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We present shape and spin axis model results for main-

belt asteroid 131 Vala. The model was achieved with the 

lightcurve inversion process, using combined dense 

photometric data acquired from four apparitions, 

between 2007-2018 and sparse data from USNO 

Flagstaff. Analysis of the resulting data found a sidereal 

period P = 5.180810 ± 0.000023 h and two mirrored 

pole solutions at + = 54°, # = 29° and + = 243°, # = 30° 

with an uncertainty of ± 15 degrees. 

We report that minor planet 131 Vala was recently observed in 

order to acquire data for lightcurve inversion work (Franco et al., 

2019).  A search in the asteroid lightcurve database (LCDB; 

Warner et al., 2009) shows many entries, covering a wide range of 

phase angle bisectors. Dense photometric data were downloaded 

from ALCDEF (ALCDEF, 2019) and sparse data instead were 
taken from the Asteroids Dynamic Site (AstDyS-2, 2018). 

The observational details of the dense data used are reported in 

Table I with the mid date of the observing campaign, longitude 
and latitude of phase angle bisector (LPAB, BPAB). 

Reference Mid date PABL° PABB° 
Pilcher (2008) 2007-10-22 48 -2 

Pilcher (2009) 2009-02-18 167 7 

Pilcher (2017) 2017-06-04 231 1 

Franco et al. (2019) 2018-09-28 6 -6 

Table I. Observational details for the data used in the lightcurve 

inversion process for 131 Vala. 

Lightcurve inversion was performed using MPO LCInvert 

v.11.7.5.1 (BDW Publishing, 2016). For a description of the 

modeling process see LCInvert Operating Instructions Manual 
and Warner et al. (2017).   

In order to find a better solution, we have also used sparse data 

from USNO Flagstaff Station (MPC Code 689) in addition to the 

dense data. Figure 1 shows the wide PAB longitude/latitude 

distribution for dense/sparse data used in the lightcurve inversion 

process. Figure 2 (top panel) shows the sparse photometric data 
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distribution (intensities vs JD) and (bottom panel) the 
corresponding phase curve (reduced magnitudes vs phase angle). 

In the analysis the processing weighting factor was set to 1.0 for 

dense data and to 0.3 for sparse data.  The “dark facet” weighting 

factor was set to 2.0 to keep the dark facet area below 1% of total 
area and the number of iterations was set to 50. 

The sidereal period search was started around the average of the 

synodic periods found in the asteroid lightcurve database (LCDB; 

Warner et al., 2009). We found two very close sidereal periods 

within 0.000012 hours with a Chi-Sq value within 10% of the 

lowest Chi-Sq (Figure 3). Of these was chosen the one with the 

lowest Chi-Sq value. 

The pole search was started using the “medium” option with the 

previously found sidereal period set to “float”.  From this step we 

found two roughly mirrored lower Chi-Sq solutions (Figure 4) 

separated by 180° in ecliptic longitude, (60°, 15°) and (240°, 30°). 

The subsequent “fine” search that was centered on these rough 

positions, allowed us to refine the position of the pole (Figure 5). 

The analysis shows two clustered solutions of ecliptic longitude-

latitude pairs within 15° of radius that had Chi-Sq values within 
10% of the lowest value.   

The two best solutions (lowest two Chi-Sq values) are reported in 

Table II. The sidereal period was obtained by averaging the two 

solutions found in the pole search process. Typical errors in the 

pole solution are ± 15° and the uncertainty in sidereal period has 

been evaluated as a rotational error of 30° over the total time span 

of the dense data set. Figure 6 shows the shape model (first 

solution) while Figure 7 shows the fit between the model (black 
line) and some observed lightcurves (red points). 

� °� � ° Sidereal Period (hours) RMS 

54 29 
5.180810 ± 0.000023 

0.0151  

243 30 0.0153  

Table II. The two spin axis solutions for 131 Vala (ecliptic 

coordinates). The sidereal period was the average of the two 
solutions found in the pole search process. 

 

Figure 1: PAB longitude and latitude distribution of the data used 

for the lightcurve inversion model. 

Figure 2: Top: sparse photometric data point distribution from (689) 
USNO Flagstaff station (relative intensity of the asteroid's 
brightness vs Julian Day). Bottom: phase curve obtained from 

sparse data (reduced magnitude vs phase angle).

Figure 3: The period search for 131 Vala shows two overlapping 
sidereal periods with Chi-Sq values within 10% of the lowest value. 

Figure 4: Pole search distribution. The dark blue indicates the better 
solutions (lower Chi-Sq), while maroon the worst ones. 
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Figure 5: The “fine” pole search shows two clustered solutions 
centered at the ecliptic longitude/latitude (54°, 30°) and (243°, 31°) 

with radius approximately of 10° and Chi-Sq values within 10% of the 
lowest value. 

Figure 6: The shape model for 131 Vala (� = 54°, � = 29°). 

Figure 7: Model fit (black line) versus observed lightcurves (red 

points) for (� = 54°, � = 29°) solution. 


