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ABSTRACT 

Land cover and land use changes have great impact on 
the hydrological characteristics of the Kilombero 
floodplain wetland (Tanzania) and its surroundings. 
Conservation interests meet the wetland¶s ecosystem 
function as a site for growing food production. The 
system, processes and ecosystem responses are, 
however, not yet fully understood. We make use of 
Landsat data to assess long-term land cover and land 
use changes in the catchment. In this paper we describe 
an approach to circumvent the challenge of frequent 
cloud cover and to consider the dynamics of the wetland 
during the classification. The approach results in 
temporal composites for four different decades and 
hierarchically organized maps including two levels of 
detail and providing information about dynamic classes. 
 
1. INTRODUCTION 

Food demand and processes of land conversion from 
natural to cultivated land have been accelerating in East 
Africa over the past decades. The main drivers might be 
rapid population growth and economic development. 
Land cover information of the region at reasonable 
spatial scales is often inconsistent, outdated, incomplete 
or simply not available [1]. Remote sensing is a 
valuable means to assess land cover and land use and 
their changes since the datasets cover the last decades, 
the time where many changes of the society and its land 
took place. It is obvious that land cover and land use 
changes have great impact on the hydrological 
characteristics of wetlands and their surroundings. To 
quantify these effects accurate land cover and land use 
information is needed. On the other hand, food demand 
increases with increasing population. For long time 
agriculture was limited to uplands whereas recent 
studies try to assess the potential of wetlands as future 
food production zones in Africa. Consequently, land 
cover and land use changes take place not only in the 
catchment of wetlands but also within the wetlands. 
Quantification of long-term changes will allow to 
reconciling conservation with food production. The 
GlobE research project (https://www.wetlands-
africa.de/) aims at multiscale analyses of wetlands in 
East Africa. The work presented here explores land 
cover and land use changes at catchment scale. The first 

objective is to generate cloudfree image composites that 
reflect the dynamics within wetlands and at the same 
time circumvent the challenge of frequent cloud cover 
in the tropics. The second objective is to generate a 
classification approach that provides useful maps to 
different disciplines such as hydrology, ecology, or soil 
sciences. 
 
2. STUDY SITE 

The study site is the Kilombero catchment in south-east 
Tanzania in the Tropics of East Africa. The Kilombero 
floodplain is a huge wetland and one of the four core 
test sites of the GlobE project. It experiences pressure 
from increasing agricultural use and land use changes. 
Traditional crop is rain-fed rice. Recently, cultivation of 
cash crops such as sugarcane, and other commercial 
land uses such as teak plantations increased. Teak 
plantations are concentrated south of the Kilombero 
river, industrial forms of (cash crop) agriculture have 
been visible north of the river. Irrigation recently 
appeared in parts of the catchment. The floodplain is 
surrounded by mountain ranges with the Udzungwa 
mountains reaching up to 2.567 m. The floodplain itself 
is located about less than 250 m. The mountains are 
dominated by forests whereas the flat floodplain is 
dominated by agricultural land, different savanna types 
and grassland. The areas south of the Kilombero river 
are dominated by miombo forests. The Kilombero 
floodplain is also an important corridor and plays a 
major role in the connectivity of the Udzungwa 
mountains north of Kilombero and the Selous Game 
Reserve south-east of the river [2]. 
 
3. DATA AND METHODS 

For the present study we use Landsat data for four 
reference dates over the past four decades. Inconsistent 
datasets with gaps due to frequent cloud coverage are 
common for the tropics. However, compositing of 
moderate resolution data such as Landsat [3] is an 
option to generate cloudfree datasets. Most of the 
compositing approaches select cloudfree observations 
that are closest to a predefined day of year (DOY). In 
case no appropriate observation is available, data from 
other years are considered as well. In the present study 
we make use of an alternative compositing approach but 
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had to consider multiyear data as well to achieve 
coverage of the whole catchment. Instead of selecting 
best suited observations we consider all cloudfree 
observations of predefined periods and calculate 
multitemporal metrics such as maximum, minimum, 
mean, median, standard deviation and percentiles per 
pixel and per band (multitemporal metrics). Landsat 4, 
5, 7, and 8 data are used to generate land cover and land 
use maps for 1984, 1994, 2004, and 2014. Each period 
refers to at least two water years to allow for the 
assessment of flood extent and non-permanent land 
cover classes such as flooded grasslands (e.g., reference 
year 2014 includes images taken between January 1, 
2013 and December 31, 2015). The surface reflectance 
product provided by USGS was used as input 
(http://earthexplorer.usgs.gov/). Unusable data (i.e., 
clouds, cloud shadows, no data) were masked by 
applying the Fmask mask file that is attached to each 
product. Fmask is an efficient method to discriminate 
clouds, cloud shadows, snow, water, and clear land 
pixels [4]. Dry and rainy season were separated based 
on rainfall data and the assumption that it takes several 
weeks after the first rains before the water is 
concentrated in the drainage system (i.e., a time lag is 
assumed). Multitemporal metrics were calculated for 
dry and rainy season from the pixels that were identified 
as clear land or water. By using percentiles, the impact 
of missed clouds and cloud shadows was reduced. The 
multitemporal metrics of each period and dry and rainy 
season, respectively, were subjected to a supervised 
Random Forest classification [5] using the EnMap 
toolbox [6]. The digital elevation model at 30 m spatial 
resolution acquired during the SRTM (shuttle radar 
topography mission) campaign was included in the 
classification. Training samples were taken during a 
field trip in 2015 and were complemented by UAV 
(Unmanned Aerial Vehicle) image interpretation. The 
spatial resolution of the UAV data is approximately 30 
cm. The data were acquired at three different times of 
the hydrological year: i) parallel to the 2015 field trip, 
ii) in May 2014, and iii) in September 2014. The 
classification was performed in a two level approach. 
The first level distinguishes between water, bare soil, 
forests and other vegetation. Deriving these classes for 
dry and rainy season separately allows to combining 
them afterwards and thereby discriminating between 
stable classes that show the same land cover during the 
whole hydrological year and dynamic classes that 
change land cover depending mainly on water supply. 
The concept of dynamic classes was used e.g. by [7,8] 
to account for dynamic processes taking place in 
wetlands. The combination of the four basic classes 
results in four stable and three dynamic classes as 
shown in Tab. 1. These are permanent water, 
temporarily flooded non-vegetation, urban and bare 
ground, crops, temporarily flooded vegetation, non-
flooded vegetation, forests. Fig. 1 shows how these 
classes can be broken down to a more detailed second 

level including the classes permanent water, temporarily 
flooded non-vegetation, temporarily flooded 
herbaceous, non-flooded herbaceous, urban, bare 
ground, crops, mountain forest, degraded mountain 
forest, miombo forest, gallery forest, and teak 
plantation. 
 
Table 1: Combination of four land cover classes of dry 
and rainy season to seven basic classes (four stable 
classes and three dynamic classes. 

 
 

 
Figure 1: General scheme of hierarchical class 
construction with combined results from dry and rainy 
season (from Level 1 to Level 2). 
 
4. RESULTS 

The results of the compositing for reference year 2014 
can be seen in Fig. 2. Panels a) and c) show false color 
composites in band combination 7-4-2 (band naming 
after Landsat 5) for the dry and rainy season, 
respectively. Panels b) and d) show the number of 
cloudfree input images per pixel. Obviously, there are 
huge differences among the different areas inside and 
outside the catchment. The continental areas north-west 
of the Kilombero catchment are less cloud-contaminated 
than the catchment itself. The Kilombero catchment 
seems to be a kind of cloud trap. The frequent cloud 
coverage is caused by high evaporation rates in the 
floodplain and high transpiration rates in the mountain 
ranges in the north and the south-east of the catchment. 
It can be seen that the rainy season composite still 
contains some artefacts that may result from cloud 
shadows in the western regions. However, the flood 
extent was well captured. During the rainy season cloud 
coverage seems to be more dominant in the



 

 
Figure 2: Dry season composite (RGB = 7 ± 4 ± 2) 2013-2015 (a), number of cloud free dry season observations 2013-
2015 (b), rainy season composite (RGB = 7 ± 4 ± 2) 2013-2015 (c), and number of cloud free rainy season observations 
2013-2015, the maximum number does not exceed 38 (d). 
 
mountainous areas whereas during the dry season this 
pattern is less clear. Fig. 3 shows the classification 
results for the rainy season. The figure shows 
preliminary results where the dry and rainy season 
results of level 1 are not combined as introduced above. 
As a result some areas in particular in the west of the 
catchment have been misclassified. The statistics of the 
accuracy assessment with independent validation data 
that has not been used for the classification reveals good 

classifier performance. But training and validation data 
are concentrated on the east of the catchment since this 
is of major interest for the GlobE project. This 
imbalance leads to unreasonable results in the western 
part of the catchment. However, the classification 
performance in the eastern part is good resulting in 
reasonable patterns. As known from other studies [9], 
teak plantations are mainly concentrated south of the 
Kilombero river. This can be confirmed from Fig. 2b.



 

 
Figure 3: Level 1 (a), and Level 2 (b) classification of rainy season 2013-2015. 
 
Other forest classes such as the mountain forest and 
degraded mountain forest (i.e., mountain forest that 
experiences human impact through fire or logging) are 
also well captured. Gallery forests are detected along 
the Kilombero river. 
 
5. DISCUSSION AND CONCLUSION 

We showed that the creation of cloudfree composites for 
dry and rainy seasons is feasible for the Kilombero 
catchment. Combining classification results of both 
seasons allows to derive stable and dynamic classes. 
From those, more detailed information can be derived in 
a second level. An optimal selection of multitemporal 
metrics and better understanding of their interpretation 
is needed, however, to fully use the potential of the data. 
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