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3UNESP - IGCE DEMAC, Rio Claro, CP 178, CEP 13.500-970, Brazil

Accepted 2006 September 24. Received 2006 September 19; in original form 2006 June 14

ABSTRACT

In this work, we study the stability of hypothetical satellites of extrasolar planets. Through

numerical simulations of the restricted elliptic three-body problem we found the borders of the

stable regions around the secondary body. From the empirical results, we derived analytical

expressions of the critical semimajor axis beyond which the satellites would not remain stable.

The expressions are given as a function of the eccentricities of the planet, eP, and of the satellite,

esat. In the case of prograde satellites, the critical semimajor axis, in the units of Hill’s radius,

is given by aE ≈ 0.4895 (1.0000 − 1.0305eP − 0.2738esat). In the case of retrograde satellites,

it is given by aE ≈ 0.9309 (1.0000 − 1.0764eP − 0.9812esat). We also computed the satellite

stability region (aE) for a set of extrasolar planets. The results indicate that extrasolar planets

in the habitable zone could harbour the Earth-like satellites.

Key words: celestial mechanics – planets and satellites: general – planetary systems.

1 I N T RO D U C T I O N

In the last years the discovery of planets in other Solar systems

led to the question of whether these planets also have satellites. A

remarkable feature of the giant planets of our Solar system is the

general architecture in the population of their satellites: all of the gi-

ant planets have at least two distinct groups. Very close to the planet,

there is a class of regular satellites (almost planar and circular). The

second group is formed with small objects with high eccentricity

and high inclination (usually in retrograde orbits). However, it is

important to emphasize that all of the giant planets of our Solar

system are rather far from the Sun (the closest is the Jupiter which

is about 5.2 au away). Now, the question that arises is related to

the stability or the possibility that a giant planet hosts a satellite, in

the case that the planet is closer to the star. For the time being, a

significant number of extrasolar planets were discovered very near

to the star, several have pericentre smaller than 0.1 au. The orbits

of these planets are almost circular. In opposition, there are some

interesting cases where for larger semimajor axis, the eccentricities

tend to be high, reaching a maximum of about 0.93. The planet mass

is a function of the inclination (iP) of the orbit with the observer’s

line of sight and it is given in terms of the Jupiter mass by MJ sin iP.

The question of habitability in these extrasolar systems is a rele-

vant issue. The Earth-like life is unlikely in these planets but rocky

moons orbiting these planets could be habitable if the planet–moon

system orbits the parent star within the so-called ‘habitable zone’,

⋆E-mail: rcassia@feg.unesp.br

where life-supporting liquid water could be present (Williams,

Kasting & Wade 1997).

Up to now, satellites of extrasolar planets were not detected. This

is mainly due to the instrumental limitations and the adopted tech-

niques. Several missions to search for extrasolar planet transits by

high-precision space-based photometry are in under development

and will have the capacity to detect flux variations at the 10−5 level

(Hui & Seager 2002), that might be enough to detect some large

satellites (Sartoretti & Schneider 1999).

As mentioned before, due to the characteristics of the detected

planetary systems it is natural to question which would be the pos-

sible conditions for the formation of satellites in this context. An

aspect that can be explored without the need of having a closed

theory on the formation of satellites is the stability of satellites in

the advanced stages of evolution, where the formation process is

almost ended. In this context, the main goal of this work is to infer

the stability regions of prograde and retrograde orbits of planetary

satellites in the presence of the star gravitational field.

Very roughly speaking, the idea of the limit of stability can be

posed in the following way: consider a particle orbiting a planet

which in its turn orbits a star. If the particle is far enough from

the planet, the perturbation caused by the star becomes so impor-

tant, that the particle cannot remain orbiting the planet. The region

around the planet where the particle can survive, for any initial

condition, for any time, defines a stable boundary and therefore a

limit of stability. There is a close relation between the escape and

the stability boundary of satellites. We can determine this limit by

looking at the outermost regions where the majority of orbits are

stable. This limit of stability depends on whether the satellite orbit

is prograde (angular velocity is in the same sense as the planet) or

C© 2006 The Authors. Journal compilation C© 2006 RAS



1228 R. C. Domingos, O. C. Winter and T. Yokoyama

retrograde (angular velocity is in the opposite sense). It is important

to note that the border of the stable region is complex and possibly

fractal.

There is a series of papers about the escape and the capture of plan-

etary satellites (for example: Heppenheimer & Porco 1977; Huang

& Innanen 1983; Brunini 1996; Vieira Neto & Winter 2001a,b).

Hunter (1967) obtained boundaries between escape and stable or-

bits for eccentric satellites under influence of Jupiter and the Sun.

Hunter found that the lifetime of a satellite was decreased as the

eccentricity was increased. He also deduced that for prograde orbits

the stability region corresponds to approximately 0.44 of the radius

of the planet’s Hill’s sphere – RHill = (µ/3)
1
3 , where µ is the mass

ratio of planet/star. For retrograde satellite orbits the stability region

found was 0.74 RHill. Hénon (1969) found that a family of simple

periodic retrograde orbits is stable even when the distance from the

smaller primary tends to infinity, and around this family there is a

stability region. This is valid for all mass ratios smaller than 0.0477

(Hénon & Guyot 1970).

An extensive literature is dedicated to the question of analytical

stability boundary. Many estimates for circular orbits have been

made from considering zero-velocity curves or equating forces in a

rotating frame (Szebehely 1978; Innanen 1979; Graziani & Black

1981; Pendleton & Black 1983; Hamilton & Burns 1991, 1992;

Donnison & Mikulskis 1994; and others). In these studies, it has

been shown that the retrograde orbits are stable at longer distances

than direct orbits.

Holman & Wiegert (1999) investigated in what regions around

a binary system, a body can orbit the centre of mass of the stars

(or one of the stars) for long time. These authors investigated nu-

merically, the orbital stability in the frame of the elliptic-restricted

three-body problem. They considered a circular orbit for the third

body. Empirical expressions that give the critical semimajor axis

(ac) as a function of the eccentricity (e) and mass ratio (µ) of the

binaries are developed. Such expressions are derived for binary sys-

tems with 0.0 � e � 0.8 and mass ratio 0.1 � µ � 0.9. The formula

for bodies orbiting one of the stars is not predicted for the case

µ → 0; however, simulations at e = 0 and in the range 0.9 � µ �

1.0 were made and a plot of ac as a function of µ is given.

We noted in the literature some limitations. First, the results of the

stability boundary of satellites have been done for the cases of plan-

ets with circular orbits. Secondly, there is not a general expression

for the stability boundary that explicitly included the eccentricities

of the planet and the satellite. Thirdly, the numerical results have

been limited to fairly short integrations.

In this work, we simulated only the case µ = 10−3 and it differs

from Holman & Wiegert’s work in the sense that here we consider

a wide range of eccentricities of both bodies, that is, the secondary

and also the particle’s eccentricity. Moreover, from our results we

derive an expression for the critical stable semimajor axis of the

particle as a function of the secondary mass and of eccentricities of

both bodies. Our purpose is to derive the empirical expression of

stability boundary for prograde and retrograde orbits. These expres-

sions can be more directly applicable to current searches of satellites

in extrasolar planetary systems. It is our hope that these results can

be used as a guide in selecting a sample of suitable candidates for a

survey of satellites.

This paper is structured as follows. In Section 2, we present the

numerical approach adopted and give the results found. Section 3

is devoted to the analysis of the numerical results. In Section 4, we

discuss the implications of our results for the existence of satel-

lites around extrasolar planets. Our conclusions are presented in

Section 5.

2 N U M E R I C A L S I M U L AT I O N S

In this study we numerically investigate the orbital stability within

the elliptic-restricted three-body problem, Star-planet–satellite. The

numerical code is based on the Gauss–Radau integrator (Everhart

1985) and has been fully tested (Vieira Neto & Winter 2001a).

The satellite is modelled as a test particle moving in the gravi-

tational fields of the star and the planet on a fixed eccentric orbit

about the star. In agreement with Holman & Wiegert (1999), in the

systems with high mass ratio, the stability limit (or the critical semi-

major axis) of a body in a circular orbit is a ∝ f RHill, where f is a

constant.

In this work the numeric estimates of the value of f is obtained

considering a grid of initial conditions for the satellites with the

following initial conditions for the planet: semimajor axis (ap)

0.1 au, eccentricity ep from 0.0 to 0.9 with �eP = 0.1. The ini-

tial angular elements true anomaly f and the longitude of pericentre

̟ are taken to be zero and the inclination is 0◦ for the prograde case

and 180◦ for the retrograde one.

For the hypothetical satellites, we take the initial semimajor

axis (asat) from 1.1 to 40RP (RP is the Jupiter’s radius) and ini-

tial eccentricity (esat) from 0.0 to 0.5. Prograde satellites assumed

�asat = 0.1RP and �esat = 0.01. Retrograde satellites assumed

�asat = 0.2RP and �esat = 0.025. The retrograde orbits are sta-

ble at larger semimajor axes than the prograde orbits (Hamilton &

Krivov 1997), so we reduced the grid for the initial conditions (asat,

esat) to test the retrograde orbits. We justify our choice for to reduce

the amount of computer time.

The numeric simulations were made for an interval of 104 planet’s

orbital periods. The integration was interrupted whenever one of the

situations appeared: collision between the satellite and the planet, the

satellite collided with the Star or the satellite’s planetocentric energy

became positive (escape) (Vieira Neto, Winter & Melo 2005). The

initial conditions of the survived satellites for full integration time

were considered stable. Thus, each point in the figures corresponds

to one trajectory.

2.1 Prograde case

The numerical results for the prograde case are presented in Figs 1

and 2. There we illustrate asat up to 20RP for better graphic visibility
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Figure 1. Regions of stability of hypothetical prograde satellites in the space

of initial conditions asat versus esat, for a planet in a circular orbit. The white

region corresponds to the stable region. The outer border of this region

corresponds to the zero-velocity curve associated to L1. The grey colour

indicates the unstable regions. The symbol + refers to the collision of the

satellite.
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Figure 2. Regions of stability of hypothetical prograde satellites in the space of initial conditions asat versus esat. In each plot the planet has a given eccentricity:

(a) eP = 0.1; (b) eP = 0.2; (c) eP = 0.3; (d) eP = 0.4; (e) eP = 0.5; (f) eP = 0.6; (g) eP = 0.7 and (h) eP = 0.8. The white regions correspond to stable regions.

The grey colour indicates the unstable regions. The symbol + refers to the collision of the satellite.

of the stable region. In Fig. 1, the orbit of the planet was assumed

to be circular. The line at the border to the right of the white region

corresponds to the zero-velocity curve associated to L1. One of the

important features presented in the results was that usually satellites

escape in a maximum time of 320 orbital periods of the planet.

In agreement with Rabl & Dvorak (1988) and Holman & Wiegert

(1999), an integration time of approximately 300 primary’s orbital

periods would be enough to determine the gross stability boundary.

In our simulations, it is noticed that the stability region extends

to about seven planetary radius what corresponds to approximately
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Figure 3. Regions of stability of hypothetical retrograde satellites in the

space of initial conditions asat versus esat, for a planet in a circular or-

bit. The white region corresponds to the stable region. The grey colour

indicates the unstable regions. The symbol + refers to collision of the

satellite.

half of RHill. Therefore, the stability region limit is approximately

given by a = RHill/2 for eP = esat = 0.

In Fig. 2, we present the results for elliptic cases where eP as-

sumes values from 0.1 to 0.8 with �eP = 0.1. In such cases the sta-

bility region reduces with the increase of the planet’s eccentricity, as

expected.

Planets with the same initial semimajor axis but with a larger ec-

centricity have a smaller stability region. This is not perhaps surpris-

ing because a planet (or a satellite) with a larger orbital eccentricity

is able to wander further from a star (or a planet) than one with a

smaller one, and will therefore suffer larger perturbations from the

star (or the planet). Our results suggest that for eP > 0.8 the stability

region tends to disappear.

2.2 Retrograde case

The numerical results for the retrograde case are presented in Figs 3

and 4. In Fig. 3, the orbit of the planet was assumed to be circular.

Usually satellites escape or collide with the planet in less than 200

orbital periods of the planet. Therefore, satellites that survive for

more than 200 orbital periods are stable. The results lead to the

same conclusions regarding the greater stability region for circular

orbits (Fig. 3). It is important to note that in the retrograde case there

are stability regions even outside the zero-velocity curve associated

to L1. In the case of satellites in circular orbits, we have found that the

stability region extends to about 13.6 planetary radius. Therefore,

the stability region limit is approximately given by a = RHill for

eP = esat = 0. The retrograde orbits are stable out for higher values

of the eccentricity and to considerably greater distances from the

planet than the prograde orbits. These stable regions are due to the

quasi-periodic orbits associated to the periodic orbits of family ‘F’

(Vieira Neto & Winter 2001b).

In Fig. 4, we present the results for elliptic cases where eP as-

sumes values from 0.1 to 0.8 with �eP = 0.1. In such cases the

stability region reduces with the increase of eP, as expected. The

quasi-periodic orbits, associated to the periodic orbits of family ‘F’,

are destroyed with the increase of eP. Our results suggest that for

eP > 0.9 the stability region tends to disappear.

3 A NA LY S I S O F T H E R E S U LT S

According to these results, the stability boundary has two borders:

one internal and other external. We noted that there are escape and

collision orbits close to the borders. As expected, these borders have

dependence on eP and esat. In Fig. 5, we present a sketch showing

the dependence of esat on asat illustrating the stability and instability

regions of the satellites. The white area corresponds to the stability

region, delimited by what we called internal (aI) and external (aE)

critical semimajor axis. The grey area corresponds to escape or

collision of satellites.

It can be seen that the inner border separates the collision and

stable regions. In this case, what dominates the collision pro-

cess is the distance of the satellite to the planet. Satellites suffer

a small gravitational perturbation of the star and they are sub-

jected to a relatively larger gravitational influence of the planet.

The usual effects of such perturbation can be seen from collision

trajectories.

Since the relative strengths of perturbations change with separa-

tions, trajectories of the satellites have quite different characteristics

depending on their distances from the planet. Satellites have stable

orbits since the planet’s gravity dominates all perturbations. When

the distance is increased, the star’s perturbation becomes so large

that in such region the forces from the star and planet are compara-

ble. Then, the escape or the collision of the satellite with the planet

can occur. We call ‘stability boundary’ or external critical semima-

jor axis (aE), the ‘limit’ between the regions of stable orbits and that

of the collision/escape orbits.

Our results show differences between the value of aE for the pro-

grade and retrograde cases. For the retrograde case, a combination

of increased values of asat and esat produces a stability region beyond

that for prograde orbits. Also, after a certain value of asat it appears

as a stable region of quasi-periodic orbits associated to the periodic

orbits of family ‘F’.

Following the idea that there are critical distances of the planet,

given by aI and aE, beyond which the satellite will collide or escape,

we determined such boundaries from the results of our simulations.

For each pair of values of eP and esat the value of aI and aE are

measured. From these numbers, empirical expressions that give the

critical semimajor axis as functions of eP and esat are derived. The aE

is the most important result because within this stability boundary

it is expected that there can exist stable satellite orbits around the

planet.

For the prograde case, the results of approximately 50 points

for each value of eP are used to establish an analytical expression

for aI and aE as functions of eP and esat. For the retrograde case,

the expression for aI was derived from about seven points for each

value of eP. The expression for aE was obtained using two points for

each value of eP. In this sense, we choose the first (esat = 0) and the

last (highest esat) value for aE on the external border of the regions.

The points considered on the borders of regions do not included the

regions of quasi-periodic orbits associated to the periodic orbits of

family ‘F’. A fit using an implementation of the non-linear least-

squares through a Marquardt–Levenberg algorithm to the data yields

for the prograde case

aI = (1.0891 ± 0.0049) + (0.4576 ± 0.0472)esat

+ (2.9559 ± 0.0932)e2
sat, (1)

aE = (7.0051 ± 0.0363) − (1.9180 ± 0.0687)esat

− (7.2189 ± 0.0543)eP (2)
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Figure 4. Regions of stability of hypothetical retrograde satellites in the space of initial conditions asat versus esat. In each plot the planet has a given eccentricity:

(a) eP = 0.1; (b) eP = 0.2; (c) eP = 0.3; (d) eP = 0.4; (e) eP = 0.5; (f) eP = 0.6; (g) eP = 0.7 and (h) eP = 0.8. The white regions correspond to stable regions.

The grey colour indicates the unstable regions. The symbol + refers to the collision of the satellite.

and for the retrograde case

aI = (1.1271 ± 0.1367) + (5.4003 ± 0.2289)e2
sat, (3)

aE = (13.3214 ± 0.4974) − (14.3395 ± 0.6791)eP

− (13.0716 ± 1.177)esat + (12.5821 ± 1.877)ePesat. (4)

These expressions are given in terms of the planet’s radius units.

Each coefficient is listed along with its formal uncertainty.

Following the idea that the stability region is proportional to the

size of the Hill’s sphere of the planet, our results can be considered

for other values of semimajor axis (aP) and the masses of the planet
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Figure 5. Sketch illustrating the stability and instability regions of prograde

satellites in the initial conditions space, asat × esat. The stable region is

delimited by the internal (aI) and external (aE) critical semimajor axes. The

left-hand border of the black region is determined by a(1 − esat) = RP.

and the star (MP and M⋆). The difference of the results will be just

scalefactors (Hamilton & Burns 1991). Therefore, the expressions

for aE can be written in terms of the Hill’s radius. We found for the

prograde case (equation 2),

aE ≈ 0.4895 (1.0000 − 1.0305eP − 0.2738esat) (5)

and for the retrograde case (equation 4)

aE ≈ 0.9309 (1.0000 − 1.0764eP − 0.9812esat

+ 0.9446ePesat). (6)

Analysing these expressions, it can be noted that the values of aI

do not depend on the eP value and they can be regarded as empirical

planet’s collision lines as it is shown in Figs 5 and 6. In this two cases

the numerical estimates (equations 1 and 3) and calculated values

(planet’s collision line) are very close. Undoubtedly, there exists a

strong dependence on the satellite eccentricity which is physically

clear from the fact that the gravitational perturbation of the planet

on the satellite increases significantly with esat.

For the external semimajor axis, we can see immediately the de-

crease of aE with eP, which can be explained by the decrease of

the minimum distance between the primaries. Thus, the perturba-

Figure 6. Sketch illustrating the stability and instability regions of retro-

grade satellites in the initial conditions space, asat × esat. The stable region

is delimited by the internal (aI) and external (aE) critical semimajor axes.

The white region denoted by the letter ‘F’ corresponds to the stable region

associated to the family of periodic orbits named F. The left-hand border of

the black region is determined by a(1 − esat) = RP.

tions felt by an orbiting satellite are maximum when the planet

is near the pericentre of its orbit. In general, therefore, satellites

would be expected to escape during the movement of the planet

through its pericentre. Hamilton & Burns (1992) studied the forces’

components acting on the problem of initially elliptic orbits. They

concluded that the stability region scales roughly as the size of the

Hill’s sphere calculated at the planet’s pericentre. Analysing equa-

tions (5) and (6) we have that for eP = esat = 0 aE ≈ RHill/2 and

aE ≈ RHill, respectively. When eP is different from zero, aE decreases

by a scalefactor of approximately (1 − eP), i.e., the relation aE ∝

f RHill, is still valid, but now RHill will be computed at the planet’s

pericentre. It is also interesting to note that for retrograde orbits

there is a stronger dependence on esat than for the prograde orbits.

With the increase of the value of esat the size of the stable region of

retrograde orbits reduces more than that for prograde orbits.

4 E X T R A S O L A R P L A N E T S ’ S AT E L L I T E S

For planets orbiting close to the star, the tidal effect induced by the

star on the planet slows down the planet’s rotation. Then, the result-

ing tidal effect of the planet on a satellite makes it migrate internally

towards the planet. Eventually these satellites collide with the planet

or are broken up once they migrate inside the Roche limit. The Roche

limit for fluid satellite is given by RRoche = 2.46RP (Chandrasekhar

1968). Therefore, the satellite of a planet with critical semimajor

axis smaller than 2.46RP would have to be small (broken pieces).

Barnes & O’Brien (2002) presented a study on the stability of

satellites in the circular orbits around extrasolar planets that are close

to their stars. Following that, we describe and adopt the analytical

treatment that they used in order to estimate the superior limit of the

mass for primordial satellites that could have survived to these tidal

effects.

There are three possible outcomes of tidal evolution in planet–

satellite systems: (i) the orbit may move outward towards escape;

(ii) the satellite’s orbital and the planet’s spin periods may approach

stable synchronism and (iii) the satellite orbit may decay inward

towards the planet. In this study, we considered only the third pos-

sibility. Considering that the lifetime T of a satellite can be given by

the time needed for its orbit to cross the region between the critical

semimajor axis, aE, and the surface of the planet, RP, we have that

(Murray & Dermott 1999)

T =
2

13

(

a
13/2

E − R
13/2

P

) QP

3k2P Msat R
5
P

√

MP

G
, (7)

where QP is the tidal dissipation factor, k2P is the Love number,

G is the gravitational constant and Msat is the satellite mass. Since

RP ≪ aE, the term R
13/2

P in parentheses can be neglected. Using

aE = fRHill and T as the age of the star, the maximum satellite mass

is given by

Msat =
2

13
( f RHill)

13/2 QP

3k2P T R5
P

√

MP

G
. (8)

Barnes & O’Brien (2002) estimated the maximum mass of the

prograde satellites in a circular orbit around a set of extrasolar plan-

ets with aP < 0.3 au. For the mass ratio MP/Mstar = MJ/M⊙ they

used f = 0.36, from Holman & Wiegert (1999). They considered

only planets with near circular orbits because aE had not been found

for eccentric orbits.

From equation (5) we have that f = 0.4895 when eP = esat = 0,

which is significatively larger than that found by Holman & Wiegert

(1999). Our results were also generated for different values of eP.
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Table 1. External critical semimajor axis, aE, and the maximum satellite mass for a selection of extrasolar planets with

aP � 1.1 au. The computation of aE was made using equation (5), for prograde satellites with a circular orbit (esat = 0),

and the results are given in a planetary radius, RP, assuming that the planet has the same density as that of the Jupiter.

Star M⋆(M⊙) MP sin iP (MJ) aP (au) eP aE (RP) Msat (M⊕)

HD73256 1.05 1.85 0.037 0.04 2.35 2.4 × 10−5

HD179949 1.24 0.98 0.040 0.00 2.61 1.9 × 10−5

HD46375 1.00 0.25 0.041 0.04 2.64 6.9 × 10−6

HD187123 1.06 0.54 0.042 0.01 2.83 1.9 × 10−5

BD-103166 1.10 0.48 0.046 0.05 2.81 2.1 × 10−5

HD209458 1.05 0.63 0.046 0.02 3.04 3.8 × 10−5

Tau Boo 1.30 4.14 0.047 0.04 2.78 1.6 × 10−4

HD75289 1.05 0.46 0.047 0.01 3.18 3.4 × 10−5

HD76700 1.00 0.19 0.049 0.00 3.43 2.2 × 10−5

51 Peg 1.00 0.46 0.052 0.01 3.57 7.3 × 10−5

HD49674 1.00 0.12 0.057 0.00 3.99 3.7 × 10−5

HD168746 0.92 0.24 0.066 0.00 4.76 2.3 × 10−4

HD68988 1.20 1.90 0.071 0.14 3.45 2.8 × 10−4

HD217107 0.98 1.29 0.072 0.14 3.74 6.9 × 10−4

HD162020 0.70 14.40 0.074 0.28 2.99 5.8 × 10−3

HD130322 0.79 1.15 0.092 0.05 6.28 9.5 × 10−3

HD108147 1.20 0.40 0.104 0.40 2.42 1.3 × 10−4

GJ86 0.79 4.23 0.117 0.04 8.16 1.8 × 10−1

HD195019 1.02 3.55 0.136 0.02 9.09 2.6 × 10−1

HD6434 1.00 0.48 0.154 0.30 5.22 8.6 × 10−3

HD192263 0.79 0.75 0.150 0.03 10.69 1.7 × 10−1

Rho Crb 0.95 0.99 0.224 0.07 13.78 1.5

HD3651 0.79 0.20 0.284 0.63 2.79 3.9 × 10−3

HD121504 1.00 0.89 0.317 0.13 16.74 7.6

HD178911 0.90 6.46 0.326 0.14 17.41 7.7 × 101

HD16141 1.00 0.22 0.351 0.21 15.23 1.9 × 101

HD114762 0.82 10.96 0.351 0.33 11.62 4.7 × 101

HD80606 0.90 3.43 0.438 0.93 0.09 8.1 × 10−7

HD216770 0.90 0.70 0.460 0.32 15.22 1.6 × 101

70 Vir 1.10 7.41 0.482 0.40 11.54 6.3 × 101

HD52265 1.13 1.14 0.493 0.29 16.51 1.3 × 101

HD1237 0.96 3.45 0.505 0.51 8.34 5.3 × 101

HD73526 1.02 3.63 0.647 0.52 10.03 9.4 × 102

HD8574 1.10 2.04 0.770 0.31 24.55 9.4 × 102

HD40979 1.08 3.16 0.818 0.26 30.27 1.7 × 104

HD150706 0.98 1.00 0.820 0.38 21.82 4.3 × 102

HD134987 1.05 1.63 0.821 0.37 22.06 6.8 × 102

HD169830 1.40 2.95 0.823 0.34 22.10 9.2 × 102

HD202206 0.90 17.50 0.830 0.43 19.12 5.5 × 103

HD89744 1.40 7.17 0.883 0.70 4.62 1.4 × 101

HD17051 1.03 1.94 0.910 0.24 36.12 5.9 × 103

HD92788 1.06 3.88 0.969 0.28 34.11 1.2 × 104

HD142 1.10 1.36 0.980 0.37 25.93 1.6 × 103

HD128311 0.80 2.63 1.010 0.21 47.20 3.5 × 104

HD28185 0.99 5.70 1.030 0.07 62.49 1.6 × 105

HD108874 1.00 1.65 1.070 0.20 47.62 2.2 × 104

HD142415 1.03 1.73 1.070 0.50 18.00 8.6 × 102

HD4203 1.06 1.64 1.090 0.53 15.98 5.6 × 102

HD177830 1.17 1.24 1.100 0.40 12.95 2.0 × 103

In the case of prograde satellites in circular orbits we have

f (eP) = 0.4895(1 − 1.0305eP). (9)

In Table 1, the external critical semimajor axis for prograde

satellites in circular orbits, aE (equation 5) and the maximum

satellite mass (equation 9) for a selection of extrasolar planets

(http://exoplanets.org) are given. The tidal effects will not force

planets to be synchronous if they have semimajor axis larger than

0.1 au. Just for comparison, we considered a set of extrasolar planets

with aP � 1.1 au.

Analysing these results we have found that even planets that are

very close to the star, ap < 0.1 au, can harbour a satellite with mass

close to that of our Moon. We also noted that the Rho Crb’s planet,

which has aP = 0.224 au, could have a satellite with the Earth’s

mass. For the planets in the habitable zone (0.9 < aP < 1.1 au),

all the planets studied have a large stable region and could easily

support the Earth-like satellites.
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A comparison with the results from Barnes & O’Brien (2002)

shows that, in general, the maximum satellite mass is one order

of magnitude higher than the values they found. That is a direct

consequence of the value of f used by them and the one we derived

from our numerical simulations.

5 C O N C L U S I O N S

In this work, we have derived empirical expressions for the critical

semimajor axis of the borders of the satellite stable region for a

planet around a star. The expressions derived are given in terms of

the Hill’s radius and as a function of the eccentricities of the planet

and the satellite. That is a significant step forward with respect to

previous results. Our results also indicate that extrasolar planets in

the habitable zone could harbour the Earth-like satellites.
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