Expedition auf der Königlichen Sternwarte bei Kiel. Herausgeber: Prof. Dr. C. A. F. Peters.

Bd. 87. Nr. 2071. 7.

Ueber die veränderlichen Sterne U, W, X Sagittarii. Von J. F. Julius Schmidt.

Nachdem diese drei Sterne, deren Veränderlichkeit ich im Jahr 1866 erkannte, jetzt durch 10 Jahre anhaltend beobachtet wurden, schien es mir von Interesse, hinsichtlich der Dauer der Perioden, ihrer Störungen und der Darstellung der Lichteurve genäherte Resultate von genügender Sicherheit zu bestimmen. Es wurden daher die im Jahre 1872 vorläufig abgeschlossenen Rechnungen wieder aufgenommen, ohne indessen die Untersuchung der Lichtcurven über die Beobachtungen von 1871 hinaus weiter auszudehnen. In dieser Mittheilung gebe ich, möglichst abgekürzt, die Hauptresultate, und zwar für jeden der 3 Sterne je eine Jahreshauptepoche der Maxima und Minima, gültig für die mittlere Athener Zeit, als ein nach den von mir gewählten Gewichtszahlen bestimmtes Mittel der durch Curven erhaltenen Zeiten des grössten und kleinsten Diesen Epochen wird ihr wahrscheinlicher Fehler beigefügt, der ebenfalls mit Rücksicht auf die Gewichte berechnet ward. Ferner die mittlere Länge der Periode zwischen je 2 benachbarten Epochen, und schliesslich eine mittlere Periode, mit welcher die einzelnen Epochen dargestellt werden, um die Grösse und den Gang der so erlangten Werthe (R. - B.) kennen zu lernen. Aus diesen (R. - B.) bestimme ich versuchsweise die Dauer der Störung ersten Grades nebst den Zeiten ihrer Maxima und Minima. Die Lichtcurve mit ihren Anomalien bildet für jeden dieser Sterne den Schluss der Untersuchung.

I. U Sagittarii. 1866 — 1875.

Von 1866 — 1875 habe ich diesen Stern zu Athen etwa 1900 Mal am Cometensucher verglichen, stets in der Zeit von April bis November. Diese Vergleichungen wurden zu folgenden Werthen verarbeitet.

	Maxima	Athener Zeit		
1866	$300^{t}51807$	±0 ^t 04011	p = 21	10 Max.
1867	218.90314	±0.02104	102	30
1868	225.15676	± 0.03016	119	33
1869	175.95782	±0 .03008	5 5	17
87.	Bd.			

ituo Don	mica e.			
	Maxima	Athener Zeit		
1870	$229^{t}08072$	±0t 02519	p = 94	29 Max.
1871	221.87179	± 0.03512	80	26
1872	221.18438	± 0.02775	96	29
1873	212.49811	$\pm 0^{\circ}02525$	102	29
1874	171.94232	± 0.07169	30	12
1875	224.35482	± 0.01719	77	22
	Minima	Athener Zeit		
1866	297^{t} 89482	$\pm 0^{t}05387$	p = 24	9 Min.
1867	222.89458	± 0.02104	93	29
1868	222.08905	± 0.02928	94	27
1869	186.59413	± 0.02192	52	17
1870	226.03712	± 0.02827	91	28
1871	225.54809	± 0.03509	- 78	26
1872	218.21171	± 0.02150	97	29
1873	216.09829	± 0.02316	96	29
1874	175.06294	± 0.04985	24.5	10
1875	228.19034	+0.01661	77	22

Im Jahre 1869 habe ich, einer Reise wegen, diese Beobachtungen schon am Ende des August schliessen müssen, und aus demselben Grunde 1874 schon am 25. Juli. Für diese beiden Jahre haben also die Epochen eine geringere Sicherheit. p=4 ist das höchste Gewicht, welches ich einer einzelnen Epoche gebe, wenn kein Tag der Beobachtung fehlte, die anderen Gewichtszahlen wählte ich den Umständen gemäss. Die letzte Columne enthält nicht etwa die Zahl der Beobachtungen, sondern die Zahl der einzelnen durch Curven bestimmten Maxima oder Minima.

Aus diesen Epochen der einzelnen Jahre ergeben sich die verschiedenen Werthe für die Länge der Periode = P. Einem jeden P folgt ein Grenzwerth = G, der allein von dem wahrscheinlichen Fehler von je 2 benachbarten Epochen abhängt; er zeigt also, um wie viel sich die Periode ändert, wenn man das Intervall zwischen 2 Epochen um den Betrag ihrer wahrscheinlichen Fehler vergrössert oder verkleinert.

1876AN.....87....97S

P aus den Maximis	G	P aus den Minimis	G	P Mittel aus beiden
$1866 - 67 = 6^{t} 74726$	<u>+</u> 0 ^t 00146	6t 74418	±0°00180	6t 74572
1867 - 68 = 6.75007	<u>+</u> 0.00093	6.74434	+0.00098	6.74720
1868 - 69 = 6.74045	<u>+</u> 0.00128	6.74500	± 0.00104	6.74272
1869 - 70 = 6.74392	<u>+</u> 0.00089	6.74072	± 0.00084	6.74232
1870 - 71 = 6.75077	± 0.00114	6.75020	± 0.00117	6.75049
1871 - 72 = 6.74653	± 0.00116	6.74837	± 0.00105	6.74745
1872 - 73 = 6.74176	± 0.00096	6.73864	±0.00083	6.74020
1873 - 74 = 6.75925	± 0.00202	6.74930	± 0.00152	6.75428
1874 - 75 = 6.73243	± 0.00143	6.74399	± 0.00107	6.73821

Verbindet man die erste und letzte Epoche und bestimmt hiernach die Periode, so findet man

P aus den Maximis = $6^{t}7454553$ G = $\pm 0^{t}0001204$

P , Minimis = 6.7448543 G = ± 0.0001478

Mittel = $\overline{6.7451548}$ = $6^{t}17^{u}53^{m}1^{s}4$. G = $\pm 12^{s}$; der wahrscheinliche Fehler ist kleiner.

Für spätere Reductionen gilt folgende Tafel des Vielfachen der Periode.

1	$P = 6^{t} 74515$	13	$P = 87^{t} 68701$
2	13.49031	14	94.43217
3	20.23546	15	101.17732
4 ○	26.98062	16	107.92248
5	33.72577	17	114.66763
6	40.47093	18	121.41279
7	47.21608	19	128.15794
8	53.96124	20	134.49031
9	60.70639	30	$\boldsymbol{202.35464}$
10	67.45155	40	269.80619
11	74.19670	50	337.25774
12	80.94186	54	364.23836

Mit dieser Periode, die zwar, wie die anderer Veränderlichen, sich in einer nicht langen Zeit um einen mittlern Werth merklich vergrössert oder verkleinert, habe ich, als mit einer Constanten, die Epochen von 1866—1875 dargestellt, ausgehend von 1866. Da ich für meine Rechnungen den Anfang von 1840 als Ausgangspunkt für die Zählung der Tage wähle (um gelegentlich Argelander's frühesten Beobachtungen mich anschliessen zu können), so ist für die folgende Uebersicht: erste Epoche der Maxima von 1866 = 9797 51807,

" " " Minima " 1866 = 9794.89482. Durch —0'05943 reducirt man die Athener Zeit auf den Meridian von Paris.

Darstellung der Hauptepochen 1866 – 1875, mit P = 6'7451548.

		307 641 000	mang acr ma	hechae	ucu ic	100 10	719, mm L 01	401040.	
		Maxii	na			Mir	nima	Mittel	aus beiden
1866	300^{t}	(R. — B.)	$= 0^{t} 00000$	1866	298^{t}	(R. —)	B.) = $0^{t} 00000$	(R. — B	00000
67	219	"	0.08857	67	223	. ,	+0.04189	, ,,,	-0.02334
68	225	"	0.35868	68	222	"	+0.08577	27 29	-0.13645
69	176	"	-0.13745	69	187	"	+0.09327	,,	0.02299
70	229	"	-0.06078	70	226	"	4-0.35956	,, ,,	+0.14939
71	222	27	-0.35865	71	225	"	+0.08694	,,	-0.13585
72	221	29	-0.43289	72	218	37	-0.08352	"	-0.25820
73	212	29	0.25342	73	216	"	+0.26829	"	+0.00743
74	172	29	-0.93020:	7.4	175	"	+0.07107:	"	-0.42956
7 5	224	a	0.14311	75	228	"	+0.14311	"	0.00000

Aus den Werthen (R. — B.), die zum Theil 10 bis 20 Mal grösser sind als die wahrscheinlichen Fehler der Epochen, erkennt man, dass eine constante Periode nicht stattfindet. Ob es erlaubt sei, die (R. — B.) aus den Maximis und Minimis zu Mittelwerthen zu verbinden, wage ich kaum zu bejahen nach dem, was ich an diesem und anderen Veränderlichen kennen gelernt habe. Wenn man (R.—B.) in den 3 obigen Formen construirt, so resultiren regelmässige Curven, die zu keinerlei

Zwang in der Zeichnung nöthigen, ausser dass die weniger vollständigen Beobachtungen von 1874 zu einer Verzerrung Anlass geben:

Aus den Curven folgt, wenn ich Maxima derselben diejenigen nenne, deren Scheitel die grössten Werthe mit +Zeichen haben, Minima aber solche, deren entgegengesetzte Scheitel die grössten Werthe mit —-Zeichen haben:

Maxima 1867.15 Minima 1868.50 Periode d. 1870.30 1872.40 , , , 1873.57 1874.90

Im Verlanf von 21/4 Jahren ändern sich also d.

Im Verlauf von $2^{1/4}$ Jahren ändern sich also die Werthe (R. — B.) ungefähr zwischen $+0^{t}4$ und $-0^{t}4$. Als ich (1872) die Dauer der Periode selbst, nämlich 6^t745..., in ihren verschiedenen Werthen durch Curven darstellte, fand ich die Störung derselben, die also die Veränderungen von (R. — B.) bewirkt, im Mittel gleich 3.63 Jahre, so dass man bis auf Weiteres für U Sagittarii diese grösste Anomalie zu $3^{t}/2$ Jahren annehmen kann.

Die Lichtcurve.

Aus ungefähr 700 Beobachtungen in den Jahren 1866 - 1871 habe ich die Gestalt der Curve abgeleitet, welche den starken Lichtwechsel von U darstellt. Für jeden einzelnen Tag der Periode wurden alle Lichtstufen ausgeschrieben, und sodann nach den Stunden geordnet. Aus diesen wurden Mittelwerthe nebst wahrscheinlichen Fehlern berechnet. Zuerst ward die Curve jedes Jahres construirt, dann die Haupt- oder Normalcurve aus allen Beobachtungen. Es wurden aber nicht die gewöhnlichen Curven benutzt, vermöge welcher ich zuerst die Zeiten der Maxima und Minima ermittelt, sondern diese Zeiten wurden nun nach den vorgängigen anderen Untersuchungen direct berechnet. Nenne ich m den mittlern Fehler einer Stufe, w aber den wahrscheinlichen Fehler eines Mittels aus 25 Beobachtungen, so hat man (1866 — 1871):

1.	Tag.	der	Periode	$m = \pm 0.409$	$w = \pm 0.086$
2.	"	29	,,	0.554	0.106
3.	22	22	"	0.465	0.098
4.	29	29	. 29	0.362	0.079
5.	27	22	"	0.483	0.092
6.	22	22	29	0.549	0.105
7.	22	99	"	0.391	0.080

Im Mittel aus allen Beobachtungen endlich: $m = \pm 0.430$ Stufen; $w = \pm 0.091$ Stufen. Von diesen 700 Vergleichungen habe ich nur 4 verworfen.

Ich stelle im Folgenden nebeneinander die Lichtcurven der einzelnen Jahre und zuletzt N, die Mitteloder Normalcurve. Diese letzte ist aus 31 Mittelwerthen formirt, so dass jeder solcher Posten durchschnittlich aus 22 Beobachtungen besteht. In abgekürzter Form sind es diese Daten; die Argumente lasse ich von 12 zu 12 Stunden fortschreiten.

```
Periode 1866
              1867
                     1868
                           1869
                                  1870
                                        1871
                                                N
     0<sup>u</sup> 0.78
               0.68
                     0.50
                                  0.25
                                        0.36
                                               0.48
                           1.15
              0.94
                     0.75
                           1.40
                                  0.44
                                        0.53
                                               0.70
    12
        1.06
        2.02 1.75 1.46 2.00 0.90
                                        1.00
```

```
Periode d. Maxima = 3.15 Jahr
                                     Periode d. Minima = 3.90 Jahr
                    = 3.27
                                                          = 2.50
             Mittel = 3.21 Jahr
                                                   Mittel = 3.20 Jahr
               Periode 1866
                                     1868
                                            1869
                                                   1870
                               1867
                                                         1871
                                                                 N
                1t 12u
                        2.94
                                     2.24
                                            2.58
                              2.52
                                                   1.48
                                                          1.64
                                                                2.10
                2
                    0
                        3.35
                              3.30
                                     2.97
                                            3.12
                                                   2.19
                                                         2.28
                                                                2.85
                2
                   12
                        3.50
                              3.89
                                     3.51
                                            3.45
                                                   2.72
                                                         2.68
                                                                3.24
                3
                    0
                        3.48
                              3.94
                                     3.72
                                            3.30
                                                   2.85
                                                         2.75
                                                                3.25
                3
                   12
                        3.26
                                     3.63
                                            2.90
                                                   2.67
                                                         2.59
                              3.41
                                                                2.99
                4
                    0
                        2.85
                              2.95
                                     3.10
                                            2.62
                                                   2.29
                                                         2.22
                                                                2.62
                4
                   12
                        2.41
                              2.50
                                     2.62
                                            2.45
                                                   1.84
                                                         1.79
                                                                2.21
                5
                    0
                        2.00
                              1.95
                                     2.00
                                            2.21
                                                   1.45
                                                         1.38
                                                                1.76
                5
                   12
                        1.70
                              1.40
                                     1.41
                                            1.85
                                                   1.07
                                                         0.98
                                                                1.28
                6
                    0
                        1.59
                              0.92
                                     0.85
                                            1.60
                                                  0.70 \cdot 0.60
                                                                0.87
                6
                   12
                        1.56
                              0.55
                                     0.42
                                            1.45
                                                   0.42
                                                         0.39
                                                                0.60
                   18
                                                                0.48
                                              Abnahme
                              Zunahme
                            1866 = 2^{t} 16^{u}
                                              = 4^{t} 1^{u}9
                              67 = 2 19.0
                                                  322.9
                              68 = 3 \quad 2.5
                                                  3 15.4
                              69 = 2 14.5
                                                  4 3.4
                              70 = 2 23.0
                                                  3 18.9
                              71 = 2 21.5
                                                  3 20.4
                           Mittel = 2^t 20^u 1
                                                 3t 21u 8
                                                          P = 6t 17u9
                               N = 2 18.0
                                                 3 23.9
```

Diese 7 Curven sind mittlere, welche auf die wirklich vorhandenen reellen Anomalien keine Rücksicht nehmen.

Die Gestalt der Lichteurve ist indessen nicht regelmässig, und sie zeigt besonders im abnehmenden Theil 3 bis 4 Anomalien, für deren schärfere Bestimmung ich 15 neue Mittelwerthe berechnete. Da die Abweichungen zu beiden Seiten des normalen Zuges der Curve oft viel grösser sind als die wahrscheinlichen Fehler der Positionen, so lassen sich (nach dem Maximum) wenigstens 3 solcher Ausbuchtungen bei 1^t1^u; 2^t1^u und 3^t0^u annehmen.

Wenn man, um die Fehler der Beobachtungen besser auszugleichen, einmal aus Angaben für je 3, dann aus Angaben für je 4 Stunden Mittelwerthe bildet, so erhält man 2 merkwürdige Curven A und B mit folgenden Ordinaten:

0^{t} 0^{u}	A = 0.52	B = 0.50
0 12	0.59	0.60
1 0	1.10	1.09
1 12	2.05	2.05
2 0	3.14	3.05
2 12	3.52	3.49
3 0	3.18	3.21
3 12	2.98	2.93

103 Nr. 2071

4t 0u	A = 2.52	B = 2.50
4 12	2.05	2.06
5 0	1.64	1.65
5 12	1.24	1.27
6 0	0.86	0.92
6 12	0.57	0.57
6 18	0.52	0.51

Beide zeigen eine entschiedene Einbiegung gleich nach dem Maximum, und dann eine neue Erhebung der Curve, soweit bis jetzt ihr mittlerer Verlauf betrachtet wird. Es folgt:

Aus A	Aus B
Zunahme $= 2^t 9^u 5$	$2^{t} 9^{u} 5$
Abnahme $= 4 8.4$	4 8.4
Sec. Min. bei 2 21.	$2\ 21.2$
" Max. " 3 2.	3 1.2

Es liegen nun aber die einzelnen Mittelwerthe zu beiden Seiten der mittlern Curve derart vertheilt, dass sie oft weit die Grenzen der wahrscheinlichen Fehler überschreiten, und ausserdem zu einer Wellencurve nöthigen, deren Annahme ich für gerechtfertigt halte, so sehr in Bezug auf einzelne Stellen derselben sich Zweifel erheben mögen. Es sind aber Undulationen der Curve vorhanden, Aenderungen des Lichts in secundären Perioden von 6 bis 9 Stunden Dauer. Solche kenne ich seit 1872 an u Herculis, an dem ich sie leicht mit freiem Auge bemerke. Ich werde aber später Gelegenheit finden, dieselbe Erscheinung auch an anderen Sternen nachzuweisen.

II. y'=W. Sagittarii. 6472

Die zu Athen in den Jahren 1866 — 1875 erlangten

P aus den Maximis ±0t 00351 $1866 - 67 = 7^{t} 59669$ +0.00190 1867 - 687.58534 1868 - 697.59364 +0.001641869 - 707.59712 +0.001711870 - 717.59279 +0.001621871 - 727.59471 +0.001631872 - 737.60161 +0.001431873 - 747.58766 +0.002081874 - 757.59546 +0.00190

Beobachtungen wurden an einem Cometensucher angestellt, der sich für diesen Stern als nicht zweckmässig erwiesen hat. Wegen der Behandlung der ganzen Untersuchung genügt es, an die vorige Berechnung von U Sagittarii zu erinnern. Die mittleren Epochen für Athener Zeit sind folgende:

		Maxima.			
1866	$278^{t} 19955$	$\pm 0^{t}06632$	p = 29	11	Max
1867	194.30728	± 0.04990	63	21	
1868	208.57450	± 0.03785	89	26	Э
1869	184.28854	± 0.04815	55	15	
1870	221.93606	± 0.04123	75	24	
1871	221.39014	± 0.04230	71	22	
1872	213.34155	± 0.03448	78	23	
1873	204.61738	± 0.03286	82	23	
1874	165.88681	± 0.05685	27	11	
1875	226.23297	± 0.04947	72	20	
		Minima.			
1866	$275^{t}09846$	± 0.06356	p = 26	11	Min.
1867	206.07993	± 0.04511	61	20	
1868	205.63903	± 0.03579	82	25	
1869	180.91558	± 0.04371	55	15	
1870	226.16089	± 0.03670	78	25	,
1871	218.56145	± 0.03780	73.5	24	
1872	218.10896	± 0.03371	84	25	
1873	201.22676	± 0.02812	68	21	
1874	170.48704	± 0.04491	26	9)
1875	230.87021	± 0.02021	65	19	-

Daraus ergeben sich die Perioden P mit ihren von den wahrscheinlichen Fehlern der Epochen abhängenden Grenzen = G.

```
P Mittel aus beiden
P aus den Minimis
                       7t 59297
7t 58926
         +0^{t}00279
         +0.00168
7.59498
                       7.59016
         +0.00179
                       7,58878
7.58392
         +0.00149
                      7.59712
7.59713
                       7.59851
7.60427
         +0.00158
                       7.59474
         +0.00149
7.59474
7.58951
         +0.00134
                       7.59556
         +0.00166
                       7.59224
7.59682
7.59613 + 0.00116
                       7.59579
```

Wenn man die Periode aus der Verbindung der ersten mit der letzten Epoche bestimmt, so findet man: 1866 – 75 aus den Max. P = 7^t 5939752 +0^t 0002718... 426 Perioden

1866 – 75 aus den Max.
$$1 = 7.5935132$$
 $\pm 0.0001962...$ 126 Tende 1866 – 75 Mint. $P = 7.59413132$ $\pm 0.0001962...$ 427 Mittel $P = 7.5941442$ = $7^{t}14^{u}15^{m}34^{s}1$. $G = \pm 20^{s}$.

Wird die Zählung der Tage mit 1840.0 begonnen, so ist

die erste Epoche der Maxima = 9775^t 19955, " " " Minima = 9772.09826. Mit einem constanten P = 7.5941442 berechne ich folgende Tafel der Vielfachen von P.

```
1 P = 7^t 59414 3 P = 22^t 78243
2 15.18829 4 30.37658
```

5	$P = 37^{t} 97072$	12	$P = 91^t 12973$
6	45.56486	13	98.71216
7	53.15901	1 4	106.31802
8	60.75315	15	113.91216
9	68.34730	16	121.50631
10	75.94144	17	129.10045
11	83.53559	18	136.69460

19 P	$=144^{t} 28874$	40	$P = 303^t 76577$
20	151.88288	48	364.51892
30	227.82433	50	379.70721

und mit dieser die Darstellung der Epochen nebst den übrigbleibenden Unterschieden = (R. – B.), ausgehend von 1866.

- B.) im Mittel beider = 0^t 00000

+0.03287 +0.23278 +0.47397 +0.31427 +0.10880 +0.08119 +0.01208 +0.09249

		Max	cima		Min	ima	(R
1866	278t (]	R. — B	$(.) = 0^{t} 00000$	275^{t} (R. — E	$3.) = 0^{t}$	00000
1867	194	27	-0.12440	206	22	+0.	19015
1868	209	`**	+0.31559	206	22	+0.	14997
1869	184	, "	-+0.33804	181	27	+0.	60991
1870	222	"	+-0.18016	226	22	+0.	44838
1871	221	"	+0.24500	219	"	-0.	02740
1872	213	22	+0.21837	218	22	0.	05599
1873	205	22	-0.13268	201	22	+0.	15684
1874	166	29	+0.14609	170	"	+0.	03890
1875	226	**	+0.07200	231	29	0.	07200

Werden die 3 Formen für (R. — B.) construirt, so ergiebt sich eine regelmässige Curve, deren Maximum auf 1869.77 fällt, zu welcher Zeit also (R. — B.) seinen grössten positiven Werth erreichte. Um die Minima zu finden, müssten die Beobachtungen eine grössere Zeit umfassen. Ich sehe aber, dass die Störung, welche hier stattfindet (und natürlich auch in der Dauer des Lichtwechsels), 8 Jahre nicht viel überschreiten wird.

Die Lichtcurve.

In derselben Weise wie bei U Sagittarii habe ich für γ' Sagittarii zuerst jedes Jahr gesondert berechnet, und dann eine mittlere Hauptcurve bestimmt. Jede einzelne Curve giebt sehr markirt bald nach dem Maximum eine deutliche Einbucht, ein secundäres Minimum, das ich lange vor dieser Rechnung unmittelbar aus dem Eindruck der Beobachtungen erkannte. Es ist eine Verzögerung der Abnahme des Lichts, wie sie in auffallender Weise auch bei η Aquilae stattfindet.

Die 6 einfachen Jahrescurven, die auf kleinere Anomalien (welche später bestimmt werden) noch keine Rücksicht nehmen, haben folgende Resultate ergeben:

Zunahme Abnahme sec Min hei sec Max hei

Ziui	namme Ac	паш	116 900. 1	ип. п	CI 800.	na A.	nci
$1866 = 2^{t}$	17 ^u 5	4 ^t 20) ^a 7	3t 2	22^{u}	4^{t}	8 ^u
1867 = 3	3.0	4 11	$\cdot 2$	3 2	22	4	4
1868 = 2	21.0	4 17	$^{\prime}.2$	3 1	18	4	0
1869 = 2	22.0	4 16	3.2	3 1	18	4	0
1870 = 2	18.0	4 20	0.2	3 1	12	3	20
1871 = 2	16.0	4 22	2.2	3 1	10	3	20
Mittel = 2	$\overline{20.25}$	4 17	$\overline{.95}$	3 1	7	4	1

Die aus 890 Beobachtungen formirte Normalcurve stützt sich auf 23 Mittelwerthe, deren jeder durchschnittlich 38 bis 39 Beobachtungen enthält, mit dem wahrscheinlichen Fehler solches Mittels = ±0.050 Stufen. Die Zunahme ist höchst regelmässig, aber die Abnahme des Lichts kann nicht durch einfachen Zug der Curve dargestellt werden, sondern nöthigt dazu, auf kleinere Undulationen Rücksicht zu nehmen, nicht allein, weil man die Grenzen der wahrscheinlichen Fehler unbeachtet lassen müsste, sondern auch weil die eingezeichneten Punkte ganz zwanglos die secundären Minima und Maxima angeben. Im Folgenden findet man unter A die Werthe der Normalcurve, welche sich ganz den Beobachtungen anschliesst; unter B die Werthe einer Curve, welche die Anomalien nicht beachtet, sondern einem mittlern Zuge folgt. Erst vom 3. Tage an beginnt der Unterschied beider.

CHUCKS	mica betaer	•
	${f A}$	В
0t 0t	= -1.82	-1.82
4	-1.81	-1.81
8	-1.79	-1.79
12	-1.70	1.70
16	-1.56	1.56
20	-1.42	$-\!\!\!-\!\!\!1.42$
1 0	-1.25	-1.25
4	—1 .09	-1.09
8	-0.92	0.92
12	-0.74	-0.74
16	0.51	-0.51
20	-0.32	0.32
2 0	-0.17	-0.17
4	-0.06	-0.06
8	+0.02	+0.02
12	+0.07	+0.07
16	+0.10	+0.10

	\mathbf{A}	В	$(\mathbf{B} - \mathbf{A})$
2t 20u	= +0.15	+0.15	
3 0	+0.14	+0.14	0.00
4	+0.10	+0.11	+0.01
8	+0.04	+0.09	+0.05
12	0.00	+0.06	+0.06
16	+0.03	-+0.03	0.00
20	+0.04	-0.01	-0.05
4 0	-0.02	-0.06	0.04
4	-0.13	0.11	+0.02
8	-0.21	0.18	+0.03
12	0.25	-0.25	0.00
16	-0.23	-0.31	-0.08
20	-0.22	-0.39	0.17
5 0	0.37	0.48	-0.11
4	-0.57	-0.56	+0.01
8	-0.75	0.64	+0.11
12	-0.83	$-\!-\!0.72$	+0.11
16	-0.80	-0.81	-0.01
20	-0.74	-0.89	-0.15
6 0	-0.82	-0.98	-0.16
4	-1.10	-1.07	+0.03
8	-1.23	-1.16	+0.07
12	-1.33	-1.24	+0.09
16	-1.36 .	-1.33	+0.03
20	-1.39	-1.41	-0.02
7 0	1.46	1.48	-0.02
4	-1.59	-1.58	+0.01
8	—1.70	1.67	+0.03
12	-1.79	-1.75	+0.04
us der Ci	urve ${f A}$ folgt		
	Zunahme		
		= 4 16.2	
		= 3 12.	-
		$= 3 \ 20.$	
C		= 4 11.	
	Sec. Max		
	Sec. Min.		
	Sec. Max.		
	Sec. Min.		
	Sec. Max.		
	Dauer dei		
Aus d	en secundäre	en Maximis	
			24
			25
		3.51 1	21
A	1 1"		= 23.0
Aus o	len secundär	en Minimis	
			25
			22
		%,#r*1	28
		Mittel	= 24.5

A

Verlegt man für die abnehmende Curve die zu Grunde gelegten Mittelwerthe um 3 oder 4 Stunden, so werden jene Anomalien nicht nur nicht beseitigt, sondern die neue Curve giebt sie nahe zu denselben Zeiten. Indem ich schliesslich Mittelwerthe aus Beobachtungen von je 4 Stunden bildete und diese so miteinander verband, dass eine sehr starke Ausgleichung der Fehler stattfand, traten die Anomalien der neuen Curve ganz so wie früher auf. Ihr mittlerer Zug ergab nun die Zunahme = 3^t0^u, die Abnahme = 4^t15^u; aber die secundären Wellen, etwa 15, traten in so auffallender Weise hervor, dass ihre Extreme 4 bis 5 Mal die wahrscheinlichen Fehler der Positionen übersteigen. Die Dauer dieser Wellen fand ich im Mittel

aus den Max. = 11.80 Stunden aus den Min. = 11.43 , Mittel = 11.61 ,

also die Hälfte des früher gefundenen Werths. Bei viel mehr zahlreichen Beobachtungen wird man entscheiden, welche Wahl man mit Rücksicht auf die Sicherheit aller Einzelnheiten der Curve zu treffen habe.

III. X Sagittarii = 3. Fl. 63.8

Dieser Stern ward nur mit freiem Auge beobachtet; da er lichtschwach ist und keine grosse Höhe erreicht, fehlen die Vergleichungen jedes Mal zur Zeit des starken Mondscheins. Als Resultate der Curven sind die Hauptepochen für die Jahre 1866 bis 1875 die folgenden, gültig für den Athener Meridian.

	101501	raton, 5	urug	idi den menener	MICII	uiaii.		
				Maxima.				
	1866	$252^{t} 0$	6235	+0 ^t 06394	p =	26	9	Max.
	1867	217.00	0222	± 0.04318		57	18	
	1868	202.43	8022	± 0.04634		49.5	17	
	1869	194.2	1530	+0.07879	•	43	12	•
	1870	193.78	8490	+0.03953		68	21	
	1871	214.4	8614	± 0.06509		4 8	19	
-	1872	206.94	4845	± 0.02904		65	17	
	1873	184.60	0964	± 0.02049		56	20	
	1874	184.1	7719	+0.05422		26	10	
	1875	212.03	1162	± 0.04898		40	12	
				Minima.				•
	1866	256t 44	4827	±0 ^t 05433	p =	26	8	Min.
İ	1867	206.98	3531	± 0.03957		4 9	15	
	1868	199.72	2921	± 0.04300		41.5	15	
	1869	191.49	9562	± 0.04897		32	11	
	1870	197.94	4 805	± 0.04326		41	13	
	1871	204.28	3784	±0.03362		44	15	
	1872	211.20	0135			4 9	16	
	1873	195.44	14 57	± 0.02767		53	18	
	1874	188.27	7805	± 0.06720	9	28.5	11	
	1875	201 86		± 0.02470		46	13	

Aus diesen finde ich die Perioden = P mit ihren Grenzwerthen = G wie folgt:

P	aus den Max.	G	P aus den Min.	G	Mittel beider
1866 - 67	= 7 ^t 01999	<u>+</u> 0 ^t 00228	$=7^{t}01193$	±0t 00209	7 ^t 01596
67 - 68	7.00956	± 0.00179	7.01458	± 0.00162	7.01207
68 - 69	7.01441	± 0.00245	7.01503	<u>+</u> 0.00180	7.01472
69 - 70	7.01095	± 0.00227	7.00853	±0.00174	7.00974
7 0 — 7 1	7.01319	± 0.00184	7.00641	± 0.00145	7.00980
71 - 72	7.00906	± 0.60184	7.01723	± 0.00117	7.01314
72 — 73	7.01349	± 0.00101	7.00486	± 0.00112	7.00917
73 - 74	7.01091	± 0.00144	7.01634	<u>+</u> 0.00186	7.01362
74 - 75	7.01490	<u>+</u> 0.00184	7.01084	± 0.00171	7.01287

Indem man die erste Epoche mit der letzten verbindet, ergiebt sich eine mittlere Periode, auf welche ich mich für jetzt eben so beschränken werde, wie bei U und W Sagittarii, da von definitiven Bestimmungen noch nicht die Rede sein kann.

1	P = 7.01230	10	$P = 70^{\circ} 12298$	20 140.24596 50 350.61490
2	14.02460	11	77.13528	30 210.36894 52 364.63950
3	21.03689	12	84.14758	Indem die Zählung der Tage in meinen Rechnun-
4	28.04919	13	91.15987	gen mit 1840.0 beginnt, hat man:
5	35.06149	14	$\boldsymbol{98.17217}$	das erste Maximum von 1866 = 9749 06235 Ath. Zeit
6	42.07379	15	105.18447	" " Minimum " " = 9753.44827 " "
7	49.08609	16	112.19677	Von diesen mit dem constanten P = 7:012298 aus-
8	56.09838	17	119.20907	gehend, finde ich die (R B.) der Epochen wie folgt:
9	63.11068	18	126 22137	

	\mathbf{Maxima}			Mi nima			Mittel beider		
1866	252^{t} (R.	1	$(B.) = 0^t 00000$	$256^{t}(1$	R. — B	0.00000	(R. — B.	000000	
1867	217	"	-0.36186	207	29	+0.01637	n	0.17275	
1868	202	29	-0.22496	200	29	0.10033	n	-0.16264	
1869	194	27	-0.33284	191	27	-0.23954	"	-0.28619	
1870	194	"	$-\!-0.26294$	198	29	-0.04017	n	-0.15155	
1871	214	99	-0.28779	204	"	+0.27184	"	0.00797	
1872	207	"	-0.12290	211	27	+0.01013	,,	0 05638	
1873	185	27	-0.18148	195	n	+0.38181	"	+0.10016	
1874	184	22	-0.10953	188	"	+0.17553	"	+0.03300	
1875	212	29	-0.25527	202	22	+0.25527	"	0.00000	

Schon im Jahr 1872, als ich die veränderlichen Werthe von P durch Curven darstellte, fand ich aus diesen allein eine Störung von 2.3 Jahren, innerhalb welcher sich die Periode um einige Minuten regelmässig ändert. Die Wirkung davon, also die Verschiebung der Epochen, die nur in den Werthen (R. — B.) für 10 Jahre vorliegt, führt zu einem ähnlichen Resultat. Ich finde aus den Curven folgende Dauer der Störung nebst Zeiten der Extreme:

Aus R. — B. der Maxima	'Aus R. — B. der Minima		•
Maximalwerthe = 1866.85	Maximalwerthe = 1867.12	Mittel = 1866.985	
1868.92	1868.90	1868.910	Störungsdauer = 1.925 Jahre
1871.06	1871.20	1871.130	2.220 "
1873. ÕO	1873.15	1873.075	1.945 ,
1875.00	1875.00	1875.000	1.925 "
		. 0	Mittel = 2.004 ,

Aus R B. der Maxima	Aus R. — B. der Minima			·
Minimalwerthe $=$ 1868.10	Minimalwerthe = 1868.10	Mittel = 1868.075		
1870.08	1870.00	1870.040	Störungsdauer = 1.96	5 Jahre
1872.10	1872.25	1872.175	2.13	ō "
1874.00	1874.07	1874.035	1.86	ο ,,
1011.00			Mittel = 1.98	7 ,

Im Mittel aus Allen folgt die Dauer der Störung: 1.995 oder 2 Jahre.

Die Lichtcurve.

545 Beobachtungen habe ich so berechnet, dass zuerst jedes der 6 Jahre gesondert behandelt wurde. Die 6 Curven ergaben:

1866	Zunahme = $2^{t} 15^{u}$	Abnahme = $4^{t} 9^{u}$
1867	2 21	4 3
1868	2 22	4 2
1869	3 0	4 0
1870	3 0	4 0
1871	2 21	4 3
	Mittel = 2 21.2	Mittel = 4 2.8
	P = 7t01	

Die Vereinigung aller Beobachtungen zu 15 Mittelwerthen ergab dann die Haupteurve N wie folgt:

•	5			1		-
	0^{t}	$0^{\mathrm{u}} =$	-6.08	$3_{\rm t} \ 0^{\rm u} =$	$-2^{\mathrm{u}}60$	
		4	-6.05	4	-2.64	
		8	-5.98	8	-2.70	
		12	-5.86	12	-2.80	·
		16	-5.70	12	-2.80	
		20	-5.49	16	-2.90	
	1	0	-5.12	20	-3.04	
		4	-4.69	4 0	-3.20	
		8	-4.27	4	-3.38	
		12	-3.84	8	-3.60	
		16	-3.46	12	-3.80	
		20	-3.20	16	-4.04	
	2	0	3.00	20	-4.24	
		4 0	-2.83	5 0	-4.42	
		8	-2.71	4	-4.60	
		12	-2.64	8	-4.70	
		16	-2.60	12	-4.98	
		20	-2.58	16	-5.17	

5 ^t 5	20 ^u =	-5.39	$6^{t} 12^{u} =$	-5 ^u 96
6	0	-5.57	16	-6.03
	4	-5.74	20	6.07
	8	-5.87	7 0	-6.08

Aus dieser Curve ergiebt sich die Zunahme des Lichts = 2^t20^u5, die Abnahme = 4^t3^u5.

Wenn man nun die Mittelwerthe, welche zur Bildung der Curve dienen, vermehrt, und 3- oder 4stündige Angaben in Gruppen zusammenzieht, und die Mittel so legt, dass die Fehler sich möglichst ausgleichen, so wird nun die neue Curve zwar wieder einen sehr regelmässigen mittlern Verlauf zeigen; aber es werden die eingetragenen Punkte auch hier zur Annahme von secundären Wellen nöthigen, sofern man die Realität der wahrscheinlichen Fehler der zu Grunde gelegten Positionen anerkennt. Die Dauer solcher Wellen ist etwa 5 bis 6 Stunden. Indessen will ich auf diesen Theil der Untersuchung kein grosses Gewicht legen, eben so wenig wie bei U und W Sagittarii. Die Erscheinung ist aber vorhanden und ich kenne sie auch an δ Cephei, β Lyrae, ζ Geminorum und n Aquilae, und wie schon bemerkt, an u Herculis auf directem Wege, ohne alle Rechnung. Um aber hierüber in's Klare zu kommen, müssen die reichsten Beobachtungen vorliegen, die noch dazu möglichst wenig unterbrochen sein dürfen. Diese Beobachtungen besitze ich, so für δ Cephei und β Lyrae, je 12000 oder mehr, aber es fehlte mir bis jetzt an Zeit, um so umfangreiche Untersuchungen auf genügende Weise durchzuführen.

Athen, im November 1875.

J. F. Julius Schmidt.

Inhalt:

Zu Nr. 2071. J. F. Julius Schmidt. Ueber die veränderlichen Sterne U, W, X Sagittarii. 97.

Kiel. 1876, Januar 9.

Druck von Fiencke & Schachel in Kiel.

Astronomische Nachrichten.

Expedition auf der Königlichen Sternwarte bei Kiel.

Herausgeber: Prof. Dr. C. A. F. Peters.

Bd. 87.

Nr. 2072.

8.

Ueber eine strenge Methode zur Berechnung des Orts von Polarsternen.

Die folgende Methode, den Ort von den Polen sehr nahen Sternen durch geradlinige Coordinaten und deren Veränderungen zu ermitteln, scheint mir einige Vorzüge vor den gebräuchlichen Formeln für Rectascensionen und Declinationen, sowie besonders vor dem in ähnlichen Fällen öfters benutzten Uebergang auf Länge und Breite zu besitzen. Die Richtigkeit der Formeln ist geprüft; dieselben sind - mit Umgehung des Pols des Aequators — aus der Betrachtung der Veränderungen polarer Coordinaten in einem System hervorgegangen, dessen Pol 90° von dem Pol des Aequators sowie vom Frühlingsgleichenpunkt absteht. Für diesen letztern geben die Formeln unzweideutig und scharf die Lage des Pols des Aequators gegen irgend einen festen mittlern Pol, während die gebräuchlichen Formeln für α und δ in diesem Fall illusorisch werden. Uebrigens ist die Richtigkeit der Ausdrücke an mehreren numerischen Beispielen erhärtet worden.

I. Verwandlung der Coordinaten.

 $x = R \cos \delta \cos \alpha$ $y = R \cos \delta \sin \alpha$

R bedeutet hier die bekannte Zahl: 206264.8, deren Logarithmus 5.3144251 ist. x und y werden dadurch in Bogensecunden ausgedrückt erhalten.

II. Präcession.

 $\triangle x = -m\cos\delta\sin\alpha - n\sin\delta$ $\triangle y = m\cos\delta\cos\alpha.$

m und n haben die gewöhnlichen Bedeutungen.

III. Variatio säcularis.

$$\triangle^{2}x = -100\cos\delta\sin\alpha \frac{dm}{dt} - 100\sin\delta \frac{dn}{dt} - \frac{100}{R}(m^{2} + n^{2})\cos\delta\cos\alpha$$

$$\triangle^2 y = 100 \cos \delta \cos \alpha \frac{d m}{d t} + \frac{100 m}{R} . \triangle x$$

87. Bd.

IV. Scheinbarer Ort.

 $\triangle x = A a_x + C c_x + D d_x + E e_x$ $\triangle y = A a_y + B b_y + C c_y + D d_y + E e_y$ A, B, C, D, E sind die bekannten Bessel'schen Constanten.

Für die Coefficienten hat man:

$$a_x = -m \cos \delta \sin \alpha - n \sin \delta$$

 $b_x = 0$

 $c_x = \frac{a_x}{m} \cos \delta \cos \alpha$

 $\mathbf{d_x} = -1 + \cos^2\!\delta \cos^2\!\alpha$

 $e_x = -\frac{\circ}{-}\cos\delta\sin\alpha$

 $a_v = m \cos \delta \cos \alpha$

 $b_v = \sin \delta$

 $c_y = 1 + \frac{a_x}{m} \, \cos \delta \, \sin \alpha$

 $d_y = \cos \delta \cos \alpha \cdot \cos \delta \sin \alpha$

 $e_v = \cos\delta \cos\alpha$.

Für Polarsterne sind die Glieder Eex und Eey zu vernachlässigen.

V. Eigene Bewegung.

 $\triangle x = -\sin\delta\cos\alpha.\triangle\delta - \cos\delta\sin\alpha.\triangle\alpha$

 $\triangle y = -\sin\delta\sin\alpha. \triangle\delta + \cos\delta\cos\alpha. \triangle\alpha$

Diese und die folgenden Formeln für die tägliche Aberration sind direct aus der Differentiation der Grundgleichungen (I.) erhalten. $\triangle \delta$ und $\triangle \alpha$ sollen in Bogensecunden ausgedrückt sein.

VI. Tägliche Aberration.

 $\triangle x = -0''31\cos\varphi(\sin\Theta - \sin[\Theta - \alpha]\cos\alpha\cos^2\delta)$

 $\triangle y = +0.31 \cos \varphi (\cos \theta + \sin [\theta - \alpha] \sin \alpha \cos^2 \delta)$ Hier ist θ die Sternzeit, φ die Polhöhe. Wegen der

Kleinheit des Factors 0"31 kann für Polarsterne cos ²δ unbedingt = 0 gesetzt werden und man erhält:

 $\triangle \mathbf{x} = -0^{\prime\prime} 31 \cos \varphi \sin \Theta$

 $\triangle y = +0.31 \cos \varphi \cos \Theta$.

8