No. 275.

## DISCOVERY AND OBSERVATIONS OF A FIFTH SATELLITE TO JUPITER,

By E. E. BARNARD.

Since July 1 of this year, I have had the use of the 36 -inch refractor on one night each week. Previous to this I had no regular use of the instrument, and the observations made with it were of specified objects, the time being limited to the object. Among other things that I have devoted the instrument to on my nights, was a search for new objects. Several of the nights have been bad, and have more or less limited the investigations.

Nothing of special importance was encountered until the night of September 9 , when, in carefully examining the immediate region of the planet Jupiter, I detected an exceedingly small star close to the planet and near the 3 d satellite. I at once suspected this to be a new satellite. I at once measured the distance and position-angle of the object with reference to satellite III. I then tried to get measures referred to Jupiter, but found that one of the wires had got broken out and the other loosened. Before anything further could be done the object disappeared in the glare about Jupiter. Though I was positive the object was a new satellite, I had only the one set of measures, which was hardly proof enough for announcement.

I replaced the wires the next morning. The next night with the great telescope beagg Professor Schaeberle's, he very kindly gave the instrument up to me, and I had the pleasure of verifying the discovery, and secured a good set of measures at elongation. In these observations, and those of the succeeding night, only distances from the following limb of Jupiter could be measured. These were observed with the wires set perpendicular to the belts. The planet was thrown outside the field, the satellite bisected, and then the limb brought in and bisected also. This method would not permit any measures from the poles of the planet for latitude. On the $12 \mathrm{th}, \mathrm{I}$ inserted a strip of mica, carefully smoled, in front of the field-lens, for occulting the planet. This served admirably, permitting the satellite and planet to be both seen at once, and measures from the polar limbs could be made with great ease. The observations of the satellite from the 12 th were all thus made.

To avoid any personal equation, I have on each night measured the diameters of the planet, for use in reducing the observations to the center of Jupiter. Since the 12 th, these have been measured through the smoked mica, so as to avoid introducing any error from the reduced brightness of the planet. The diameters were measured by the method of double distances.

Just what the magnitude of the satellite is, it is at present quite impossible to tell. Taking into consideration its position, however, in the glare of Jupiter, it would, perhaps, not be fainter than the thirteenth magnitude. It will only be possible to settle this question with any certainty by waiting until some small star of the same magnitude is seen close to Jupiter, and then after determining its magnitude when away from the planet. In general the satellite has been faint - much more difficult than the satellites of Mars. On the 13 th inst., however, when the air was very clear, it was quite easy.

It is scarcely probable that this satellite will be seen with anything less than 26 inches, and only with that under firstclass conditions.

I give here the observations that I have so far obtained, - and defer any suggestions as to a name until a later paper. It certainly should not disturb the present harmony existing in the Roman uumerals already applied to the satellites. It is so wholly different from any of the other moons in physical aspect, that it ought, in a sense, to be considered independent of them, and simply be called, say, the fifth satellite, with a suitable mythological name.

It will be seen that, on three of the dates of observation, the east elongation is well covered in the measures.

Plotting the observations at elongation, the following values of the distance were obtained:

From Jupiter's center.


From these the following periods result, using the wellknown formula:

$$
P=p \sqrt{\frac{m}{M} \frac{R^{3}}{r^{3}}}
$$

$m$ being the mass of the earth, $M$ that of Jupiter, and $r$ and $p$ the distance and period of our moon.

Sept. 10 the observations give period $=11^{\mathrm{h}} 47.6$

$$
\begin{array}{llllll}
12 & 6 & 6 & 6 & 6 & =11 \\
14 & 6 & 6 & 6 & 6 & =11 \\
& & \text { Mean } & 49.0 \\
\hline
\end{array}
$$

The observations are all in the Standard Pacific time, (8 hours slow of Greenwich).

The value of the micrometer-screw used in these observations is $9^{\prime \prime} .904$. No correction has been applied for refraction.

After the 11 th inst., the micrometer was removed before or after the observations on each night. It was also removed on the morning of the 10 th to replace the wires. This will account for the apparent changes of parallel.

1892 September 9.
Measures referred to Satellite III.
Direct Distance.

| $12^{\mathrm{h}}$ | $13^{\mathrm{m}} 33^{\mathrm{s}}$ | $28^{\mathrm{r}} .670$ | 28.58 |
| :--- | :--- | :--- | :--- |
| 12 | 14 | 58 | 28.649 | 228.79


| For Position-Angle. |  |  |  |
| :---: | :---: | :---: | :---: |
| ${ }^{\mathrm{h}} 19^{\mathrm{m}} 31^{\mathrm{s}}$ | 125.0 | 295.8 |  |
| 12 | P. A. |  |  |
| 12 | 21 | 28 | 125.1 |
| 12 | 31 | 40 | 129.7 |
| 1233 | 43 | 131.1 | 300.9 |
|  |  | 301.9 |  |

$$
\text { Parallel }=279^{\circ} .2
$$

Direct Distance.

| m | ${ }^{\text {r }}$ | " |
| :---: | :---: | :---: |
| 124123 | 29.241 | 22.92 |
| 124348 | 29.274 | 22.60 |
| 124733 | 29.341 | 21.93 |

Coincidence of wires, $31^{\mathrm{r}} .556$.

1892 September 10.
Measured equatorial diameter of Jupiter (by double distance), $48^{\prime \prime} .93$.

The half-value of this has been added to the measures from the limb, to reduce the observation to the center of Jupiter.

For position-angle of belts :
Circle-reading $=255^{\circ} .8$ ( 3 obs.) $\quad$ Position-angle $=67^{\circ} .1$. Paralle] $=278^{\circ} .7$ ( 2 obs. $)$

Coincidence of micrometer-wires, $29^{\mathrm{r}} .003$.
New wires pat in this morning.

| Standard Pacific Time | Micrometer readings | Dist. from <br> f. limb | Distance from center |
| :---: | :---: | :---: | :---: |
| $11^{\mathrm{h}} 45^{\mathrm{mm}} 20^{\circ}$ | 26.250 | 27.25 | 51.12 |
| 114730 | 26.183 | 27.91 | 52.37 |
| 11490 | 26.097 | 28.77 | 53.25 |
| 1150 | 26.073 | 29.00 | 53.46 |
| .1152 25 | 25.065 | 29.08 | 53.54 |
| 11525 | 25.715 | 32.55 | 57.01 |
| 12720 | 25.631 . | 33.38 | 57:84 |
| 121428 | 25.686 | 32.84 | 57.30 |
| 122030 | 25.419 | 35.48 | 59.94 |
| 122340 | 25.494 | 34.74 | 59.20 |
| $\begin{array}{ll}12 & 2610\end{array}$ | 25.413 | 35.54 | 60.00 |
| 123230 | 25.408 | 35.60 | 60.06 |
| 123530 | 25.384 | 35.83 | 60.29 |
| 123935 | 25.395 | 35.73 | 60.19 |
| 124130 | 25.330 | 36.37 | 60.83 |
| 124510 | 25.366 | 36.01 | 60.47 |
| 124840 | 25.345 | 36.22 | 60.68 |
| 125030 | 25.198 | 37.68 | 62.14 * |
| 125410 | 25.319 | 36.48 | 60.94 |
| 13140 | 25.284 | 36.83 | 61.29 |
| 1340 | 25.370 | 35.97 | 60.43 |
| 13625 | 25.475 | 34.93 | 59.39 |
| 13923 | 25.427 | 35.41 | 59.87 |
| 13115 | 25.421 | 35.47 | 59.93 |
| 131920 | 25.502 | 34.67 | 59.13 |
| $13 \quad 2213$ | 25.534 | 34.35 | 588.81 |
| 132347 | 2 2. 657 | 33.13 | 57.59 |
| $13 \times 2545$ | 25.660 | 33.10 | 57.56 |
| 132735 | 25.707 | 32.64 | 57.10 |
| 132945 | 25.699 | 32.72 | 57.18 |
| 13315 | 25.712 | 32.59 | 57.05 |
| 133422 | 25.891 | 30.81 | 55.27 |
| 133557 | 25.903 | 30.70 | 55.16 |
| 133733 | 25.857 | 31.15 | 5 5 .61 |
| 133843 | 25.896 | 30.76 | 55.22 |
| 134025 | 25.920 | 30.53 | 54.99 |
| 134237 | 25.950 | 30.23 | 54.69 |
| 13461 | 26.099 | 28.76 | 53.22 |
| 134740 | 26.031 | 29.43 | 53.89 |
| $\begin{array}{llll}13 & 51 & 35\end{array}$ | 26.234 | 27.42 | 51.88 |
| $\begin{array}{llll}13 & 54 & 51\end{array}$ | 26.275 | 27.01 | 51.47 |
| 135741 | 26.434 | 25.34 | 49.80 |
| $\begin{array}{llll}13 & 59 & 7\end{array}$ | 26.451 | 25.27 | 49.73 |
| 14.15 | 26.490 | 24.88 | 49.34 |
| $14 \quad 50$ | 26.676 | 23.04 | 47.50 |
| $14 \quad 754$ | 26.831 | 21.51 | 45.97 |
| 1411 0 | 26.885 | 20.97 | 45.4? |

* Reject.

1892 September 11.
For position-angle belts :
Circle-reading $=255^{\circ} .4 . \quad$ Position-angle $=66^{\circ} .7$.
Parallel $=278^{\circ} .7$ ( 2 obs.)
Coincidence of wires $=28^{r} .998$.
Measured equatorial diameter of Jupiter, $49^{\prime \prime} .11$.

| Standard Pacific Time | Micrometer readings | Dist. from <br> f. limb | Distance from center |
| :---: | :---: | :---: | :---: |
| $1: 2^{\mathrm{h}} 27^{\mathrm{m}} 2^{\text {s }}$ | 25.359 | 36.03 | 60.58 |
| 123512 | 25.346 | 36.16 | 60.71 |
| 123817 | 25.265 | 36.96 | 61.51 |
| 124135 | 25.230 | 37.31 | 61.86 |
| 12446 | 25.262 | 36.99 | 61.54 |
| 124637 | 25.385 | 35.78 | 60.33 |
| 124814 | 25.286 | 36.76 | 61.31 |
| 125232 | 25.429 | 35.25 | 59.80 |
| 125417 | 25.373 | 35.89 | 60.44 |
| 12564 | 25.393 | 35.70 | 60.25 |
| 13007 | 25.432 | 35.22 | 59.77 |
| $\begin{array}{lll}13 & 1 & 28\end{array}$ | 25.447 | 35.16 | 59.71 |
| $\begin{array}{llll}13 & 3 & 2\end{array}$ | 25.477 | 34.86 | 59.41 |
| 13430 | 25.515 | 34.49 | 59.04 |
| $13 \quad 749$ | 25.595 | 33.70 | 58.25 , |
| $13 \quad 9 \quad 24$ | 25.551 | 33.14 | 57.69 |
| 131057 | 25.547 | 34.17 | 58.72 |
| 131343 | 25.535 | 34.29 | 58.84 |
| 131544 | 25.540 | 34.24 | 58.79 |
| 131742 | 25.555 | 34.09 | 58.64 |

1892 September 12.
Observed polar diameter, $46^{\prime \prime} .01$.
The half-value of this has been used in deducing the apparent Jovicentric latitudes.

Measured equatorial diameter of Jupiter, $48^{\prime \prime} .97$.
Position-angle of the belts:
Circle-reading $=255^{\circ} .4$ (5 obs.) $\quad$ Position-angle $=66^{\circ} .7$

$$
\text { Parallel }=278^{\circ} .7
$$

Coincidence of wires $=29^{\mathrm{r}} .000$.

| Standard Pacific Time | Circle readings | Dist. from <br> f. limb | Distance from center |
| :---: | :---: | :---: | :---: |
| $12^{\mathrm{h}} 3^{\mathrm{m}}{ }^{\text {m }} 1^{\text {s }}$ | $32.5{ }^{\text {r }} 090$ | 34.75 | 59.23 |
| 12456 | 32.395 | 33.62 | 58.10 |
| 12620 | 32.393 | 33.60 | 57.08 |
| 12727 | 32.504 | 34.70 | 59.18 |
| 12922 | 32.562 | 35.18 | 59.66 |
| 12110 | 32.612 | 35.77 | 60.25 |
| 121244 | 32.568 | 35.24 | 59.72 |
| 121353 | 32.629 | 35.93 | 60.41 |
| 121641 | 32.625 | 35.89 | 60.37 |
| 1217 อั6 | 32.723 | 36.86 | 61.34 |
| 121946 | 32.550 | 35.15 | 59.63 |
| 122046 | 32.641 | 36.05 | 60.53 |
| 12228 | 32.639 | 36.03 | 60.51 |
| $12 \quad 2312$ | 32.730 | 36.93 | 61.41 |
| 12243 | 32.685 | 36.49 | 60.97 |
| 12257 | 32.694 | 36.58 | 61.06 |
| 122631 | 32.740 | 37.03 | 61.51 |
| 122851 | 32.687 | 36.51 | 60.99 |
| 123016 | 32.718 | 36.82 | 61.30 |
| 123140 | 32.747 | 37.10 | 61.58 |
| 123246 | 32.750 | 37.13 | 61.61 |
| 123423 | 32.752 | 37.15 | 61.63 |
| 123611 | 32.683 | 36.47 | 60.95 |
| 123750 | 32.783 | 37.46 | 61.94 |


| Standard Pacific Time | Circle readings | Dist. from <br> f. limb | Distance from center |
| :---: | :---: | :---: | :---: |
| $12^{\mathrm{h}} 39^{\mathrm{m}} 16^{\text {s }}$ | 32.725 | 36.88 | 61.36 |
| 124053 | 32.769 | 37.32 | 61.80 |
| 124231 | 32.731 | 36.94 | 61.42 |
| 124344 | 32.773 | 37.36 | 61.84 |
| 124519 | 32.660 | 36.24 | 60.72 |
| 124833 | 32.707 | 36.71 | 61.19 |
| 124948 | 32.730 | 36.04 | 61.42 |
| 12514 | 32.647 | 36.11 | 60.59 |
| 125244 | 32.642 | 36.06 | 60.54 |
| 125418 | 32.660 | 36.24 | 60.72 |
| 12561 | 32.659 | 36.23 | 60.71 |
| 12 56 23 | 32.583 | 35.48 | 59.96 |
| $\begin{array}{llll}13 & 2 & 1\end{array}$ | 32.525 | 34.90 | 59.38 |
| $13 \quad 343$ | 32.529 | 35.04 | 59.52 |
| 13456 | 32.605 | 35.70 | 60.18 |
| 1366 | 32.480 | 34.46 | ¢5.94 |
| 13711 | 32.506 | 34.72 | 59.52 |
| $\begin{array}{llll}13 & 9 & 6\end{array}$ | 32.5042 | 35.07 | 59.55 |
| 131029 | 32.412 | 33.79 | 58.27 |
| 131156 | 32.404 | 33.71 | 58.19 |
| 131321 | 32.348 | 33.15 | 57.63 |
| $\begin{array}{llll}13 & 14 & 57\end{array}$ | 32.363 | 33.30 | 57.78 |
| 131727 | 32.303 | 32.71 | 57.19 |
| $13 \quad 20 \quad 6$ | 32.281 | 32.49 | 56.97 |

From North Pole.

| Stand. Pac. Time | Circle read'g |  | $4 \beta$ |
| :---: | :---: | :---: | :---: |
| $11^{\mathrm{h}} 43^{\mathrm{m}} 31^{\text {s }}$ | 26.775 | 02.03 |  |
| $\begin{array}{llll}11 & 43 & 31\end{array}$ | 26.775 | 22.03 | $+0.97$ |
| 114648 | 26.765 | 22.13 | +0.87 |
| 114928 | 26.773 | 22.05 | +0.95 |
| 115058 | 31.262 | 22.40 | +0.60 |

From South Pole.

| 11 | 53 | 16 | 26.595 | 23.81 | +0.81 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 54 | 23 | 26.634 | 23.43 | +0.43 |
| 11 | 55 | 33 | 26.620 | 23.57 | +0.57 |
| 11 | 56 | 28 | 26.574 | 24.01 | +1.01 |

From North Pole.

| 13 | 31 | 3 | 31.554 | 25.29 | -2.29 |
| ---: | ---: | ---: | :--- | :--- | :--- |
| 13 | 32 | 21 | 31.619 | 25.93 | -2.93 |
| 13 | 33 | 26 | 31.533 | 25.08 | -3.08 |
| 13 | 34 | 31 | 31.579 | 25.54 | -3.54 |
| 13 | 35 | 46 | 31.506 | 24.81 | -1.81 |
| 13 | 37 | 56 | 31.657 | 26.31 | -3.31 |
| 13 | 39 | 26 | 31.514 | 24.89 | -1.89 |

From South Pole.

| 13 | 41 | 48 | 26.910 | 20.73 | -2.27 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 43 | 31 | 26.969 | 20.11 | -2.89 |
| 13 | 44 | 41 | 26.931 | 20.49 | -2.51 |
| 13 | 45 | 12 | 26.931 | 20.49 | -2.51 |
| 13 | 45 | 36 | 26.899 | 20.80 | -2.20 |
| 13 | 46 | 4 | 26.883 | 20.95 | -2.05 |
| 13 | 46 | 32 | 26.908 | 20.71 | -2.29 |
| 13 | 47 | 11 | 26.960 | 20.20 | -2.80 |
| 13 | 48 | 12 | 26.943 | 20.37 | -2.63 |
| 13 | 48 | 49 | 26.918 | 20.62 | -2.38 |
| 13 | 49 | 47 | 26.920 | 20.60 | -2.40 |
| 13 | 51 | 22 | 26.919 | 20.61 | -2.39 |
| 13 | 54 | 36 | 26.895 | 20.84 | -2.16 |



* Wind shaking telescope badly. Reject.

| From South Pole. |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 12 | 53 | 32 | 26.780 | 21.93 | -1.12 |
| 12 | 54 | 2 | 26.707 | 22.66 | -0.39 |
| 12 | 55 | 9 | 26.745 | 22.28 | -0.77 |
| 12 | 55 | 37 | 26.779 | 21.94 | -1.11 |
| 12 | 56 | 40 | 26.721 | 22.52 | -0.53 |
| 12 | 57 | 24 | 26.661 | 23.11 | +0.06 |

From North Pole.

| 13 | 2 | 6 | 31.324 | 23.06 | -0.01 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 13 | 3 | 17 | 31.412 | 23.93 | -0.83 |
| 13 | 4 | 17 | 31.474 | 24.55 | -1.50 |
| 13 | 4 | 51 | 31.399 | 23.80 | -0.75 |
| 13 | 6 | 0 | 31.425 | 24.06 | -1.01 |
| 13 | 7 | 15 | 31.308 | 22.90 | +0.16 |

Very high wind. Telescope shaking. No measures of distance possible.

| Standard Pacific Time | Circle readings | Dist. from f. limb | Distance from center |
| :---: | :---: | :---: | :---: |
| $11^{\mathrm{h}} 48^{\mathrm{m}} 28^{8}$ | $2 \tilde{2}^{\mathrm{r}} .638$ | 33.36 | 57.95 |
| 11505 | 25.589 | 33.85 | 58.44 |
| 11530 | 25.565 | 34.08 | 58.67 |
| 1154 | 25.561 | 34.12 | 58.71 |
| 11 อัอั 45 | 25.449 | 35.23 | 59.82 |
| 115716 | 25.422 | 35.50 | 60.09 |
| 120.3 | 25.460 | 35.12 | 59.71 |
| $12 \quad 236$ | 25.391 | 35.81 | 60.40 |
| $12 \quad 330$ | 25.420 | 35.52 | 60.11 |
| 12430 | 25.384 | 35.87 | 60.46 |
| 12655 | 25.331 | 36.40 | 60.99 |
| $12 \quad 8 \quad 5$ | 25.294 | 36.77 | 61.36 |
| $12 \quad 1010$ | 25.339 | 36.32 | 60.91 |
| 12120 | 25.361 | 36.10 | 60.69 |
| $\begin{array}{llll}12 & 14 & 5\end{array}$ | 25.318 | 36.53 | 61.12 |
| $12 \quad 15 \quad 22$ | 25.308 | 36.63 | 61.22 |
| 121620 | 25.293 | 36.78 | 61.37 |
| 121727 | 25.299 | $36.7{ }^{2}$ | 61.31 |
| 121848 | 25.269 | 37.01 | 61.60 |
| 121952 | 25.209 | 37.61 | 62.20 |
| 122045 | 25.305 | 36.66 | 61.25 |
| 122137 | 25.285 | 36.86 | 61.45 |
| $12 \quad 2312$ | 25.261 | 37.09 | 61.68 |
| 12248 | 25.253 | 37.17 | 61.76 |
| $12 \quad 2515$ | 25.269 | 37.01 | 61.60 |
| 122625 | 25.313 | 36.58 | 61.17 |
| 122735 | 25.282 | 36.88 | 61.47 |
| 122830 | 25.222 | 37.48 | $6 \% .07$ |
| 122925 | 25.295 | 36.76 | 61.35 |
| 123025 | 25.329 | 36.42 | 61.01 |
| 123125 | 25.282 | 36.88 | 61.47 |
| 123235 | 25.275 | 36.95 | 61.54 |
| 123615 | 25.240 | 37.30 | 61.89 |
| 123925 | 25.395 | 35.77 | 60.36 |
| 124025 | 25.273 | 36.97 | 61.56 |
| 124137 | 25.343 | 36.28 | 60.87 |
| 124415 | 25.468 | 35.04 | 59.63 |
| 124545 | 25.380 | 35.91 | 60.50 |
| 124712 | 25.459 | 35.15 | 59.74 |
| 124825 | 2 2. 418 | 35.55 | 60.13 |
| 124928 | 25.439 | 35.24 | 59.83 |
| 125020 | 25.426 | 35.46 | 60.05 |
| 125150 | 25.390 | 35.82 | 60.41 |
| -125245 | 25.426 | 35.46 | 60.05 |
| 12545 | 25.519 | 34.54 | 59.13 |
| 125455 | 25.487 | 34.86 | 59.45 |
| 125615 | 25.558 | 34.15 | 58.74 |
| 125650 | 25.531 | 34.42 | 59.01 |
| 13040 | 25.624 | 33.50 | 58.09 |
| 13145 | 25.571 | 34.02 | 58.61 |

## 1892 September 14.

Position-angle of belts :
Circle-reading $=256^{\circ} .7$ (3 obs.) $\quad$ Position-angle $=67^{\circ} .0$.
Parallel $=279^{\circ} .7$ ( 3 obs.)
Measured polar diameter, $45^{\prime \prime} .95$.
Measured equatorial diameter, $49^{\prime \prime} .18$.
Coincidence of wires $=29^{\mathrm{r}} .007$.
From North Pole.

| Stand.Pac.Time Circle-read'g |  |  |  | $4 \beta$ |
| :---: | :---: | :---: | :---: | :---: |
| $11^{\text {h }}$ | $\mathrm{m}^{\mathrm{m}}$ | ${ }^{\text {r }}$. 55 | 21. 27 | +1" |
| 11 | 130 | 31.155 | 21.27 | $+1.70$ |
| 11 | 337 | 31.139 | 21.11 | +1.86 |
| 11 | 445 | 31.145 | 21.17 | +1.80 |
| 11 | 617 | 31.094 | 20.67 | +2.30 |
| 11 | 76 | 31.108 | 20.80 | +2.17 |


| - |  | From South Pole. |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Stand.Pac.Time | ircle-read |  | $4 \beta$ |
| - | $11^{\mathrm{h}} \quad 8^{\mathrm{m}} 18^{\mathrm{s}}$ | 26.379 | 26.02 | $+3.05$ |
| N | $11 \quad 912$ | 26.481 | 25.01 | +2.04 |
| $\stackrel{\infty}{-}$ | 111025 | 26.453 | 25.25 | +2.28 |
|  | 111125 | 26.475 | 25.07 | +2.10 |
|  | 111350 | 26.479 | 25.03 | +2.06 |

From North Pole.

| 13 | 16 | 45 | 31.471 | 24.40 | -1.43 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 18 | 18 | 31.483 | 24.52 | -1.55 |
| 13 | 19 | 20 | 31.475 | 24.44 | -1.47 |
| 13 | 20 | 15 | 31.523 | 24.91 | -1.94 |
| 13 | 21 | 10 | 31.465 | 24.34 | -1.37 |

From South Pole.

| 13 | 22 | 45 | 26.850 | 21.36 | -1.61 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 23 | 42 | 26.790 | 21.89 | -1.08 |
| 13 | 24 | 30 | 26.830 | 21.56 | -1.41 |
| 13 | 25 | 30 | 26.890 | 20.96 | -2.01 |
| 13 | 26 | 12 | 26.824 | 21.62 | -1.35 |

From North Pole.

| 133820 | 31.492 | 24.61 | -1.64 |
| :---: | :---: | :---: | :---: |
| 133920 | 31.536 | 25.04 | $-2.07$ |
| 134020 | 31.529 | 24.97 | -2.00 |
| 134140 | 31.529 | 24.97 | $-2.00$ |
| 134232 | 31.533 | 25.01 | -2.04 |
| From South Pole. |  |  |  |
| 134420 | 26.883 | 21.03 | $-1.94$ |
| 134525 | 26.895 | 20.91 | -2.10 |
| 134615 | 26.949 | 20.38 | $-2.59$ |
| 13475 | 26.884 | 21.02 | $-1.95$ |
| 134755 | 26.832 | 21.54 | $-1.43$ |
| From North Pole. |  |  |  |
| 135950 | 31.583 | 25.51 | -2.54 |
| $14 \quad 050$ | 31.641 | 26.08 | -3.11 |
| $14 \quad 27$ | 31.545 | 25.13 | -2.16 |

From South Pole.

| 14 | 3 | 7 | 26.912 | 20.76 | -2.21 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 14 | 4 | 2 | 26.895 | 20.91 | -2.06 |
| 14 | 4 | 50 | 26.940 | 20.47 | -2.50 |

1892 September 16.
Sky thick and the satellite extremely difficult throughout the observations.

From North Pole.

| Stand.Pac.Time Circle read'g |  |  | $4 \beta$ |
| :---: | :---: | :---: | :---: |
| ${ }^{\mathrm{h}} 6^{\mathrm{m}}$ |  | 21 " 65 | 3 |
| $\begin{array}{lll}11 & 16 \\ 11 & 18 \\ 11\end{array}$ | 31.192 31.159 | 21.65 21.32 | +1.63 +1.96 |
| $\begin{array}{lll}11 & 1957\end{array}$ | 31.101 | 2074 | $+2.54$ |
| 112120 | 31.156 | 21.29 | +1.99 |

From South Pole.

| 11 | 25 | 57 | 26.450 | 25.31 | +2.03 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 27 | 42 | 26.568 | 24.14 | +0.86 |
| 11 | 29 | 27 | 26.620 | 23.23 | $-0.05^{*}$ |
| 11 | 32 | 17 | 26.535 | 24.37 | +1.09 |
| 11 | 35 | 55 | 26.564 | 24.47 | +1.19 |

* Reject.

Coincidence of wires $=29^{r} .006$.
In all the measures from the polar limbs, the wires were carefully adjusted parallel to the belts of Jupiter and the $4 \beta$ 's are simply the difference between the polar measures and the measured polar semi-diameters.

In the equatorial distances, the wires were carefully placed perpendicular to the belts (by the position-circle), and the final distances from the center are the measured distances from the following limb plus the measured equatorial semi-diameter.

| Standard <br> Pacific Time | Circle reading | Dist. from <br> f. limb | Dist. from center |
| :---: | :---: | :---: | :---: |
| $11^{\mathrm{h}} 49^{\mathrm{m}} 32^{\mathrm{s}}$ | $25^{\text {r }} .473$ | 34.98 | 59.97 |
| 115312 | 25.370 | 36.00 | 60.99 |
| 115537 | 25.479 | 34.92 | 59.91 |
| $\begin{array}{llll}11 & 56 & 47\end{array}$ | 25.410 | 35.61 | 60.60 |
| 1272 | 25.255 | 37.14 | 62.13 |
| $\begin{array}{llll}12 & 9 & 17\end{array}$ | 25.326 | 36.44 | 61.43 |
| $\begin{array}{llll}12 & 11 & 37\end{array}$ | 25.280 | 36.89 | 61.87 |
| 121424 | 25.292 | 36.78 | 61.77 |
| 12160 | 25.268 | 37.01 | 62.00 |
| 121737 | 25.221 | 37.48 | 62.47 |
| $12 \quad 20 \quad 29$ | 25.175 | 37.93 | 62.92 |
| 122833 | 25.240 | 37.29 | 62.28 |

Satellite lost here in the thickening sky.
The latitude-measures of the satellite show that its orbit lies in the plane of Jupiter's equator, and consequently that the satellite is a very old member of Jupiter's family, since it would doubtless take ages for the orbit to be so adjusted.

Mt. Hamilton, 1892 September 17.

## OCCULTATION OF MARS,

## By E. Frisby.

I observed the first and second contacts of the occultation of Mars on Sept. 3. The moon was too low for the third and fourth contacts, being obscured by a tree near the horizon.

$$
\begin{array}{ccc} 
& \text { 1st Contact } & \text { 2d Contact } \\
\text { Washington M.T. } & 13^{\mathrm{h}} 10^{\mathrm{m}} 1^{\mathrm{s}} .1 & 13^{\mathrm{h}} 20^{\mathrm{m}} 53^{\mathrm{s}} .6
\end{array}
$$

