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Calculation of the mean orbit of a meteoroid stream
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ABSTRACT

The traditional approach used for averaging the parameters of a meteoroid gives results that are

biased by several conceptual defects: among others things, the mean orbital elements do not

satisfy the laws of celestial mechanics. The Voloshchuk & Kashcheev method in the domain

of geocentric parameters removes all of these defects except one: the epoch corresponding

to the mean geocentric values, which is critical for the calculation of the mean heliocentric

orbital elements from the mean geocentric radiant coordinates and velocity. We propose a new

approach: our solution gives the mean orbital elements and the geocentric radiant parameters

of the meteor stream, free from all conceptual faults. Instead of the Keplerian orbital elements,

we average the heliocentric vectorial elements, and the solution is obtained by the least-

squares method completed by placing two constraints on the mean vectorial elements. One

may calculate the corresponding geocentric parameters using the theoretical radiant approach.

However, to obtain mutually numerically consistent helioparameters and geoparameters, all

members of the stream should be pre-integrated into a common epoch of time. Our approach,

due to simultaneous averaging of seven variables, is limited to the streams of seven or more

members only. We give the results of the numerical example, which shows that the mean

values obtained by our approach differ slightly from those obtained by the traditional averaging.

However, for some streams and for some particular orbital elements, the differences can exceeds

2 au in the semimajor axes or 0.◦5 in the angular orbital elements.

Key words: meteors, meteoroids.

1 I N T RO D U C T I O N

As was noticed by Voloshchuk & Kashcheev (1999), the majority of

researchers determine the mean orbit or the mean radiant of meteor

streams using the arithmetic means of the corresponding values of

the stream members, i.e.

〈ε〉 =
1

N

N
∑

k=1

εk, (1)

where ε ∈ {a, q, e, ω, �, i} when the heliocentric parameters are

averaged, and ε ∈ {αG, δG, VG} in case of the geocentric parameters.

Equation (1) or its weighted counterpart were used separately for

each parameter, among others, by Whipple (1947, 1954), Kramer,

Vorobeva & Rudenko (1963), Southworth & Hawkins (1963),

Lindblad (1971a,b), Sekanina (1970b, 1973, 1976), Tedesco &

Harvey (1976), Jopek (1986), Lindblad & Porubčan (1991), Jopek

(1993), Lindblad, Porubčan & Štohl (1993), Wu & Williams (1992,

1996) and Arter & Williams (1997). However, as far as the angu-
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lar parameters are averaged, one can encounter some slight vari-

ations in such an approach, made to avoid problems resulting

from the incorrect normalization of the angles ω, � and αG in

the interval (0◦, 360◦), or to avoid the absurdity arising when the

members from northern and southern branches of the stream

are averaged together (see e.g. in Southworth & Hawkins 1963;

Lindblad 1971a; Jopek & Froeschlé 1997; Jopek, Valsecchi &

Froeschlé 2003).

Unfortunately, such an approach leads to several difficulties, some

of which have been pointed out in Jopek (1986), Voloshchuk (1998),

Voloshchuk & Kashcheev (1999) and Williams (2001), and which

are given below.

(i) The most important difficulty concerns celestial mechanics

because, for example, for the elements 〈a〉, 〈q〉, 〈e〉, we have

〈q〉 �= 〈a〉(1 − 〈e〉). (2)

(ii) There is internal numerical inconsistency between the mean

heliocentric and mean geocentric parameters of the same meteoroid

stream.

(iii) The heliocentric nodal distance lays outside the Earth cross-

ing interval; in astronomical units, the nodal distance is given
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by

RN =
q(1 + e)

1 ± e cos ω
,

where the minus sign is used for the descending node and the plus

sign is used for the ascending node of the mean orbit. Some authors

require that at least one of the nodal distances RN of the mean orbit

have to lay in the interval

0.983 � RN � 1.017. (3)

(iv) The unknown epoch of the mean parameters. The mean pa-

rameters are calculated using the values that correspond to different

epochs, therefore the question arises: what is the epoch of the mean

orbit or the mean radiant of the stream?

The reason for the first drawback, nicely explained in Voloshchuk

& Kashcheev (1999), is the correlation between the orbital elements

a and e. Indeed, between the expectations E[q], E[a], E[e], we have

the relationship

E[q] = E[a(1 − e)] = E[a] − E[ae] �= E[a] − E[a]E[e] (4)

and the second joint moment E[ae] = E[a]E[e], only when the

covariance K[ae] = E[ae] − E[a]E[e] = 0.

In light of this explanation, when each parameter is averaged

separately, the lack of correspondence between the heliocentric and

geocentric parameters is unavoidable. Also, partly, the correlation

among 〈q〉, 〈e〉, 〈ω〉 may cause both nodal distances RN of the mean

orbit to lay outside the interval given by condition (3). The unknown

epoch of the mean parameters, due to the low precision of the me-

teor data is not a very critical matter, but for certain, the approach

that brings such a problem is not correct conceptually. It is obvious

that the mean orbital elements have to satisfy the laws of celestial

mechanics, and that numerical consistency should exist among the

heliocentric and geocentric parameters. However, we do not see any

reason why the mean orbit of the stream has to fulfill condition (3).

Just the opposite, which one can easily notice in Fig. 1, which il-

lustrates the result of the simulation of the meteor stream origin

and evolution. During a single perihelion passage, a few thousand

particles were ejected from the object moving on the same orbit as

the comet 1P/1982 U1 (Marsden & Williams 2003). In the model of

the ejection of the particles, their evolutions were slightly different

to those used by Williams & Wu (1993, 1994). Fig. 1 shows two

distributions of the orbital nodes of all stream particles. As we see,

after 6000 yr of dynamical evolution, the mean orbit of the stream

determined from the whole population may cross the ecliptic plane

very far from the orbit of the Earth. On the other hand, the mean or-

bit calculated from the ‘observed’ orbital sample and thus the orbits

satisfying condition (3) represent the true mean orbit of the whole

population very poorly. One can find similar plots in Williams &

Wu (1993, 1994).

This simple example touches on quite a serious problem: what

do we really understand by the mean orbit and the mean radiant

of the meteor stream? The question is actual, because from the lit-

erature it follows that our conception of the mean parameters of

the stream is quite fuzzy. In Williams et al. (2004), the authors

distinguish two conceptions of the mean orbit of the stream. The

first one is used during meteor stream searching and is where the

mean orbit is determined using the only observed orbit. The sec-

ond one is used by stream modellers, who calculate the mean orbit

using the whole sample of test particles. Within the first con-

ception, one can expect that the mean orbit has to fulfil condi-

tion (3), which is not the case when the second conception is

considered.

Figure 1. Results of the dynamical evolution of the meteor stream ejected

from the Halley-type comet. The orbital nodes of the meteoroids and their

parent body are plotted on the ecliptic plane. In the top panel, the nodes at the

epoch close to the moments of the ejections are plotted; in the bottom panel,

the node positions correspond to the epoch 6000 yr later. The crossings of

the ecliptic by three mean orbits are marked by the filled circle, open circle

and star. These orbits were the means of the whole population, and they

were calculated by the arithmetic mean, the weighted arithmetic mean and

the method proposed in Section 3, respectively.

Among astronomers, the mean orbits of the meteor streams are

of twofold importance. Sometimes they are of quite moderate im-

portance, as in Jopek, Valsecchi & Froeschlé (1999) and Williams

(2001), where the mean orbit is considered as an approximation that

gives some typical values of the orbital elements of the stream mem-

bers. However sometimes, the importance of the mean parameters

is quite high. In Babadzhanov & Obrubov (1980, 1982), Williams,

Murray & Hughes (1979), Murray, Hughes & Williams (1980) and

Fox, Williams & Hughes (1982), the mean orbital elements have

been used to investigate the long-term evolution of meteor streams.

Also, the mean orbit is compared with the orbit of the possible parent

of the stream, as in Fox, Williams & Hughes (1984) and Lindblad

(1990). The same holds true in the case of the mean radiant parame-

ters, because in many papers they were compared with the cometary

as well as the asteroidal theoretical radiants (see e.g. Kramer 1953,

1972; Drummond 1982; Asher & Steel 1995; Babadzhanov 1995,

1999, 2001).

From the above, it is clear, that the conception of the mean orbit

determined by the observed meteoroids and by equation (1) should

be considered with care: in particular, when it is used as an ap-

proximation of the mean orbit of the whole stream. To improve

our knowledge about the meteor streams, one needs to improve the

meteor orbital sample, which cannot be done without observations

outside the Earth. However, remaining on the Earth, we can improve

the averaging methods, freeing them from some critical defects.

In the following sections, we describe two such methods, the first

proposed by Voloshchuk & Kashcheev (1999), which makes use of

the geocentric parameters of the meteors, and the second developed

by us in the domain of heliocentric orbital parameters.
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2 AV E R AG I N G O F T H E G E O C E N T R I C

PA R A M E T E R S

Voloshchuk & Kashcheev (1999) consider the determination of all

mean parameters of the meteor stream (including the mean orbital

elements) by the mean values of the quantities almost directly cal-

culated using meteor observations: i.e. the geocentric parameters

αG, δG, VG and λ⊕ = λ⊙ − 90◦, where λ⊕ and λ⊙ are the eclip-

tic longitude of the apex of the orbital motion of the Earth and the

ecliptic longitude of the Sun at the meteor instant, respectively. The

mean values of the quantities VG and δG, Voloshchuk & Kashcheev

(1999) calculate as the weighed arithmetic means, while the values

of the weights are obtained by the method described in Sekanina

(1970a, 1976):

Wk =











(

1 −
Dsk

D0

)l

, Dsk � D0

0, Dsk > D0

, (5)

where Dsk means the orbital similarity measure between the mean

orbit Os found in the last iteration and the orbit Ok of the possible

stream member. For the constant values in expression (5), the authors

adopted D0 = 0.25 and l = 2.

Voloshchuk & Kashcheev (1999) accomplished the averaging of

the angles αG and λ⊕ by small variations of the approach described

in Mardia (1972): namely, the mean value of the angular random

variable β is taken as the solution of the system of equations

C = r cos β

S = r sin β
, (6)

while

C =
1

∑N

k=1
Wk

N
∑

k=1

Wk cos βk,

S =
1

∑N

k=1
Wk

N
∑

k=1

Wk sin βk,

r =
√

C2 + S2,

(7)

where N is the number of stream members, and the values of the

weights Wk are given by equation (5).

Averaging of the parameters of the meteor stream, as described

by Voloshchuk & Kashcheev (1999), is done simultaneously with

searching for stream members in the given meteor catalogue.

Searching is done using the same iterative method as in Sekan-

ina (1970a, 1976). In relation to Sekanina, at each iteration step,

instead of the orbital elements, averaging of the geocentric parame-

ters is done, and the mean radiant and mean geocentric velocity are

employed to find the mean orbital elements. However, Voloshchuk

& Kashcheev did not explain how they found the moment of time

corresponding to the mean geocentric parameters of the stream.

Such information is necessary to calculate the position and velocity

of the Earth and, finally, the heliocentric orbit of the stream. In our

opinion, the lack of the epoch corresponding to the mean parameters

is the only disadvantage of the method proposed by Voloshchuk &

Kashcheev (1999). The remaining defects, mentioned in Section 1,

for obvious reasons, are absent in their solution.

3 AV E R AG I N G O F T H E H E L I O C E N T R I C

V E C TO R I A L E L E M E N T S

To find the elements of the mean heliocentric orbits of meteor

streams, we propose a different approach: we apply the vectorial

elements of the stream members and we average these quantities

by the least-squares method with two constraints. One can easily

use the mean values of the vectorial elements to obtain the mean

Keplerian orbital elements and, in turn, they may be used to find the

mean geocentric parameters.

As the vector elements, we take (h, e, E)T , which consists of the

angular momentum vector h, the Laplace vector e and the energy

constant E. In the units au, au d−1 and the masses of the Sun, these

quantities are defined by the equations

h = (h1, h2, h3)T = r × ṙ , (8)

e = (e1, e2, e3)T =
1

µ
ṙ × h −

r

|r |
, (9)

E =
1

2
ṙ

2 −
µ

|r |
, (10)

where µ = k2 and k is the Gaussian constant, whereas r =
(x, y, z), ṙ = (ẋ, ẏ, ż) are the heliocentric vectors of the position

and velocity of the meteoroid, respectively.

From their definitions, the vectors h and e are mutually orthogo-

nal, h · e = 0, whereas the lengths of these vectors |h|, |e| and the

energy E are related by the equation

e2 = 1 +
2E

µ2
h2. (11)

Let the stream of N meteoroids be given by the set of orbits

Ok = (hk1, hk2, hk3, ek1, ek2, ek3, Ek)T , k = 1, ... , N .

The mean orbit of the stream we denote as O s = (hs, es, Es)
T = (hs1,

hs2, hs3, es1, es2, es3, Es)
T , and for the mean orbit, we also have

hs · es = 0,

2Es

µ2
h

2
s − e

2
s + 1 = 0.

(12)

The vectorial elements of the mean orbit and the orbits of stream

members differ by the small residuals

vk = O s − Ok

= (hs1 − hk1, hs2 − hk2, hs3 − hk3,

es1 − ek1, es2 − ek2, es3 − ek3, Es − Ek)T ,

k = 1, ... , N ,

which, in the matrix notation, one can write as the condition equation

v− IO s = −O, (13)

where we introduce the expanded vectors v= (v1, v2, ... , vN )T and

O = (O1, O2, ... , ON )T , while the block matrix I of size (7N, 7) is

assembled from the unit submatrices of size 7 × 7.

The vectorial elements of the mean orbit O s can be found by the

least-squares method applied to the condition equation (13) com-

pleted by two constraints given by equation (12). More precisely,

the least-squares method should be applied to the linear forms of

both systems of equations (12) and (13), i.e.

v− I
O s = −O + IO s0,

C
O s = g0, (14)

where the expanded vector 
O s contains corrections to the initial

values of the mean vectorial elements O s0 = (h0, e0, E0)T , and where

C =





e0 h0 0

2E0

µ2
|h0| −|e0|

h
2
0

µ2



 ,
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g0 =







h0 · e0

−
1

2

(

2E0

µ2
h

2
0 − e

2
0 + 1

)






.

For the linear equation (14) of conditions and constraints, the least-

squares criterion is

� = v
T Wv− 2L

T
c (C
Os − g0) → min, (15)

where W is the weight matrix of the vectorial elements of the stream

members, and Lc is the vector of Lagrange multipliers.

Minimization of the bilinear form (15) leads to a system of nine

normal equations and their solution is given by the matrix equation


O s = R−1
t, (16)

where, assuming that the weight matrix W=I, we have

R =

































N 0 0 0 0

0 N 0 0 0

0 0 N 0 0

0 0 0 N 0

0 0 0 0 N

0 0 0 0 0

0 0 0 0 0

−e10 −e20 −e30 −h10 −h20

− 4

µ2 h10 − 4

µ2 h20 − 4

µ2 h30 −2e10 −2e20

0 0 −e10 − 4

µ2 h10 E0

0 0 −e20 − 4

µ2 h20 E0

0 0 −e30 − 4

µ2 h30 E0

0 0 −h10 −2e10

0 0 −h20 −2e20

N 0 −h30 −2e30

0 N 0 2
h

2
0

µ2

−h30 0 0 0

−2e30
2

µ2 h
2
0 0 0





































and a vector t,

t =





































∑N

k=1
(h10 − h1k)

∑N

k=1
(h20 − h2k)

∑N

k=1
(h30 − h3k)

∑N

k=1
(e10 − e1k)

∑N

k=1
(e20 − e2k)

∑N

k=1
(e30 − e3k)

∑N

k=1
(E0 − Ek)

h0 · e0

e
2
0 − 2E0

µ2 h
2
0 − 1





































.

To solve the normal equation (16), one needs zero-approximation

values of the mean vector O s0 = (h0, e0, E0)T , which may be obtained

by the least-squares solutions without constraints, i.e. by reducing

the problem to the condition equation (13) only. The result of such

approximation is exactly the same as the one obtained by the arith-

metic means of separate components of the vectors Ok of stream

members.

Having the approximation O s0, by iteration of the solutions of

equation (16), successive corrections 
O s can be found with ease.

From our numerical experience, we know that the iterative procedure

converts very quickly and, after two to four steps, the semimajor axes

a1, a2 calculated by

a1 = −
µ

2Es

,

a2 = p/(1 − e2),

e = es =
√

1 +
2Es

µ2
h

2
s ,

p =
h

2
s

µ
(17)

have differed by less then 10−7 au. Also, after two to four steps,

the orthogonality condition hs ·es was close to 10−14, which is very

small when compared with the values 10−2–10−3 found from the

zero-approximations hs0 ·es0.

Below, for completeness, we give the formulae for the conver-

sion of the vectorial elements into the remaining Keplerian orbital

elements i, ω, �.

If hs = |hs| = |(hs1, hs2, hs3)| �= 0, the inclination of the mean

meteoroid orbit i may be computed by

cos i =
hs3

hs

, sin i =
√

h2
s1 + h2

s2

hs

. (18)

If i �= 0 and i �= π, for the longitude of the ascending node we have

equations

cos � =
−hs2

√

h2
s1 + h2

s2

, sin � =
hs1

√

h2
s1 + h2

s2

. (19)

Finally, if es = |es| = |(es1, es2, es3)| �= 0, i �= 0 and i �= π, one can

find the argument of perihelion ω from

cos ω =
hs1 es2 − hs2 es1

es

√

h2
s1 + h2

s2

, sin � =
hs es3

es

√

h2
s1 + h2

s2

. (20)

Our new approach may be applied for streams with a membership

greater than seven, best of all, with the orbits pre-integrated into a

common osculation epoch Ts. The well-defined epoch of the orbital

elements is important, because using it we can calculate the cor-

responding geocentric parameters in the same way as for so called

theoretical radiants of the cometary or asteroidal orbits (e.g. Kramer

1953; Sitarski 1964). In such a case, the method proposed in this

paper satisfies all the important requirements: the orbital elements

fulfill the laws of celestial mechanics; there is internal consistency

between geocentric and heliocentric meteor parameters; and all pa-

rameters correspond to a well-defined osculation epoch Ts. The

mean orbit found by our method unnecessarily has to cross the

orbit of the Earth, which in our opinion is quite normal as the orbits

of all pre-integrated stream members, also, may not cross the orbit

of the Earth calculated in the same epoch Ts.

3.1 Example

The method described in the previous section was applied for find-

ing the mean orbits of the streams identified in Jopek et al. (2003)

amongst 1830 photographic meteors. The results of our calculations

are given in Table 1, where, for comparison, the orbital elements

determined in Jopek et al. (2003) by arithmetic means are included

also. For obvious reasons, we compare the orbits of the streams of

more than seven members. As can be seen in Table 1, in general,
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Table 1. Comparison of the mean orbital elements of the meteoroid streams identified amongst a sample of 1830 photographic data. For each stream, the first

row corresponds to the values obtained by our approach. In the second row, the values taken from (Jopek et al. 2003), calculated as arithmetic means, are given.

The values of the semimajor axes, given in each second row, were found by us as the arithmetic mean of 1/a of the stream members. The second and third

columns contain the number of members and the activity dates of the streams, respectively.

Stream name M Dates a q e i ω �

(au) (au)

Lyrids 11 Apr 21 Apr 25 27.150 0.920 0.966 79.◦6 213.◦9 32.◦3

27.631 0.921 0.967 79.◦6 213.◦9 32.◦3

α Capricornids (N) 22 Jul 20 Aug 10 2.520 0.586 0.768 7.◦4 268.◦3 128.◦0

2.548 0.586 0.770 7.◦4 268.◦4 127.◦9

Perseids 307 Jul 30 Aug 22 26.602 0.953 0.964 113.◦1 152.◦1 139.◦0

28.966 0.955 0.967 113.◦2 152.◦1 139.◦0

κ Cygnids 23 Aug 4 Aug 22 3.791 0.973 0.743 35.◦1 202.◦9 141.◦2

3.869 0.975 0.748 35.◦1 202.◦9 141.◦1

Taurids (N) 33 Oct 16 Nov 24 1.973 0.339 0.828 3.◦4 295.◦5 223.◦6

2.123 0.339 0.841 3.◦4 296.◦3 222.◦7

Taurids (S) 50 Oct 19 Nov 22 2.104 0.365 0.827 5.◦3 113.◦0 41.◦4

2.222 0.367 0.836 5.◦3 112.◦7 41.◦5

Quadrantids 52 Jan 2 Jan 4 3.164 0.978 0.691 72.◦0 171.◦1 283.◦3

3.173 0.978 0.692 72.◦1 171.◦1 283.◦3

Geminids 279 Dec 7 Dec 16 1.357 0.140 0.897 23.◦9 324.◦4 262.◦2

1.365 0.140 0.897 23.◦9 324.◦4 262.◦2

Leonids 33 Nov 16 Nov 20 11.239 0.983 0.913 161.◦6 172.◦1 235.◦2

11.426 0.983 0.914 161.◦7 172.◦3 235.◦3

Orionids 32 Oct 18 Oct 28 17.183 0.575 0.967 164.◦1 81.◦7 28.◦8

17.765 0.575 0.968 164.◦1 81.◦9 28.◦9

S. δ Aquarids 16 Jul 22 Aug 9 2.663 0.082 0.969 25.◦9 149.◦9 309.◦7

2.782 0.084 0.970 26.◦4 149.◦9 309.◦6

the orbital elements differ by small values, more significantly for q

and e, usually of the order 10−3. However, in the case of Taurids,

the eccentricities differ by 10−2. Small differences for the angular

elements are of the order 0.◦1, but for Taurids they reached more

then 0.◦8. For obvious reasons, the largest differences are seen for

the semimajor axes, in the case of such streams as Perseids they can

reach 2.3 au or more.

4 C O N C L U S I O N S

The method usually used for the averaging of meteoroid parame-

ters gives results that are biased by several conceptual defects. The

method proposed by Voloshchuk & Kashcheev (1999) in the do-

main of geocentric parameters, being an important improvement,

removes some of them, except it leaves the unknown, how to find

the epoch corresponding to the mean geocentric values: a problem

that is critical for the calculation of heliocentric orbital elements

from the geocentric radiant coordinates and velocity.

In Section 3, we described the new approach: our solution gives

the mean orbit for which all relevant properties mentioned in Sec-

tion 1 are kept. The method makes use of the heliocentric vectorial

elements, the solution is obtained by the least-squares and two con-

straints are put on the mean vectorial elements.

Usually, averaging the orbits ends the meteor stream searching

procedure, which in some sense constitutes a definition of the me-

teor stream. Also, giving the mean heliocentric parameters of the

stream, our approach may be used as the last step of such a proce-

dure. To determine the mean geocentric parameters, our approach

should be supplemented by the theoretical radiant approach applied

to the mean orbit (see e.g. Kramer 1953; Sitarski 1964). However,

to provide the results consistent numerically, all meteoroids should

be pre-integrated into a common epoch of time, before starting the

procedure of searching for streams. It means that our new approach

imposes quite a great additional effort, just to obtain the mean or-

bital elements, the mean radiant coordinates and the mean geocentric

velocity, free from all inconsistencies mentioned in Section 1.
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Lindblad B. A., Porubčan V., 1991, Bull. Astron. Inst. Czechosl., S., 42, 354
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