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Abstract. Notions and limits from standard time series analysis must be mod-
ified when treating series which are measured irregularly and contain long gaps.
The classical Nyquist criterion to estimate frequency range which is potentially
recoverable must be modified to handle this more complex situation. While
basic exposition of the modified criterion is given in earlier papers, some minor
problems and caveats are treated here. Using simple combination of arguments
we show that for small sample sizes the modified Nyquist limit may overesti-
mate the obtainable frequency range. On the other hand, we will demonstrate
that very high Nyquist limit values which are typical of irregularly sampled
data can often be taken seriously and, using proper observational techniques,
the frequency ranges for “time spectroscopy” can be significantly widened.

Key words: Methods: data analysis – numerical – statistical

1. INTRODUCTION

It is very often the case that observed time series seems to be variable but the
physical origin of the variability is unknown. The first thing what an astronomer
does in this case is compute the standard power spectrum or similar statistic for a
wide range of trial frequencies and look for possible peaks. But how far along the
frequency axis one should go with this analysis? Typical answers can be found,
e.g., in Kurtz (1983), Eyer & Bartholdi (1999) and Koen (2006). Below we consider
this question from different angles, trying to clarify some theoretical aspects which
are untreated till now. Some of our observations show that the proposed schemes
to estimate the upper frequency limits can give misleadingly high values. However,
in most cases one tends to underestimate the detection potential of precisely timed
and truly randomly spaced measurement series.

2. EQUALLY SPACED DATA

In traditional Fourier analysis the highest frequency that can be extracted from
equally spaced and continuously monitored data is sNyq = 1

2∆t
(where ∆t is the

sampling step in time) – so-called Nyquist frequency (in the context of astronomy,
see, e.g., Kurtz 1983). This fact can be proved using different analytical tools.
For our purposes the shortest route to the result comes from observation that
regularly spaced sampling can be looked upon as a multiplication of continuous
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input function with appropriately scaled in time III function (see Bracewell 2000):

III(t) =

∞
∑

n=−∞

δ(t − n).

To the multiplication in time domain corresponds convolution in Fourier domain.
The Fourier transform of a III function is also a III function. As a result, we
get a sum of periodically (with period 1

∆t
) repeated original spectra. If the fre-

quency spectrum F (s) of original data f(t) is bandlimited by the Nyquist frequency
(F (s) = 0 when |s| >= 1

2∆t
) then its full recovery is possible. Otherwise, differ-

ent shifted replicas of the original spectrum overlap and exact recovery becomes
impossible.

Fig. 1. Fourier transforms of f(t) = 0.5 cos(2πt×0.81)+cos(2πt×0.3). For lower
spectrum ∆t = 1, for upper spectrum ∆t = 0.25. The Nyquist limits are shown by thick
lines.

This is well illustrated in Figure 1 where two Fourier transforms of the input
signal f(t) = 0.5 cos (2πt × 0.81) + cos (2π × 0.3) are depicted. In the upper
panel, the sampling step ∆t = 0.25 is short enough to reproduce both frequencies
correctly. Spurious peaks start to occur only at frequencies which are higher than
the Nyquist frequency (in this particular case sNyq = 2). In the lower panel, the
transform is computed from data with the time step ∆t = 1. Now the replicas
of the original spectra are spaced more densely and inside of the Nyquist limits
we can see a correct peak at frequency s = 0.3 and a spurious peak at frequency
s = −0.81 + 1 = 0.19. This kind of overlapping of shifted replicas of the spectrum
is generally known as aliasing.

Very often aliasing effect is misinterpreted in a certain way. Normally it is
assumed that all non-zero energy of oscillations is situated in the first replica
around zero frequency. But this need not be the case. If the actual frequency of
the input process is much higher than the Nyquist frequency then its aliases can
show up at lower frequencies. From the convolution theorem follows only periodic
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replication of the spectral fragments, not the actual position of the true replica.
In some cases this observation allows us to observe high frequency phenomena
with apparatus which samples input data at significantly lower rate than that
required by the Nyquist theorem. The physically relevant frequency from the set
of periodically spaced candidates (with the step in frequency 1

∆t
) can then be

selected using some additional criteria.

3. IRREGULARLY SPACED DATA

In the case of data sets where time moments are measured irregularly the
Fourier convolution theorem can be similarly applied (see Deeming 1975). Instead
of the III function we can now introduce data window function w(t):

w(t) =

N
∑

n=1

δ(t − tn),

for time point sequence tn, n = 1, . . . , N . The Fourier image of the sampled
data can now be described as a convolution of the real continuous data spectrum
F (s) with the Fourier transformed data window function W (s). Typical window
function is shown in Figure 2.

Fig. 2. Typical Fourier transformed data window function W (s). The Nyquist
limits are shown by thick lines.

The strongest peak is at zero frequency as it should be. But instead of period-
ically occurring side peaks we can now see only random peaks with significantly
lesser amplitude. The important point for the following discussion is that fluc-
tuations inside the Nyquist limits are not very much different if to compare with
fluctuations far away.

Now we have a reasonable question – how to put correct limits to frequency
search ranges if our input data are randomly sampled?

There are essentially three methods discussed till now, each one based on dif-
ferent heuristic deliberations.
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First, it is possible to look at the irregularly spaced dataset as a disturbed ver-
sion of the regularly spaced data. Consequently, the mean time step is calculated,
∆̄t = (tN − t1)/(n − 1), and the corresponding Nyquist limit is calculated using
this value. This view is supported also by statistical argument – if we compute
spectra from N statistically independent input points then there cannot be more
than N/2 statistically independent spectrum points. (Another half of the input
statistical information is spent on negative frequencies or phases). However, simple
trial calculations show that the limits calculated in this way are too conservative
and useful information can be lost (see Press et al. 2007).

Second, it is argued that, in the case of irregularly spaced data, distances be-
tween some consecutive time points are significantly shorter than the mean time
step and this allows one to define the Nyquist frequency using minimal time dif-
ference between two consecutive observations. Again, the numerical experiments
(see Eyer & Bartholdi 1999) show that this is not the case and the corresponding
criterion is too conservative.

The third method (see Eyer & Bartholdi 1999; Koen 2006) starts from the fact
that actual times of observation are always of limited precision and, as a result,
their values form a subset of a certain fixed step grid. The ultimate Nyquist limit
then can be computed from time step of this grid. The limit can be made more
sharp by checking phase distributions for the multiples of the minimal step (check
Eq. 7 of Koen 2006).

4. RETURN ARGUMENT

The third method to estimate the Nyquist frequency is certainly valid, but it
contains one important hidden caveat.

Let the Nyquist frequency computed for a particular data set be sNyq. If we
want to cover in our analysis the frequency range (0, sNyq) with proper frequency
resolution we need to check at least K = sNyq(tN − t1) trial frequencies (proper
step along the frequency axis is ∆s = 1

tN−t1
). For an extensive set of time point

arguments the computed K can be quite large. It is not ruled out that the number
of essentially different phase configurations exhausts itself earlier than K trials are
computed.

To illustrate this we look first at one old, but still popular method of period
seeking, the so-called Lafler-Kinman (1965) method. In this method for each trial
frequency s, phases

φ(tn, s) = s × tn − [s × tn], n = 1, . . . , N

are computed (squared brackets denote taking of integer part). Then data points
m(tn), n = 1, . . . , N are sorted according to the phases. For the sorted values (say,
magnitudes) the final frequency dependent statistic

θ(s) =

∑

i

(mi − mi+1)
2

A

is computed, where mi-s are just sorted values for increasing phases, summation
takes into account cyclicity (mN+1 = m1) and A is a certain frequency indepen-
dent scaling factor. The minima of the θ(s) function indicate then most probable
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frequencies (it is kind of inverted power spectrum). Very often the methods based
on this statistic and similar to that are called “string length” methods.

For us the important point is that actual frequency dependent phases do not
enter into final statistic, their effect is accounted for only through generated sort
orders. But there are only N ! different possible orderings (permutations). Conse-
quently, if there is, say, only five observations in our data set, then there is just 120
different possible permutations and possible θ(s) values. It is guaranteed that θ(s)
values start to return, and there is no way to prefer one or another frequency. How-
ever for high precision observations the formal Nyquist range can contain much
more trial frequencies! As we see, the low number of observations themselves puts
a certain limit to the number of frequencies which can be inspected using this kind
of statistic.

Of course, it can be said that Lafler-Kinman statistic is of very peculiar kind
and we just can avoid it. Unfortunately this is not the case. For other statistics
it is quite easy to involve similar arguments.

For instance, in methods where statistics are computed using binning of phases
(for instance, see Jurkevich 1971 or Schwarzenberg-Czerny 1989) there can be only
MN essentially different phase configurations (for each from N phases we can
assign arbitrary a bin from the M bins available). For small values of N and M
it can then happen that K > MN and statistic values computed from different
phase configurations start to return.

For statistics which depend continuously on phases (standard Fourier spectrum,
Lomb-Scargle method, etc.) the situation is more complicated. In principle, for a
set of precisely measured incommensurable time points the phase configurations
and computed from them statistic values never return exactly. But if we fix a
certain level of precision it is always possible to estimate approximate return times.

If we imagine frequency dependent phases as points on the circle which ro-
tates with incommensurable speed, then this system will return arbitrarily close
to whatever state after a certain time. This so-called Poincaré cycle return time
can be approximately estimated (e.g., see Kac 1947) and in our context it scales
as NN . The heuristic argument behind this value is simple. We can divide the full
range of phases [0, 1) into M bins and approximate continuous base functions (say
cos and sin) in a piecewise constant manner. This allows us to involve a return
argument for binned case described above. To use all relevant phase information
we can select a binning scheme with N bins and here we are – approximately equal
statistic values start to return not later than after NN trials.

From the first sight, the restriction imposed by phase configuration return
argument is relevant only for datasets with a very low number of observations and
need not be taken seriously. However, very often we have datasets which contain
a considerable number of observations but with peculiar distribution where the
observing moments tend to be concentrated in small number of densely populated
groups. Now the return argument starts to work for a low frequency part of the
spectrum. For a periods which are significantly longer than group lengths the
groups behave as singular points.
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5. INTEGRATION TIME EFFECTS

Real observations of the variable objects are always obtained using certain
integration (or exposure) times to have reasonable photon counts and from it a
measurable output signal. Let us assume that integration time for every single
observation is δt. Then the measurement procedure can be formally described as
a sequence of two operations: convolution of the input continuous waveform by
rectangle function 1

δt
Π

(

t

δt

)

followed by proper sampling. The convolution with
a rectangle function in the time domain corresponds to multiplication with sinc
function:

sinc (sδt) =
sin (πsδt)

πsδt

in the Fourier domain. This fact introduces additional restriction to the reasonable
frequency range in periodicity search. The convolution acts as a low pass filter
and higher frequencies are strongly attenuated. Typical frequency limits obtained
from this analysis are in the range from smax = 1

2δt
to smax = 1

3δt
(for instance,

see Eyer & Bartholdi 1999).
Normally the side lobes of the sinc functions are ignored and corresponding

higher frequencies are left out from analysis. However, in the case when exposure
times are sufficiently exactly measured and exposures are spaced in time sufficiently
randomly it is possible to find a proper number of observations N for which the
peaks in the frequency space side lobes can be correctly detected. To cover regions
where attenuation is very strong (say, around zero crossings) we can use different
exposure times. This methodology needs further elaboration and will be treated
elsewhere.

6. MODIFIED NYQUIST LIMITS CAN BE TAKEN SERIOUSLY

In previous works (e.g., Press et al. 2007; Eyer & Bartholdi 1999 or Koen 2006)
the peculiar alias-free nature of the irregularly measured samples is demonstrated
by computing sample spectra for the ranges which are 2–5 times wider than the
“normal” Nyquist ranges (computed from an average time step length). From the
phase configuration return argument in Section 4 we can conclude that even for
moderately large datasets phase configurations need no return. This is because
the number of frequency trials K is smaller than the number of different phase
configurations. Consequently, we can safely apply the formal Nyquist limits. For
precisely measured time point series these limits can be quite high.

To check this in practice, we performed some very simple and therefore easily
repeatable calculations. First, we postulated a standard harmonic model for our
data sets:

f(tn) = cos (2πstn) + Eεn, n = 1, . . . , N ,

where εn are normally distributed random variables with unit dispersion and E is
the parameter which controls noise level. The time point sequence tn, n = 1, . . . , N
was randomly generated with high precision (with the numerical grid step ∆t ≤
2−31), using recursive scheme

tn = tn−1 + R + 0.25,

where R is random computer generated part of the full time step (0 < R < 1). The
obtained time points were then scaled so that t1 = 0.0 and tN = N − 1, fixing the
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mean step length at ∆̄t = 1.0 and, consequently, the standard Nyquist frequency
at 0.5. In recursive scheme the fixed part (0.25) of the time step guarantees that in
final sequence no step is shorter than 0.2 (the corresponding Nyquist frequency is
then 2.5). The formal Nyquist limit which can be computed from the grid step was
approximately 230, or in practical terms, infinity. The frequency search range for
all runs was fixed at 0.1−500.0 (thousand times the normal range and two hundred
times the range which comes from the shortest time distance argument). Frequency
step size was taken as it is normally done, ∆s = 1/N . The corresponding spectra
contained then 2000–98980 points (in the range of data point numbers from N = 3
to N = 100). For each trial frequency the standard Lomb-Scargle (Lomb 1976;
Scargle 1982) statistic was computed.

To evaluate and compare different spectra, we used the contrast ratio of ampli-
tudes of the strongest peak to the second strength peak. Very often the strongest
peaks are evaluated against the mean spectrum level but here we are much more
stringent and use the highest accidental value from the full spectrum. If the
strongest peak in the spectrum was not at correct position, the contrast ratio was
set to an impossible value of 0.5. The model oscillation frequency was taken quite
high, s = 444.444. 1

Fig. 3. Contrast ratios for data sets with different lengths, noiseless case.

As seen from Figure 3, where one particular run for a noiseless case E = 0
is shown, the contrast ratio exhibits a systematically rising trend. The inherent
scatter in the contrast ratio values is a result of random distribution of the time
points. Because theoretically a Lomb-Scargle spectrum has exponential statistical
distribution (see Scargle 1982) the occurrence of random strong peaks is quite
probable. Nevertheless, it can be seen that starting already from N = 17 the
correct frequency is constantly recovered, and starting from N = 34 the ratio is
permanently higher than 1.5.

1The full set of tables from which figures are compiled can be found at
http://www.aai.ee/∼pelt/soft.htm.
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Fig. 4. Contrast ratios for data sets with different lengths, 10% noise.

Fig. 5. Contrast ratios for data sets with different lengths, 25% noise.

The picture of the noisy case with E = 0.2 (10% noise level ) is quite similar
(see Figure 4). The row of the correct detections starts at N = 26 and the 1.5
level is achieved at nearly the same level as the noiseless case N = 43.

For higher noise levels the picture starts to change. For instance, if E = 0.5
(25% noise, Figure 5) the ambiguity for short sequences lasts longer and the overall
scatter of ratio values is higher. The monotonous exact recovery starts at only
N = 28. The 1.5 level stability is achieved at N = 69. There is no need to say
that these are just particular runs and the results depend on actual random time
sequences. However, the general picture is always quite similar.
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At the first glance these results seem to be extremely counter intuitive. For
example, using 50 original observations, we calculate the frequency spectrum which
contains ∼ 50 000 points. In the fixed time step situation we can have only 25
statistically independent frequencies below the Nyquist frequency. Now we claim
that an irregularly sampled scheme can detect the true spectrum lines among
50 000 different possible positions. How this can happen?

Computed values in the long spectrum for irregularly sampled data are sta-
tistically strongly correlated. If we return to our points on circle analogue, then
this kind of deterministic systems shows also very long (essentially infinite) cor-
relations. Nevertheless the states where all points occur in a certain restricted
position are extremely rare (you can compare the situation with molecules in the
air). This shows that estimation of the power spectrum (statistical analysis) sig-
nificantly differs from periodicity seeking (kind of harmonic analysis). In the first
case we do not assume that a computed spectrum has any prescribed form. Then
it is quite clear that we cannot properly estimate more than N (or N/2 in power
terms) spectrum values from N data points. In the second case we assume that
the spectrum contains only one or small number of peaks and our task is to find
the exact positions of these peaks. As we demonstrated earlier the frequency range
for such analysis is limited by possible return of phase configurations or by the
modified Nyquist limit.

7. CONCLUSIONS

From analysis above we can make following conclusions:
• While Galileo used pulse counts and pendula for timing in his experiments

and the obtained precision was certainly not better than around one tenth of the
second, the modern clocking allows time measurements whose precision can exceed
10−16 s and in the near future even more. This allows us to widen the frequency
range for “time spectrometers” significantly. Even when a concrete experiment is
seeking for phenomena which show up at lower frequencies, it is always reasonable
to record timing data with highest precision available. It is never ruled out that a
certain follow-up analysis of archival data can make this information usable.

• It is always reasonable to keep integration times with a fixed and precisely
measured length. For future archival work it is also important to give exact po-
sitions of published time points against integration intervals (start, exact middle
point or end). This allows to properly combine the data with future observations.

• When analyzing already measured data it is reasonable to compute observing
windows for a wide range of frequencies to check for possible peaks which occur
not only because of some inherent periodic gaps in timing points but also because
of possibility of returning phase configurations. This is especially true for data
which consist of small number of densely populated short fragments.

• In some experiments the maximum time sampling frequency is limited by
technical set up (dead times, recording lags etc). It is then always possible to
widen the frequency range for periodicity search by randomizing measurement
moments. If the fixed step scheme is unavoidable, even then we can search for
higher frequency aliases at lower parts of spectra. For proper final frequency
localization some physical insight or, if possible, prefiltering of the data can be
applied

We hope that our considerations will help to dispel some common misunder-
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standings and point to new perspectives of high frequency range experiments which
can be of great astrophysical interest.
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