
Astronomical Data Analysis Software and Systems XXIX
ASP Conference Series, Vol. 527
R. Pizzo, E.R. Deul, J-D. Mol, J. de Plaa and H. Verkouter, eds.
c©2020 Astronomical Society of the Pacific

Implementing, with Python and PostgreSQL, Virtual Observatory
Services for Publishing Survey Data from the Observatorio
Astrofísico de Javalambre

Javier Hernández and Tamara Civera

CEFCA - Centro de Estudios de Física del Cosmos de Aragón, Teruel, Aragón,

Spain

Abstract. The Centro de Estudios de Física del Cosmos de Aragón (CEFCA) is car-
rying out two large area multiband photometric sky surveys, J-PLUS and J-PAS, from
the Observatorio Astrofísico de Javalambre (OAJ, Teruel, Spain) covering the entire
optical spectrum using narrow and broad band filters. As an effort to make the data
public, we offer Virtual Observatory (VO) compliant services to make the access to the
data more versatile through the multiple VO compliant existent tools. For example, cat-
alogues are offered through TAP protocol and images can be searched and downloaded
using the SIAP protocol. This contribution summarizes why we decided to make our
own implementation, the process we followed to choose which services to implement
according to the kind of data generated by the survey, why Python and PostgreSQL
were chosen and, finally, the lessons learned.

1. J-PLUS and J-PAS Data Publication

As large area multiband photometric sky surveys, J-PLUS1 and J-PAS2 have images,
catalogue data, and photo-redshift computations as its main output artifacts. The final
data release will contain hundreds of thousands images (about 4000 pointings in 59 fil-
ters for J-PAS) with tens of thousands of objects detected in each image. Besides single
image catalogues, the main catalogue is obtained detecting objects in a reference filter
image (R filter) and measuring the object’s fluxes in all of the other filters (using Sex-
tractor dual mode), the result is a photo-spectra of each object detected in the reference
filter.

The obvious decision to publish survey data was to create a custom web portal
(Civera 2020), offering advanced tools for data search, visualization, and download.
The portal includes a powerful sky navigator (where we can select an object and see
it properties and photo-spectra), image search, cone search, object list search, and im-
age catalogue download. But we realized that the tools were not appropriate for bulk
data processing, automation, and user customization (for example catalogue files just
include a fraction of the data because including all the properties would bloat the files),
and also did not offer a standardised way of accessing the data.

1http://www.j-plus.es/
2http://j-pas.org/

403



404 Hernandez and Civera

Due to the success of IVOA3 Virtual Observatory standards, and availability of
tools supporting them, we decided to offer support for some of the services so as-
tronomers can use existing tools and create scripts to operate with our data. There
were already exiting open source software to publish data as IVOA services, like those
offered by GAVO4 and the Spanish VO5, but they did not fulfil all our needs. For exam-
ple we wanted integration with our portal, secure access for certain catalogue versions,
and support for a few custom extensions like array data types in TAP. We saw that IVOA
services are web based, and in general they are simple, so we decided to create our own
implementation of the few services needed, and integrate them in our portal.

Our database includes information about images, object catalogues, and computed
redshifts. We decided to implement the Simple Image Access (SIA) service for image
search on top of it, that returns links to our download service of full FITS images,
cutouts, or colour images. We also included Cone Search for each object table that
included indexed coordinates, and Table Access Protocol (TAP) to allow execute ADQL
queries on the tables storing information about images, filters, objects and different
photo-redshifts computed using several tools.

In our web pages we included also certain IVOA functionality, we included sup-
port for Simple Application Messaging Protocol (SAMP) so for example the image
search page includes a button that can send a found image to an open window of the
Aladin6 tool (which supports SAMP). We also included a web page for executing TAP
asynchronous queries for users that do not want to use external tools.

Figure 1. SAMP image transfer from web portal.

2. Implementation Tools

For the implementation the main parts to address were the storage for the catalogue
data and the engine for web applications.

2.1. The Database Layer

The J-PLUS and J-PAS Catalogue final data is expected to occupy several terabytes so
one of our priorities was to have a solid database server, known to manage terabyte sized
databases, with also rich functionality like the possibility to add new functions and new
data types. We also wanted an Open Source Relational database so we decided to use
PostgreSQL. PostgreSQL has another very important feature for us, support for array

data types. With flux and error measures for about sixteen apertures in 59 filters that

3http://www.ivoa.net/
4https://www.g-vo.org/
5http://svo.cab.inta-csic.es/main/index.php
6http://aladin.u-strasbg.fr/aladin.gml



Implementing VO Services for Survey Data From the OAJ 405

Figure 2. Asynchronous TAP page.

give us, just for photometry and its error, about 1888 columns of data in the object table,
a nightmare. We found that using a column of array type and assigning a position for
each filter in the array we simplified the problem a lot, now users can easily obtain the
whole photo-spectra or using an index to extract a certain band.

The ability to add new data types and complex functions in different programming
languages was also very important for the implementation of TAP that includes a lot of
math and geometric functions.

For cone search, and the use of similar functions in TAP, having a spatial index
in the database is very important. Although PostgreSQL has some support for spatial
indexes, we decided to use Healpix7 for indexing object coordinates. Healpix indexes
are integer values that are very compact to store in the database and allows the most
reliable and efficient index type in PostgreSQL (B-Tree), additionally it allows users
other uses like the creation of property maps (e.g. density maps).

2.2. The Web Layer

The Python programming language was already in use for the reduction pipelines, so
we evaluated its suitability for creating web applications. With a little research we
found that the Python WSGI specification with a lot of supporting servers (Apache
mod_wsgi, Unicorn, uWSGI, ...) and frameworks (Pyramid, Flask, Django, ...) gave us
an excellent support for the task. Another advantage is the large amount of astronomy,
database access, and miscellaneous libraries available in Python.

7https://healpix.jpl.nasa.gov/



406 Hernandez and Civera

We opted to use the Pyramid framework that allows to easily map a Python func-
tion to a web URL, to extract web parameters and access to url segments. Also the
framework allows different forms to generate the response, like using templates or re-
turning a stored file.

3. Lessons learned

Regarding TAP, our initial idea was to pass the queries to the database directly, but for
security reasons and SQL dialect translation, we opted to create a Python parser which
needed a significant effort but offered interesting opportunities like table rename and
hiding, inserting a limit expression to set the maximum output rows, or include what
we called enumerations that allows to use names when referring the array position of
filters in a magnitude/flux array column (for example ’jplus::rSDSS’ for the ’r’ filter
position). We found that implementing the geometric functions in TAP is very complex
due to the rich functionality that is defined, so at the moment only partial support for
that functions exists (extra work is needed to support all coordinate frames or all figures
operations).

The IVOA centres on public data so security access is not standardised. We have
some catalogue versions with limited access for a certain period of time so we need reg-
istration and authentication, but some VO tools do not offer support for authentication
or it is not documented. We finally achieved to support authentication for some tools
like Topcat using Basic HTTP authentication.

Performance is always something that you have improve at some point. The large
number of objects in the catalogue databases makes that performance of functions in
the database very important. We initially implemented the needed functions for ADQL
in Python but later we moved to a C implementation because it is ten times faster. A
TAP query can take some minutes to execute so executing concurrently them is manda-
tory. Python threads was our first selection, but Python threads have some blocking
issues. Fortunately the Python multiprocessing package has a similar API ands lacks
that locking problems, so migration was quick.

Acknowledgments. Fondo de Inversiones de Teruel, PGC 2018-097585-B-C21
(MCIU / AEI / FEDER, UE), Aragón Research Group E16_17R (Gobierno de Aragón,
Programa Operativo FEDER Aragón 2014-2020).

References

Civera, T. 2020, in ADASS XXIX, edited by R. Pizzo, E. Deul, J.-D. Mol, J. de Plaa, & H. Verk-
outer (San Francisco: ASP), vol. 527 of ASP Conf. Ser., 101


