Mr. Baxendell, on the Period and Changes of a Herculis. 201

On June 3 Isis passed exactly over a star of the 10th magnitude, at 13^h 16^m Mean Time. The night being hazy and definition consequently very bad at so low an altitude, a power of 65 was preferred, though much too small for such an observation.

At 13^h 12^m 20^s G.M.T. *Isis* was so close to the star as to be inseparable, though decidedly elongated.

At 13h 16m 20s, the two objects appeared as one sharp round star.

At 13h 19m 20s, they again began to look elongated.

At 13h 21m 20s, the planet and star distinctly separated.

The mean of the first three times, viz. 13^h 16^m 0^s, may be taken as the true time of occultation. If the planet had passed either above or below the star, instead of occulting it, a rapid twisting of the angle of position would have been evident. Nothing of the kind was, however, seen; and it may be safely assumed that a good meridian position of this star will fix the place of the planet at the above time with great accuracy. Its approximate mean place for 1856 o is,—

R.A. 16h 1m 18 N.P.D. 105° 44'

On the Variability of 13 Lyræ. By Josh. Baxendell, Esq. (Communicated by Sir John Herschel.)

"In December last I was led to suspect that 13 Lyræ was subject to a slight periodical change of brightness. A series of observations, which I have since made, has confirmed the suspicion, and given an approximate period of 48 days. The range of variation is about 3-10ths of a magnitude, the highest maximum which I have yet observed being 4.28, and the lowest minimum 4.60. The last minimum occurred on the 14th of June. Like many of the other variables, 13 Lyræ belongs to the list of ruddy stars.

"Manchester, July 3d, 1856."

On the Period and Changes of a Herculis. By Josh. Baxendell, Esq.

(Communicated by Sir John Herschel.)

The period in which α Herculis completes all its changes of brightness was supposed by Sir Wm. Herschel to be about $60\frac{1}{4}$ days. More recently M. Argelander has been led to conclude that it may be estimated at 66 days 8 hours. Some years ago I found that Sir Wm. Herschel's period would not satisfactorily represent a number of observations which I had occasionally made; but assuming it to be sufficiently near the truth to serve as an approximation, I obtained a mean period of 63 days. Although this period was decidedly preferable to one of $60\frac{1}{4}$ days, or indeed to any