.	Spectrograph
$\boldsymbol{\gamma}$ Piscium．．．．	L 2122	$\begin{array}{lll}27 & 18 & 7\end{array}$	150	0.029	$F e, V$	II．00－11．07	4	3－4	27 N．H．	readjusted
\％Cephei．．．．	L 2123	272045	120	0.029	$F e, V$	II．OO－II． 08	4	3	27 N．H．	
a Persei．．．．．	L 2124	$\begin{array}{lll}27 & 22 & 7\end{array}$	${ }_{8} 5$	0.029	$F e$ ，	II．06－II．O4	4	3	27 N．H．	
$\boldsymbol{\beta}$ Leporis．．．．．	L 2125	［ $\begin{array}{r}27 \\ 27 \\ \hline 17\end{array}$	84	0.029	$F e, V$	II O OI－IO．94		3	${ }_{27}{ }_{27} \mathrm{~N} . \mathrm{H}$.	
$\boldsymbol{\gamma}$ Piscium．．．．	L 2129	Nov． 2177	125士	0.029	Fe，V $F e, V$	$8.90-9.00$ $9.12-9.14$			${ }_{27} 27$ N．H．	Clouds
र Cephei．．．．	L 2130	21950	50土	0.028	$F e, V$	9．12－9．14	3^{-}		27 N．H．	Clouds

has been photographed at the beginning and end of the star exposure. The table gives in one column two readings of a large-scale thermometer whose bulb is inside the prism-box near the base of the middle prism. For the most part, the two readings are those made at the beginning and end of the exposure, but for the later plates they are the highest and lowest readings of the thermometer. The temperature control has worked well, and the range in the readings of the prism thermometer for the longest exposures ordinarily does not exceed 0°. 1 C . and frequently is less than 0.05 . The double column headed "Seeing" gives the condition of the sky as regards transparency and the character of the stellar image, both on a scale increasing from \circ to 5 , where 5 means perfection. The remark "Spectrograph readjusted" means that the spectrograph has been used for other lines of work requiring different adjustments, during the interval against which that note is placed. I have endeavored to keep all adjustments the same throughout this series of observations.

The electric spark has furnished the comparison spectrum. The induction coil supplying the high potential current receives its power from a ro4-volt alternating current. A condenser is inserted in the secondary from the coil. To insure the complete illumination of the collimator lens with the light from the spark, a ground glass has been interposed between the electrodes and the slit.

Except for a few of the earlier plates, I have employed for comparison the spectrum of an alloy containing io per cent. of vanadium and 90 per cent. of iron. By occulting the twelve bright lines from $\lambda 4379$ to $\lambda{ }_{441} 5$ during the greater part of the exposure to the spark with a projection on the slide working in the end of the camera tube, an excellent series of uniformly spaced comparison lines is obtained. With only fairly well-timed exposures, there are many more good lines than are needed, so that it is always possible to choose for measures those lying nearest the best star lines.

I have employed throughout Rowland's wave-lengths for the comparison lines; for the vanadium lines, the arc values; ${ }^{\text {r }}$ and for the iron lines, the arc values for those lines whose arc wave-lengths
r Published by Rowland and Harrison in Astrophysical Journal, 7, 273, April I898.
he has published, ${ }^{1}$ for the others, the values given in his table of solar wave-lengths.

Rowland's solar wave-lengths have been used for the wavelengths of the stellar lines. I have, as far as possible, measured single lines, but have also employed a number of composite lines which appear single, and well suited to measurement, on my spectrograms. For the wave-lengths of these composite, or blended, lines, I have, as is customary, used the values resulting from giving to the wave-length of each component of the blend the weight of its intensity given in Rowland's table, and taking the weighted mean. The weakest line ordinarily taken into account is that of " 0 " intensity, which has generally been given a weight of one-half.

On some of the last Moon and planet plates, I have measured a rather large number of lines, both single and blended, for the purpose of seeing how the velocities from the blended lines compare with those from single lines. To the same end, I have also measured the strong solar lines at $\lambda \lambda 4326,4384,4405$, and 4415 . A comparison of the results from single and from blended and from the very strong lines shows that measures on the single lines are not noticeably more accurate than on the blends and heavy lines, and also that the values for the wave-lengths of the blended lines are reliable. Of course, with stars of the advanced solar type of spectrum, the class to which most of the "Standard Velocity Stars" belong, the relative intensities of lines must frequently be different from what they are in the Sun, and therefore the wave-lengths of the blends in such cases must be inaccurate. I have observed, for instance, that the blend $\lambda_{4352.935}\left\{\begin{array}{l}435^{2.908(4) ~} \mathrm{Fe} \\ 435^{2.044(1)^{2}} \mathrm{~V}\end{array}\right.$ in certain stars gives a larger positive velocity than the mean value of the other lines. However, similar uncertainties must attach to some of the lines which are single in the Sun. As an example of this kind may be mentioned the line at $\lambda 4468.663$, an excellent single in the Sun, of intensity 5 , due to
r"A New Table of Standard Wave-lengths," Astronomy and Astrophysics, 12, April 1903; and Frost's Scheiner's Astronomical Spectroscopy, p. 36.3.
${ }^{2}$ The vanadium lines are generally stronger in these stars than in the Sun, and in this blend I have given the V component weight I , although its intensity is given as o by Rowland. I have used this wave-length for the blend, with Moon and planets, as well as with the stars.
titanium, which appears as a single on the star plates but which, in a Boötis for example, gives a too large positive velocity. ${ }^{\text {r }}$

I continued to measure certain stellar lines after I knew solar wave-lengths were not entirely applicable and that they were giving spurious velocities. The employment of such lines, however, has only slightly affected the velocity of a plate and they can at any time be excluded or their velocities corrected when the wave-lengths have been more accurately determined. The inclusion of such lines by the different co-operators in their first year's observations would give provisional corrections to their wave-lengths, thus making the lines useful for velocity observations of these and other stars of the same spectral type. I am of the opinion that, after all, one of the most important results of this co-operation in radial velocity observations will be the knowledge gained of the wave-lengths of the star lines.

The plates have been measured with a screw microscope ${ }^{2}$ designed especially for measurement of spectrum plates. The screw, which has a pitch of half a millimeter, was examined for errors. Periodic errors were not revealed by the tests, although errors of run were quite apparent, and were of such a character as would be explained by a tapering of the screw from the middle toward the ends. I have not attempted to apply corrections to the measures to take up this error (which accumulates at a rate of about 0.3μ per revolution), for the reason that its gradual change would practically affect equally the star and near-by comparison line. I do not consider that the measures are appreciably affected by this imperfection of the screw. I have always measured the plate in both positions, violet-right and violet-left, under the microscope, making generally four settings on the star line and two each on the upper and lower part of the comparison line. The best star lines have been measured, regardless of whether or not they existed in the comparison spectrum. The comparison lines lying nearest the measured star lines have been selected, the distance between the star and the comparison line amounting only in exceptional cases to as much as 3 tenth-meters. This close proximity of the spark and the star line practically renders inoperative the errors in run of the micrometer screw.
${ }^{\text {x }}$ Frost's and Adams's velocities verify my own as regards the wave-length of this line.
${ }^{2}$ This instrument was made by Gaertner \& Co., of Chicago, and is a duplicate of those used by Frost and Adams.

A magnification of 21 diameters has been used in the measurements.

The measures in the two positions of the plate have not been reduced separately, but have been combined and the mean taken before the reduction was begun.

I have adopted the method of reducing each plate independently of every other, by computing for each plate a new Hartmann formula in the simple form

$$
\lambda-\lambda_{\circ}=\frac{C}{R-R_{\circ}},
$$

where R denotes the screw reading. The constants R_{\circ}, C, and λ_{\circ} of the formula are computed (in the order given) from the observed screw-readings and known wave-lengths of three comparison lines so selected that there is one near each end and the third near the middle of the portion of spectrum measured. By casting away a factor to make the reading on one of the lines zero, and by the use of logarithms, the constants are derived in about eight minutes. The wave-lengths of all star and comparison lines are then computed. The differences between the computed and normal wave-lengths of the numerous comparison lines furnish the necessary corrections for reducing the star wave-lengths to the true dispersion-curve of the plate. I have applied these corrections to the star lines without the use of a curve, making linear interpolations where needed; the mean of the errors of two neighboring comparison lines frequently being employed for the correction to the intervening star line. The differences between these corrected stellar wave-lengths and their normal values are then taken. as the velocity displacements for the star lines. These displacements are speedily converted into velocity in the line of sight by a Crelle's table suitably supplied with notes.

The theoretical velocities of the planets and the Moon have been computed from data given in the American Ephemeris, by the aid of Professor Campbell's convenient formulæ. In the reduction of the star velocities to the Sun, Schlesinger's line-of-sight constants have been employed for computing the factor V_{a} due to the Earth's orbital velocity. The other factor, V_{d}, due to the Earth's diurnal rotation, is read from a table. In the case of the earlier plates the correction for prismatic curvature has been applied to the mean velocity, and appears at the foot of the reduction table. In the other cases it has
been introduced earlier in the reductions and affects the velocities of the individual lines.

Object	Number of Plate	Greenwich M. T.				Velocity			No. of Lines	Quality ofPlate
						Obs.	Comp.	$\begin{aligned} & \text { Residu'ls } \\ & \text { O.-C. } \end{aligned}$		
						km	km	km		
Mars..	I. 1868	1905	April $28{ }^{\text {d }}$	18 ${ }^{\text {b }}$		-8.39	-7.92	-0.5	2 I	Good
Mars.	L 1881		May 18		30	- 1.10	-1.62	+o. 5	17	Good
Venus.	L 1937		July 11		21	+13.72	+13.42	+o. 3	26	Overexposed
Moon.	L 1944		Aug. ${ }^{13}$		35 28	+1.30 $+\quad 0.53$	$+\quad 0.52$ $+\quad 0.25$	+0.8 +0.3	27 26	Underexposed Good
Moon	L 2091		Oct. 5	15		+0.53 $+\quad 0.55$	+0.25 +0.65	+0.3	24	Excellent
Mars.	I. 2096		6		52	+9.02	+9.16	-0.1	35	Good
Venus.	I. 2113					+8.70	+ 8.64	+0.1	36	Excellent

The results from all the planet and Moon plates, made at intervals to test the performance of the spectrograph, are here summarized in a brief table. These check plates cover the whole period during which the "Standard Velocity Stars" have been under observation. The last two of these plates are also printed in detail to show the lines measured and to illustrate the character of the results from the individual lines. The mean value of O.-C. $=+0.15 \mathrm{~km}$ is doubtless only accidental as it is due to the rather large positive value of one of the less reliable plates. (I consider plates having V comparison lines much more reliable than those having the Mo lines.) It seems safe to conclude from these tests that the spectrograph has not been affected by appreciable systematic errors during the period covered by this series of velocity observations.

In the following pages are given in tabulated form the detailed reductions of all the plates of the "Standard Velocity Stars." The date of the plate is given in Greenwich Mean Time, above the table. The hour angle is also added. Just over the head of the table is a note descriptive of the quality of the plate. The first column of the table contains the wave-length of the star line and the second column, the velocity deduced for the line, given to the tenth of a kilometer per second. At the foot of these columns is given the mean of the velocities from the several lines, followed by V_{a} and V_{d}, the reductions to the Sun; and next the value of the star's radial velocity. Below these will be found the mean error $\epsilon= \pm \sqrt{\frac{\Sigma_{v^{2}}}{n-I}}$ of the determination of the velocity from a single line, and the mean
error $\epsilon_{0}= \pm \sqrt{\frac{\Sigma v^{2}}{m(n-I)}}$ of the final velocity of the star deduced from the plate.

The stars are arranged in the order of their right ascensions and the plates of each are given in chronological order.

MARS-L ${ }_{209} 6$	
1905 Oct. $6^{\mathrm{d}} \mathrm{I}^{\mathrm{h}}{ }_{52^{\mathrm{m}}}$ Hour angle $W 1^{\mathrm{h}}{ }^{2} 7^{\mathrm{m}}$	
Planet spectrum	good; com
I.ine λ (Solar)	Velocity
4274.9 II	$+\mathrm{Ir} .7^{\mathrm{km}}$
93.241	II. 7
94.273	8.7
4307.938	6.9
14.32 I	8.2
15.178	9.1
18.817	9.7
25.951	9.4
37.216	6.6
40.634	10.7
52.006	9.3
52.935	8.7
59.784	9.1
76.107	5.8
78.419	II. 9
79.396	$5 \cdot 5$
80.883	12.3
83.720	8.5
95.286	7.4
4404.95 I	7.1
06.810	6.7
07.851	7.2
08.549	7.1
15.244	10.2
27.420	9.1
$35 \cdot 184$	7.5
42.510	10.3
43.976	13.0
47.892	10.0
56.030	10.7
$59 \cdot 304$	11.7
68.663	8.3
76.214	8.5
82.376	11.0
94.738	6.4
Mean $\quad+9.02 \mathrm{~km}$	
Computed vel. +9.15	
O.-C.	-0.15m

No. of Martian lines 35
No. of comp. lines $\quad 3^{2}$

$$
\begin{aligned}
& \text { VENUS-L } 2113
\end{aligned}
$$

$$
\begin{aligned}
& \text { Planet spectrum excellent; } \\
& \text { comparison lines (} V, F e \text {) } \\
& \text { excellent. } \\
& \text { O.-C. }=+0 . \mathrm{I}^{\mathrm{km}}
\end{aligned}
$$

No. of Venus lines 36
No. of comp. lines 30

a PERSEI-L 2068	
1905 Sept. $12^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}} 59^{\mathrm{m}}$ Hour angle E r $^{\text {h }}{ }_{20}{ }^{\mathrm{mm}}$	
Star spectrum over-exposed; comparison lines ($V, F e$) good.	
Line λ (Solar)	Velocity
4294.273	$-23.15 \mathrm{~km}$
4300.2II	21.6
03.419	26.0
05.87 I	28.9
08.023	24.0
13.034	27.4
15.178	23.0
25.939	$23 \cdot 3$
40.634	24.0
52.006	28.1
83.720	28.9
91.146	24.8
95.201	26.1
4404.927	28.8
16.985	27.3
27.420	22.9
59.301	26.3
76.214	25.8
81. 400	31.3
91.570	29.6
4508.455	26.9
15.508	26.2
28.798	27.8
Mean -26.18 ${ }^{\text {km }}$	
$V_{a}+24.04$	
$V_{d}+0.08$	
Red. to Sun	+24.12
Rad. vel. - 2.5 sm	
No. of stars line $\quad 23$	
$\epsilon \pm 2.53$	
$\epsilon_{\circ} \pm 0.53$	
a PERSEI-L 2079	
1905 Sept. $25^{\mathrm{d}} 20^{\mathrm{h}} 49^{\mathrm{m}}$ Hour angle $E I^{\mathrm{h}} 35^{\mathrm{m}}$	
Star spectrum good; comparison lines ($V, F e$) good.	
Line λ (Solar)	Velocity
4294.273	$-25.2{ }^{\text {km }}$
4300.211	23.0
08.023	26.3
13.034	28.7
15.178	23.2
25.939	24.8
40.634	24.0
52.006	29.2
52.908	22.9
83.720	25.9
94.225	23.1

4395.201	$-24.6 \mathrm{~km}$
96.008	22.9
4404.927	$24 \cdot 3$
16.985	24.0
43.976	22.8
50.654	23.4
59.301	2 I .4
66.727	23.8
68.663	24.8
91.570	25.2
94.738	27.2
4501.448	21.4
08.455	23.0
I5.508	24.5
20.397	2 I. 5
28.798	24.1
34. I 39	18.7
$49 \cdot 767$	23.8
54.21 I	25.3
Mean	-24.10 ${ }^{\text {km }}$
$V_{a}+2 \mathrm{~L} .59$	
$V_{d}+0.10$	
Red. to Sun	$+21.69$
Rad. vel.	$-2.4{ }^{\mathrm{km}}$

No. of star lines
No. of comp. lines $\quad 28$
$\epsilon \quad \pm 2.12$
$\epsilon_{\circ} \pm 0.39$
a PERSEI-L 2100
1905 Oct. $7^{\mathrm{d}}{ }^{22^{\mathrm{h}}}{ }^{5 \mathrm{~s}^{\mathrm{m}}}$
Hour angle $\mathrm{W}^{\mathrm{n}} \mathrm{I}^{\mathrm{I}} \mathrm{om}^{\mathrm{m}}$
Star spectrum very good; comparison lines $(V, F \dot{e})$

Line λ (Solar)	Velocity
4294.273	$-2 \mathrm{I} . \mathrm{I}^{\mathrm{km}}$
4308.023	I7.9
I3.034	2 I .4
14.321	20.0
15.178	20.6
25.183	2 I. 4
25.939	20.1
38.084	$25 \cdot 3$
40.634	22.9
52.006	24.1
52.908	19.9
59.784	I 5.2
76.107	23.0
83.720	23.1
94.225	20.5
95.201	20.5
4404.927	22.0
16.985	2 I. 3
17.884	I9.8
43.976	23.2
50.654	2 I. 2
$59 \cdot 301$	20.3

4468.663	-22.6km
69.545	23.4
76.214	21.9
81.400	20.1
82.376	19.4
89.351	20.9
91.570	19.5
94.738	23.6
97.023	18.0
4501.448	21.9
08.455	19.4
15.508	20.9
20.397	22.4
28.798	22.4
Mean	$-21.14{ }^{\text {km }}$
$V_{a}+18.32$	
$V_{d}-0.07$	
Red. to Sun	+ 18.25

Rad. vel. $\quad-\quad 2.9^{\mathrm{km}}$
No. of star lines $\quad 36$
No. of comp. lines $\quad 28$
E ± 1.94
$\epsilon_{\circ} \pm 0.3^{2}$
a PERSEI-L 2124 $\stackrel{\text { Ioct. }}{\substack{1005 \\ \text { Hour angle } \\ W \\ \mathrm{~W} \\ \mathrm{I}^{\mathrm{d}} \\ \mathrm{I}^{\mathrm{h}} \\ 47^{\mathrm{m}} \\ 7^{\mathrm{m}}}}$ Star spectrum rather strong;

Line λ (Solar)	Velocity
4308.023	-12.0km
13.034	12.5
14.32 I	II. 5
25.939	13.7
40.634	14.9
52.908	11.6
76.107	13.1
83.720	15.4
95.201	15.0
4404.927	15.8
16.985	16.4
43.976	13.9
47.892	15.4
50.654	13.6
$59 \cdot 301$	15.5
76.214	17.4
4501.448	15.7
28.798	15.9
Mean	-14.40^{km}
$V_{a}+1 \mathrm{I} \cdot 18$	
$V_{d}-\mathrm{o.mI}$	
Red. to Sun	+ 11.07
Rad. vel. -3.3^{km}	
$\begin{array}{ll}\text { No. of star lines } & 18 \\ \text { No. of comp. lines } & 18\end{array}$	

[^1]| $\boldsymbol{\beta}$ LEPORIS-L 2087 | |
| :---: | :---: |
| $\xrightarrow{\text { Hour angle E E }}$ | |
| Star spectrum son lines (V | ood; compari-
 Fe) good. |
| Line λ (Solar) | Velocity |
| 4315.178 | -33.6km |
| 25.951 | 29.7 |
| 28.080 | 30.4 |
| 37.216 | 32.3 |
| 40.634 | 30.8 |
| 41.530 | 33.9 |
| 52.006 | 32.4 |
| 52.935 | 32.5 |
| 59.784 | $34 \cdot 7$ |
| 76.107 | 32.6 |
| 83.720 | 35.0 |
| 91.146 | 35.0 |
| 4404.95 I | 30.8 |
| 06.8 ro | 32.4 |
| 07.851 | 32.8 |
| 15.244 | $33 \cdot 5$ |
| 27.420 | $34 \cdot 3$ |
| 42.510 | 35.2 |
| 47.892 | 30.0 |
| 56.030 | 34.7 |
| $59 \cdot 304$ | 32.5 |
| 60.460 | 3 I 3 |
| 66.701 | 30.3 |
| 68.663 | 33.7 |
| 76.214 | 33.6 |
| 82.376 | 33.0 |
| 85.846 | 32.9 |
| 94.738 | 34.0 |
| 4500.480 | 32.7 |
| O1. 422 | 32.5 |
| I5.475 | 30.5 |
| 28.798 | 31.8 |
| Mean | -32.67^{km} |
| $V_{a}+19.84$ | |
| $V_{d}+0.01$ | |
| Red. to Sun | + 19.85 |
| Rad. vel. | -12.8km |
| No. of star lin | nes 32 |
| No. of comp. | lines 30 |
| $\epsilon \pm$ | . 57 |
| $\epsilon_{\circ} \pm$ | . 28 |
| β LEPORIS-L2III
 I 1005 Oct. $1^{1^{\text {d }}}{ }^{23^{\text {h }}} 20^{\mathrm{ma}}$
 Hour angle E ${ }^{\text {b }}{ }^{6 \mathrm{~m}}$
 Star spectrum somewhat weak; comparison lines (Fe, V) good. | |
| | |
| | |
| Line λ (Solar) | Velocity |
| 4314.32 I | -30.3^{km} |
| 25.951 | 32.9 |

4331.762	$-30.7{ }^{\text {km }}$	4459.304	$-25.2 \mathrm{~km}$	
40.634	3 I .0	68.663	28.9	
4 I .530	32.1	76.214	23.6	
52.935	32.2	4501.422	24.9	
59.784	33.0	08.455	28.1	
$79 \cdot 396$	$33 \cdot 9$	22.853	23.6	
83.720	$33 \cdot 9$	28.798	24.3	
4404.951	32.6	Mean$\begin{aligned} & V_{a}+14.75 \\ & V_{d}-0.07 \end{aligned}$	-27.64^{km}	
06.810 07.851	31.7 31.4			
08.549	31.4 33			
27.420	32.0	Red. to Sun	+ 14.68	
35.184	28.4	Rad. vel. -13.0 km		
43.976	29.4	No. of star lin	nes 24	
47.892	30.1			
59.304	32.8	No. of comp. lines 24		
60.460	33.2	$\epsilon_{\circ} \pm \pm 0.5^{2}$		
68.663	31.5			
76.214	30.0	β GEMINORUM-		
94.738	30.0			
4501.422	30.2	L 1833		
08.455	29.8	1905 April $7^{\mathrm{d}}{ }^{177^{\mathrm{h}} 0^{\mathrm{m}}}$ Hour angle $W{ }^{2}{ }^{\text {h }} 5^{8 \mathrm{~m}}$		
15.475	30.7	Star spectrum fair; comparison lines ($T i, C r$) weak.		
28.798	28.8			
Mean $\quad-3 \mathrm{r} .3^{8 \mathrm{~km}}$		Line λ (Solar)	Velocity	
$\begin{aligned} & V_{a}+18.22 \\ & V_{d}+0.01 \end{aligned}$				
		4274.911	$+36.9 \mathrm{~km}$	
Red. to Sun	+18.23	93.241	35.5	
Rad. vel.	- $13.2{ }^{\text {km }}$	94.273	30.5	
		4306.938	32.6	
$\begin{array}{cc} \text { No. of star lines } & 26 \\ \text { No. of comp. lines } & 25 \\ \epsilon \quad \pm \pm .56 \\ \epsilon_{\circ} \pm 0.30 \end{array}$		14.32 I	37.5	
		15.178 18.817	30.9 35.9	
		18.817 28.080	35.9	
			$33 \cdot 3$ 32.7	
		39.731 40.634	32.7 35.7	
β LEPORIS-L 2125		49.107		
Star spectrum fair; compari-		52.006	$34 \cdot 7$	
		52.935	35.13 I .9	
son lines (Fe, V) good.		59.784		
Line λ (Solar)	Velocity	99.903 4406.810	31.0 31.0	
		07.851	34.6	
4315.178	$-27.1 \mathrm{I}^{\mathrm{km}}$	08.549	32.3	
25.951	26.7	27.420	30.8	
28.080	29.1	42.510	33.0	
40.634	24.9	57.656	33.732.2	
52.006	29.6	59.304		
52.935	29.9	Mean +33.60 km Curv. cor. -0.60 $V_{a}-29.40$ $V_{d}-0.23$ Red. to Sun -29.63		
59.784	28.4			
$79 \cdot 396$	3 I .4			
83.720 95.286	$3 \mathrm{3I} .3$			
95.286	28.7			
4404.95106.810	28.7			
	32.9	Rad. vel. $\quad+3.4{ }^{\mathrm{km}}$		
08.549 25.608	28.8	No. of star lines 22		
27.420	26.6	No. of comp.	ines 13	
42.510	27.0	$\epsilon \pm 2$. 13	
47.892	29.0	$\epsilon_{0} \pm 0$. 45	

 Hour angle $\mathrm{Wr}^{\mathrm{T}} \mathrm{I}^{\mathrm{h}} 4^{45^{\mathrm{m}}}$
Star spectrum fair; comparison lines ($M o, F_{e}$) fair.

Line λ (Solar)	Velocity
4352.006	$+0.3^{\mathrm{km}}$
52.935	4.0
59.784	2.3
79.396	-I .4
440.8 IO	I .5
07.85 I	+I .7
08.549	I .8
27.420	$2 . \mathrm{I}$
38.510	$-\mathrm{I} . \mathrm{I}$
42.510	+I .8
47.892	2.4
57.656	4.6
59.304	2.6
60.460	3.4
68.663	-0.5
76.2 I 4	0.5
90.950	I .3
97.046	+I .3
4528.798	0.5
34.953	-I .9

Mean $\quad+1.03^{\mathrm{km}}$
Curv. corr. -0. 55
$V_{a}-12.25$
$V_{d}-0.16$
Red. to Sun -12.4I
Rad. vel. $-1 \mathrm{r} .9^{\mathrm{km}}$
No. of star lines $\quad 20$
No. of comp. lines $2 I$ e ± 1.95 $\epsilon_{\circ} \pm 0.44$

$\boldsymbol{\gamma} A Q U I L A E-\mathrm{L} 1952$	
Hour angle W or ${ }^{\text {h }} 5^{\text {m }}$	
Star spectrum fair; comparison lines (Mo. Fe) fair.	
Line $\boldsymbol{\lambda}$ (Solar)	Velocity
4328.080	$-2.4{ }^{\text {km }}$
49.107	I. 8
52.935	2.2
59.784	2.4
62.262	6.9
76.107	2.7
79.396	$3 \cdot 7$
4400.6I5	2.7
06.810	4.6
07.851	5.2
27.420	2.2
42.510	4.9
47.892	6.5
56.030	6.7
57.656	6.6
60.460	7.1
68.663	0.7
72.956	$4 \cdot 4$
Mean	-4. ro km
$V_{a}+2.77$	
$V_{d}-0.02$	
Red. to Sun	$+2.75$
Rad. vel.	$-\mathrm{I} .3^{\mathrm{km}}$
No. of star lin	S I8
No. of comp.	$\text { ines } \quad \text { 3 } 3$
$\epsilon \quad \pm 2$	
$\epsilon_{\circ} \pm 0$	
$\epsilon P E G A S I$-L 1948 1905 July $14^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$ 18 ${ }^{\mathrm{m}}$ Hour angle E o ${ }^{\text {h }}{ }^{24}{ }^{\text {m }}$ Star spectrum good; comparison lines (Fe, Mo) good	
Line $\boldsymbol{\lambda}$ (Solar)	Velocity
4331.762	- $12.6 \mathrm{~km}^{\text {d }}$
52.935	7.9
59.784	6.1
76.107	II. 4
79.396	10.9
4407.85 I	$9 \cdot 7$
33.390	9.6
41.88I	I5.0
42.510	II. 5
45.641	IO. 6
56.030	I4.0
57.656	IO. 2
$59 \cdot 304$	8.3

$\begin{array}{r} 4468.663 \\ 76.214 \end{array}$	$\left\lvert\, \begin{aligned} & -6.7 \mathrm{~km} \\ & \mathrm{II} .3 \end{aligned}\right.$
82.376	9.1
82.904	10.3
4501.422	$9 \cdot 5$
05.003	8.7
28.798	10.7
29.774	10.0
Mean	-10.20km
Curv. corr. - 0.50	
$V_{a}+16.77$	
$V_{d}+0.04$	
Red. to Sun	$+\mathrm{I} 6.8 \mathrm{I}$
Rad. vel. $+6 . \mathrm{r}^{1 \mathrm{~km}}$	
No. of star lines $2 I$	
No. of comp.	lines $\quad 17$
$\epsilon \quad \pm 2 . \mathrm{I} 8$	
$\epsilon_{\circ} \pm 0.47$	
$\epsilon P E G A S I-\mathrm{L} 2007$	
1905 Aug. $1^{\text {d }}{ }_{20}{ }^{\text {h }} 4^{42}{ }^{\text {m }}$ Hour angle W oh 50^{m}	
Star spectrum very good; comparison lines ($T i, F e$) good.	
Line λ (Solar)	Velocity
4318.8ı7	$+4.6 \mathrm{~km}$
28.080	1.2
3 L .762	4.2
47.403	1.9
49.107	-0.6
52.935	+2.1
59.784	2.5
76.107	-2.9
$79 \cdot 396$	1.9
89.413	I. 2
91.146	2.9
94.161	+I.I
95.286	0.4
4406.8 Io	-1.4
07.85 I	I. 4
27.420	+0.4
41.28I	-I. 5
42.510	2.0
45.641	$+2.4$
47.892	0.9
57.656	-2.8
59.304	+0.9
60.460	-1.7
68.663	+1.4
76.214	0.4
85.846	2.5
97.046	-1.6
4500.480	$+3.4$
05.003	I. 8
12.063	O. 1

45 I 2.906 14.513	-0.8 km
I 5.475	0.9
28.798	-I .7
Mean	+0.39 km
Curv. corr.	-0.45
$V_{a}+5.65$	
$V_{d}-0.08$	
Red. to Sun	+5.57
Rad. vel.	$+5.5^{\mathrm{km}}$

$\begin{array}{ll}\text { No. of star lines } & 34 \\ \text { No. of comp. lines } & 25\end{array}$
$\epsilon \pm 2.01$ $\epsilon_{\circ} \pm 0.34$
$\in P E G A S I-L 2054$
1905 Sept. $6^{\mathrm{d}}{ }^{188^{\mathrm{h}}} 4^{8 \mathrm{~m}}$ Hour angle W oh 45^{m} Star spectrum good; comparison lines ($V, F e$) fair,

Line $\boldsymbol{\lambda}$ (Solar)	Velocity
4331.762	+ $15.5{ }^{\text {km }}$
49.107	12.5
52.935	16.
59.784	14.2
76.107	II. 2
79.396	II. 9
89.413	14.0
91.146	II. 6
95.286	14.7
98.272	I4. I
4427.420	I6.I
42.510	I5.8
47.892	II. 2
56.030	I5.8
59.304	r6.8
60.460	II. 7
68.663	16.7
76.214	12.2
82.376	I 3.9
94.738	12. 5
4515.475	16.6
28.798	14.9
Mean	+14. 10 km
$V_{a}-6.74$	
$V d-0.08$	
Red. to Sun	-6.82
Rad. vel.	$+7 \cdot 3^{\mathrm{km}}$

No. of star lines 22
No. of comp. lines 23 є $\pm \mathrm{r} .79$ $\epsilon_{\circ} \pm 0.39$

$\boldsymbol{\gamma}$ CEPHEI-L 2109 1005 Oct. $11^{\mathrm{d}}{ }^{20^{\mathrm{h}}} 45^{\mathrm{m}}$ Hour angle $\mathrm{W}^{\mathrm{m}} 3^{\mathrm{h}} 5^{\mathrm{m}}$ Hour angle W $3^{\mathrm{h}} 5^{\mathrm{m}}$ Star spectrum fair; comparison lines (V, Fe) good.		No. of star lines No. of comp. lines $\epsilon \pm 2.60$ $\epsilon_{\circ} \pm 0.5^{\circ}$		$\boldsymbol{\gamma} C E P H E I-L_{2130}$ $1905 \mathrm{Nov}^{10} 2^{\mathrm{d}}{ }^{1 \mathrm{I}^{\mathrm{h}}}{ }^{50 \mathrm{~m}}$ Hour angle $W 33^{\text {b }} 35^{\mathrm{m}}$ Star spectrum weak and unsymmetrical ; comparison lines ($V, F e$) good.		
Iine λ (Solar)	Velocity	$\boldsymbol{\gamma} C E P H E I-L 2123$ 1005 Oct. $27^{\mathrm{d}}{ }^{20^{\mathrm{h}}} 45^{\mathrm{m}}$ Hour angle W $4^{\mathrm{h}} 5^{\mathrm{m}}$				
				Line λ (Solar)	Velocity	
$\begin{array}{r} 4293.24 \mathrm{I} \\ 94.273 \end{array}$	$-50.8 \mathrm{~km}$	Star spectrum fair: comparison lines ($V, F e$) good.		4315.178	-47.9^{km}	
	49.4			28.080	48.2	
4315.178	52.4	Line $\boldsymbol{\lambda}$ (Solar)	Velocity	52.006	49.8	
18.817	49.8			52.935	46.9	
28.080	48.2	4315.178		59.784	48.3	
37.216	50.9		-45.9 44.5	4408.549	49.6	
39.731	53.0	28.080 40.634	44.5	-09.328	44.6	
52.006	49.1	40.634	44.4 46.0	15.244	43.2	
52.935	47.8	52.935	46.0	27.420	46.3	
59.784	5 I .5	$59 \cdot 784$	47.4	28.711	48.5	
77.407	44.8	79.396 95.286	49.5	57.656	49.6	
95.286	50.2	95.286	46.1	$59 \cdot 304$	47.8	
4406.810		4408.549	49.2	66.7 I	42.9	
07.85 I	$5 \mathrm{I} .8$	27.420	46.7	75.026	47.2	
08.549	49.0	28.711	$49 \cdot 3$	76.214	46.6	
27.420	46.4	47.892	47.1	82.376	42.0	
28.711	49.8	$59 \cdot 304$ 68.663	45.1	4528.798	47.6	
42.510	47.7	68.663	47.2			
43.976	46.5	76.214 94.738	47.7 47.6	Mean	$-46.88 \mathrm{~km}$	
47.892	46.3	94.738 96.046	47.6	$V_{a}+3.91$		
57.656	$43 \cdot 3$	96.046 4501.422	49.8	$V_{d}-0.07$		
59.304 68.663	48.0 51.6	4501.422 28.798	49.9 47.9	Red. to Sun	+ 3.84	
68.663	5 5 .6	28.798	$47 \cdot 9$	Red. to Sun	$+3.84$	
76.214 82.376	$45 \cdot 9$	Mean	$-47.30^{\text {km }}$	Rad. vel.	$-43.0 \mathrm{~km}$	
82.376 97.046	$44 \cdot 9$	$V_{a}+5.15$		No. of star lines		
4528.798	$47 \cdot 7$	V_{d} - -0.08 Red. to Sun				
			$+5.07$	$\epsilon \pm$	2.39	
Mean	$-48.5{ }^{\text {km }}$	Rad. vel.	$-42.2{ }^{\text {km }}$	$\epsilon_{\circ} \pm$. 58	
$\begin{array}{ll}V_{a} & +7.96 \\ V_{d} & -0.06\end{array}$						
			No. of star lines 18			
Red. to Sun	+ 7.90	No. of comp. lines - 19				
Rad. vel.	-40.6km	$\epsilon_{\circ} \quad \pm 0.47$				

The resulting velocities for the different plates tabulated above are here collected into a table. The first part of this table contains the values of the velocity deduced from each star plate, followed by their unweighted mean, which is given as the velocity of the star. In the second part of the table are given for comparison the results by other observers of the same star.

It will be noticed that I have in general measured many more lines than is common in such observations. This has increased the accuracy of my velocities by decreasing the effect of accidental errors of measurement, which arise from the somewhat inferior definition
in the spectrograms. Although fairly accurate results are obtained in this way, the extra labor in the measurement and reduction is quite considerable. The spectrograph is soon to be remodeled so as to improve the definition and to render accurate velocity observations possible with less labor.
a ARIETIS

β LEPORIS

Frost. . Adams	$\begin{aligned} & -\mathrm{I} 2.2^{\mathrm{km}} \\ & -\mathrm{I} 2.6 \end{aligned}$	\} I	. km

[^2]β GEMINORUM

April $7^{\text {d }} 17^{\text {h}}$ ．	$+3 \cdot 4^{\mathrm{km}}$	Frost．	$+3.2 \mathrm{~km}$	$\} 3$	0.6 km
Oct． 8 o	+3.2	Adams．	＋ 3.7	\} 3	$\bigcirc 0.2$
Oct．I5 I	＋ 3.4	Lord and Maag ．．	＋ $5 \cdot 3$	5	$5 \cdot 4$
		Bélopolsky．．．．．．	＋ 3.4	9	I． 4
Mean．	$+3 \cdot 3$	Newall．．	＋ 2.0	6	3.0

a BOÖTIS

April $14{ }^{\text {d }}$ IG ${ }^{\text {h．}}$ ．	－ $5.5{ }^{\text {km }}$	Frost．	$-4.7{ }^{\mathrm{km}}$		I． 3^{km}
Aug． 12 I6	－ 4.0	Adams	－ 4.9	$\} 5$	0.9
Aug． 15 I6	－ 4.4	Bélopolsky．	－6．1	9	$3 \cdot 3$
Aug， 29 16	-5.0	Lord and Maag．．：	-3.2	7	3.2
Aug．3I 16	-4.5	Frost and Adams ${ }^{\text {I }}$	-4.3	8	I． 8
		Newall．	－ 5.8	5	2.7
Mean．．．．．	-4.7	Newall．	－ 6.6	I9	$4 \cdot 5$

β OPHIUCHI

Slipher		Other Observers			
Date， 1905	Velocity	Observer	Velocity	No．of Plates	Range
July $5^{\text {d }}$ $18 \mathrm{~h} \ldots$ Aug． I5 I8 \ldots Sept． 8 I7 \ldots	$\begin{aligned} & \text { - } 11.9^{\mathrm{km}} \\ & \text {-I0.8 } \\ & \text { - } 11.3 \end{aligned}$	Frost．． Adams． Newall．	$\begin{aligned} & -11.3^{\mathrm{km}} \\ & -10.9 \\ & -15.9 \end{aligned}$	$\} \begin{aligned} & 3 \\ & 2\end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~km} \\ & 0.7 \\ & 1.9 \end{aligned}$
Mean．．	－II． 3				

$$
\boldsymbol{\gamma} A Q U I L A E
$$

July $\quad 5^{\text {d }} 2 \mathrm{I}^{\mathrm{h}} \ldots$	$-2.7{ }^{\mathrm{km}}$	Frost．．．．．．．．．．．	$-\mathrm{I} .4^{\mathrm{km}}$		O． 7^{km}
July $720 \ldots$	-2.3	Adams ．．．．．．．．．	-2.2	\} 3	$\text { I. } 0$
July ${ }^{\text {I }}$ 20．．．	－ 1.3	Bélopolsky．．．．．．．	$2.0-$	10 ${ }^{\text {a }}$	$3.8 \cdots$
		Newall．．．．	－I．9	4	4.2
Mean．．．．	－ 2.1				

є $P E G A S I$

July $14^{\text {d }} 2 \mathrm{I}^{\text {h }}$ ．	＋6．15m	Frost．	$+6.2 \mathrm{~km}$		$0.5{ }^{\text {km }}$
Aug． 1021.	＋ 5.5	Adams．	＋6．2	\} 3	0.4
Sept． 619	$+7.3$	Campbell ${ }^{2}$ ．	＋ 5.7	4	1． 2
Sept． 2717	＋ 5.6	Bélopolsky．	$+6.0$	7	I． 4
		Lord and Maag．．．	＋6．1	5	5.8
Mean．．．．	＋ 6.1	Newall．．．．．．．．	$+3 \cdot 3$	3	2.6

${ }^{\text {x }}$ Publications of the Yerkes Observatory，Vol．II，Part 4，p．35， 1903.
${ }^{2}$ Loc．cit．

γ PISCIUM					
	$\begin{aligned} & \text {-II. } 8 \mathrm{~km} \\ & -\mathrm{II} .0 \\ & \text {-II.I } \end{aligned}$	Frost............. . Adams.	$\begin{aligned} & -10.7^{\mathrm{km}} \\ & -1 \mathrm{I} . \mathrm{I} \end{aligned}$	$\} 3$	$\begin{aligned} & \mathrm{O} .4^{\mathrm{km}} \\ & \mathrm{I} . \mathrm{I} \end{aligned}$
Mean......	-II. 3				
γ CEPHEI					
Oct. $1_{2}{ }^{\mathrm{d}} 2 \mathrm{I}^{\mathrm{h}}$. Oct. 27 21... Nov. 220 ..	$\begin{aligned} & -40.6 \mathrm{~km} \\ & -42.2 \\ & -43.0 \end{aligned}$	Frost. Adams. Bélopolsky.	$\begin{aligned} & -4 \mathrm{I} .0 \mathrm{~km} \\ & -4 \mathrm{I} .4 \\ & -39.9 \end{aligned}$	$\}^{3}$	$\begin{aligned} & 1.0 \mathrm{~km} \\ & 0.2 \\ & 2.7 \end{aligned}$
Mean......	-41.9				

As regards the quality of the plates, the velocity of γ Cephei is subject to the greatest inaccuracy, due to the weak character of the last plate. The velocity of γ Aquilae is also somewhat uncertain, owing to lack of knowledge of the wave-lengths of the $M o$ lines, there being apparent disagreement between the $\operatorname{arc}^{\mathbf{I}}$ and spark values.

Comparison of my results with those of other observers seems to point toward slightly greater negative values for my velocities. ${ }^{2}$ But as this depends largely upon the value got for $\boldsymbol{\gamma}$ Cephei, the most discordantly observed star of the ten, I consider it only apparent and due to accidental causes. It might, however, be interesting in this connection to point out that there is a slight difference between the arc wave-lengths ${ }^{3}$ of the V lines ($\lambda 4300-4500$) and Rowland's solar wave-lengths of the lines assigned to V, the latter being about 0.0025 tenth-meters greater than the former.

The performance of the 24 -inch glass has been, in these observations, entirely satisfactory, as may be judged from a comparison of the exposure times with those of the same stars by Frost and Adams with the great Yerkes refractor. The altitude of this observatory and the transparency of the sky must contribute very greatly
${ }^{r}$ The wave-lengths of the $M o$ lines in the arc were published by Hasselberg in the Astrophysical Journal, 17, 20, January 1903.
${ }^{2}$ Mention should be made here that Professor Lord has called attention to the fact that his and Mr. Maag's velocities are systematically too large positive by about two kilometers.

3 Rowland and Harrison, Astrophysical Journal, 7, 273, 1898.
to the light-power of the equipment. Under fair conditions, with good guiding, satisfactory spectrograms of a Persei, for example, would be made (through a 0.025 mm slit) with a 15 -minute exposure. My last plate of this star was given that length of exposure and was amply timed, whereas the shortest exposure given this star with the Yerkes equipment was 30 minutes. My earlier plates of this series were, in general, rather over-timed.

In conclusion, I wish to acknowledge my indebtedness to Professor Lowell for encouragement in carrying on these observations, and to Mr. J. C. Duncan, fellow in this observatory, for checking the reductions to the Sun and assisting in preparing the tables for the press.

[^3]
[^0]: ${ }^{\text {r }}$ See Frost on "Coöperation in Observing Radial Velocities of Selected Stars," Astrophysical Journal, 16, 169, 1902.
 ${ }^{2}$ A detailed description of this instrument was published in the Astrophysical Journal for July, 1904 (20, 1-20).

[^1]: $\epsilon \pm \mathrm{I} .74$
 $\epsilon_{\circ} \pm 0.41$

[^2]: x "Spectrographic Observations of Standard Velocity Stars (1902-1903)," Astrophysical Journal, 18, 273, 1903.
 ${ }^{2}$ Ibid., 15, 24, 1902. 5 Astrophysical Journal, 21, 297, 1905.
 3.Ibid., 8, 150, $1898 . \quad{ }^{6}$ Monthly Notices, 65, 651, 1905.

 4 Monthly Notices, 63, 298, 1903. $\quad 7$ See footnote 2, page 339.
 8 Lick Bulletin, No. 4, p. 24.
 9 Astrophysical Journal, 19, 85, 1904. 10 Ibid., 13, 322, 19ог.

[^3]: Lowell Observatory,
 Flagstaff, Ariz.,
 November 7, 1905.

