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ABSTRACT

We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH

code, capable of following a collisionless fluid with the N-body method, and an ideal gas

by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH mani-

festly conserves energy and entropy in regions free of dissipation, while allowing for fully

adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole

expansion, which can optionally be applied in the form of a TreePM algorithm, where only

short-range forces are computed with the ‘tree’ method while long-range forces are deter-

mined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where

long-range and short-range forces can be integrated with different time-steps. Individual and

adaptive short-range time-steps may also be employed. The domain decomposition used in

the parallelization algorithm is based on a space-filling curve, resulting in high flexibility and

tree force errors that do not depend on the way the domains are cut. The code is efficient in

terms of memory consumption and required communication bandwidth. It has been used to

compute the first cosmological N-body simulation with more than 1010 dark matter particles,

reaching a homogeneous spatial dynamic range of 105 per dimension in a three-dimensional

box. It has also been used to carry out very large cosmological SPH simulations that account for

radiative cooling and star formation, reaching total particle numbers of more than 250 million.

We present the algorithms used by the code and discuss their accuracy and performance using

a number of test problems. GADGET-2 is publicly released to the research community.
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1 I N T RO D U C T I O N

Cosmological simulations play an ever more important role in theo-

retical studies of the structure formation process in the Universe.

Without numerical simulations, the � cold dark matter (CDM)

model may arguably not have developed into the leading theoretical

paradigm for structure formation which it is today. This is because

direct simulation is often the only available tool to compute accurate

theoretical predictions in the highly non-linear regime of gravita-

tional dynamics and hydrodynamics. This is particularly true for the

hierarchical structure formation process with its inherently complex

geometry and three-dimensional (3D) dynamics.

The list of important theoretical cosmological results based on

simulation work is therefore quite long, including fundamental re-

sults such as the density profiles of dark matter haloes (e.g. Navarro,

Frenk & White 1996), the existence and dynamics of dark matter

substructure (e.g. Tormen 1997), the non-linear clustering proper-

ties of dark matter (e.g. Jenkins et al. 1998), the halo abundance (e.g.

Jenkins et al. 2001), the temperature and gas profiles of clusters of

galaxies (e.g. Evrard 1990), or the detailed properties of Lyman α

⋆E-mail: volker@mpa-garching.mpg.de

absorption lines in the interstellar medium (ISM; e.g. Hernquist et al.

1996). Given that many astrophysical phenomena involve a complex

interplay of physical processes on a wide range of scales, it seems

clear that the importance of simulation methods will continue to

grow. This development is further fuelled by the rapid progress in

computer technology, which makes an ever larger dynamic range

accessible to simulation models. However, powerful computer hard-

ware is only one requirement for research with numerical simula-

tions. The other, equally important one, lies in the availability of

suitable numerical algorithms and simulation codes, capable of ef-

ficiently exploiting available computers to study physical problems

of interest, ideally in a highly accurate and flexible way, so that new

physics can be introduced easily.

This paper is about a novel version of the simulation code

GADGET, which was written and publicly released in its original form

four years ago (Springel, Yoshida & White 2001a), after which it

found widespread use in the research of many simulation groups.

The code discussed here has principal capabilities similar to the

original GADGET code. It can evolve all the systems (plus a num-

ber of additional ones) that the first version could, but it does

this more accurately, and substantially faster. It is also more flexi-

ble, more memory efficient, and more easily extendible, making it
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considerably more versatile. These improvements can be exploited

for more advanced simulations and demonstrate that progress in al-

gorithmic methods can be as important, or sometimes even more

important, than the performance increase offered by new genera-

tions of computers.

The principal structure of GADGET-2 is that of a TreeSPH code

(Hernquist & Katz 1989), where gravitational interactions are com-

puted with a hierarchical multipole expansion, and gas dynamics

is followed with smoothed particle hydrodynamics (SPH). Gas and

collisionless dark matter1 are both represented by particles in this

scheme. Note that while there are a large variety of techniques for

computing the gravitational field, the basic N-body method for rep-

resenting a collisionless fluid is the same in all cosmological codes,

so that they ultimately only differ in the errors with which they

approximate the gravitational field.

Particle-mesh (PM) methods (e.g. Klypin & Shandarin 1983;

White, Frenk & Davis 1983) are the fastest schemes for comput-

ing the gravitational field, but for scales below one to two mesh

cells, the force is heavily suppressed; as a result, this technique is

not well suited for work with high spatial resolution. The spatial

resolution can be greatly increased by adding short-range direct-

summation forces (Hockney & Eastwood 1981; Efstathiou et al.

1985), or by using additional Fourier meshes adaptively placed on

regions of interest (Couchman 1991). The mesh can also be adap-

tively refined, with the potential found in real space using relaxation

methods (Kravtsov, Klypin & Khokhlov 1997; Knebe, Green &

Binney 2001).

The hierarchical tree algorithms (Appel 1985; Barnes & Hut 1986,

hereafter BH; Dehnen 2000) follow a different approach, and have

no intrinsic resolution limit. Particularly for mass distributions with

low-density contrast, they can however be substantially slower than

Fourier-based methods. The recent development of TreePM hybrid

methods (Xu 1995) tries to combine the best of both worlds by

restricting the tree algorithm to short-range scales, while computing

the long-range gravitational force by means of a PM algorithm.

GADGET-2 offers this method as well.

Compared to gravity, much larger conceptual differences exist

between the different hydrodynamical methods employed in cur-

rent cosmological codes. Traditional ‘Eulerian’ methods discretize

space and represent fluid variables on a mesh, while ‘Lagrangian’

methods discretize mass, using, for example, a set of fluid particles

to model the flow. Both methods have found widespread applica-

tion in cosmology. Mesh-based codes include algorithms with a

fixed mesh (e.g. Cen & Ostriker 1992, 1993; Yepes et al. 1995; Pen

1998), and more recently also with adaptive meshes (e.g. Bryan &

Norman 1997; Norman & Bryan 1999; Kravtsov, Klypin & Hoffman

2002; Teyssier 2002; Quilis 2004). Lagrangian codes have almost

all employed SPH thus far (e.g. Evrard 1988; Hernquist & Katz

1989; Navarro & White 1993; Couchman, Thomas & Pearce 1995;

Katz, Weinberg & Hernquist 1996; Serna, Alimi & Chieze 1996;

Steinmetz 1996; Davé, Dubinski & Hernquist 1997; Tissera, Lambas

& Abadi 1997; Owen et al. 1998; Serna, Dominguez-Tenreiro &

Saiz 2003; Wadsley, Stadel & Quinn 2004), although this is not the

only possibility (Gnedin 1995; Whitehurst 1995).

Mesh codes offer superior resolving power for hydrodynamical

shocks, with some methods being able to capture shocks without

artificial viscosity, and with very low residual numerical viscos-

ity. However, static meshes are only poorly suited for the high dy-

namic range encountered in cosmology. Even for meshes as large

1 The stars in galaxies can also be well approximated as a collisionless fluid.

as 10243, which is a challenge at present (e.g. Cen et al. 2003; Kang

et al. 2005), individual galaxies in a cosmological volume are poorly

resolved, leaving no room for resolving internal structure such as

bulge and disc components. A potential solution is provided by new

generations of adaptive mesh refinement (AMR) codes, which are

beginning to be more widely used in cosmology (e.g. Abel, Bryan

& Norman 2002; Kravtsov, Klypin & Hoffman 2002; Refregier &

Teyssier 2002; Motl et al. 2004). Some drawbacks of the mesh re-

main however even here. For example, the dynamics is in general

not Galilean-invariant, there are advection errors, and there can be

spurious generation of entropy due to mixing.

In contrast, Lagrangian methods such as SPH are particularly well

suited to follow the gravitational growth of structure, and to automat-

ically increase the resolution in the central regions of galactic haloes,

which are the regions of primary interest in cosmology. The accurate

treatment of self-gravity of the gas in a fashion consistent with that

of the dark matter is a further strength of the particle-based SPH

method. Another fundamental difference with mesh-based schemes

is that thermodynamic quantities advected with the flow do not mix

between different fluid elements at all, unless explicitly modelled.

An important disadvantage of SPH is that the method has to rely on

an artificial viscosity for supplying the necessary entropy injection

in shocks. The shocks are broadened over the SPH smoothing scale

and not resolved as true discontinuities.

In this paper, we give a concise description of the numerical model

and the novel algorithmic methods implemented in GADGET-2, which

may also serve as a reference for the publicly released version of this

code. In addition, we measure the code performance and accuracy

for different types of problems, and discuss the results obtained for

a number of test problems, focusing in particular on gas-dynamical

simulations.

This paper is organized as follows. In Section 2, we summarize the

set of equations the code integrates forward in time. We then discuss

in Section 3 the algorithms used to compute the ‘right-hand side’ of

these equations efficiently, i.e. the gravitational and hydrodynami-

cal forces. This is followed by a discussion of the time integration

scheme in Section 4, and an explanation of the parallelization strat-

egy in Section 5. We present results for a number of test problems

in Section 6, followed by a discussion of code performance in Sec-

tion 7. Finally, we summarize our findings in Section 8.

2 BA S I C E QUAT I O N S

We here briefly summarize the basic set of equations that are stud-

ied in cosmological simulations of structure formation. These de-

scribe the dynamics of a collisionless component (dark matter or

stars in galaxies) and of an ideal gas (ordinary baryons, mostly

hydrogen and helium), both subject to and coupled by gravity in

an expanding background space. For brevity, we focus on the dis-

cretized forms of the equations, noting the simplifications that apply

for non-expanding space where appropriate.

2.1 Collisionless dynamics

The continuum limit of non-interacting dark matter is described by

the collisionless Boltzmann equation coupled to the Poisson equa-

tion in an expanding background Universe, the latter taken normally

as a Friedman–Lemaı̂tre model. Due to the high dimensionality

of this problem, these equations are best solved with the N-body

method, where phase-space density is sampled with a finite number

N of tracer particles.
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The dynamics of these particles is then described by the

Hamiltonian

H =
∑

i

p2
i

2 mi a(t)2
+

1

2

∑

i j

mi m j ϕ(xi − x j )

a(t)
, (1)

where H = H (p1, . . . , p N , x1, . . . , x N , t). x i are comoving coor-

dinate vectors, and the corresponding canonical momenta are given

by pi = a2mi ẋi . The explicit time dependence of the Hamiltonian

arises from the evolution a(t) of the scalefactor, which is given by

the Friedman–Lemaı̂tre model.

If we assume periodic boundary conditions for a cube of size L3,

the interaction potential ϕ(x) is the solution of

∇2ϕ(x) = 4πG

[

−
1

L3
+

∑

n

δ̃(x − nL)

]

, (2)

where the sum over n = (n1, n2, n3) extends over all integer triplets.

Note that the mean density is subtracted here, so the solution corre-

sponds to the ‘peculiar potential’, where the dynamics of the system

is governed by ∇2φ(x) = 4πG[ρ(x) − ρ]. For our discretized par-

ticle system, we define the peculiar potential as

φ(x) =
∑

i

mi ϕ(x − xi ). (3)

The single particle density distribution function δ̃(x) is the Dirac δ-

function convolved with a normalized gravitational softening kernel

of comoving scale ǫ. For it, we employ the spline kernel (Monaghan

& Lattanzio 1985) used in SPH and set δ̃(x) = W (|x|, 2.8ǫ), where

W(r) is given by

W (r , h) =
8

πh3
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(4)

For this choice, the Newtonian potential of a point mass at zero

lag in non-periodic space is −G m/ǫ, the same as for a Plummer

‘sphere’ of size ǫ.

If desired, we can simplify to Newtonian space by setting a(t) =
1, so that the explicit time dependence of the Hamiltonian vanishes.

For vacuum boundaries, the interaction potential simplifies to the

usual Newtonian form, i.e. for point masses it is given by ϕ(x) =
−G/|x| modified by the softening for small separations.

Note that independent of the type of boundary conditions, a com-

plete force computation involves a double sum, resulting in an

N2-scaling of the computational cost. This reflects the long-range

nature of gravity, where each particle interacts with every other par-

ticle, making high-accuracy solutions for the gravitational forces

very expensive for large N. Fortunately, the force accuracy needed

for collisionless dynamics is comparatively modest. Force errors up

to ∼1 per cent tend to only slightly increase the numerical relax-

ation rate without compromising results (Hernquist, Hut & Makino

1993), provided the force errors are random. This allows the use

of approximative force computations using methods such as those

discussed in Section 3. We note however that the situation is differ-

ent for collisional N-body systems, such as star clusters. Here direct

summation can be necessary to deliver the required force accuracy, a

task that triggered the development of powerful custom-made com-

puters such as GRAPE (e.g Makino 1990; Makino et al. 2003).

These systems can then also be applied to collisionless dynamics

using a direct-summation approach (e.g. Steinmetz 1996; Makino

et al. 1997), or by combining them with tree or TreePM methods

(Fukushige, Makino & Kawai 2005).

2.2 Hydrodynamics

SPH uses a set of discrete tracer particles to describe the state of

a fluid, with continuous fluid quantities being defined by a kernel

interpolation technique (Gingold & Monaghan 1977; Lucy 1977;

Monaghan 1992). The particles with coordinates r i , velocities vi

and masses mi are best thought of as fluid elements that sample the

gas in a Lagrangian sense. The thermodynamic state of each fluid

element may be defined either in terms of its thermal energy per unit

mass, ui, or in terms of the entropy per unit mass, si. We prefer to

use the latter as the independent thermodynamic variable evolved

in SPH, for reasons discussed in full detail in Springel & Hernquist

(2002). Our formulation of SPH manifestly conserves both energy

and entropy even when fully adaptive smoothing lengths are used.

Traditional formulations of SPH, on the other hand, can violate

entropy conservation in certain situations.

We begin by noting that it is more convenient to work with an

entropic function defined by A ≡ P/ργ , instead of directly using

the entropy s per unit mass. Because A = A(s) is only a function of

s for an ideal gas, we often refer to A as ‘entropy’.

Of fundamental importance for any SPH formulation is the den-

sity estimate, which GADGET-2 does in the form

ρi =
N

∑

j=1

m j W (|r i j |, hi ), (5)

where r i j ≡ r i − r j , and W (r , h) is the SPH smoothing kernel

defined in equation (4).2 In our ‘entropy formulation’ of SPH, the

adaptive smoothing lengths hi of each particle are defined such

that their kernel volumes contain a constant mass for the estimated

density, i.e. the smoothing lengths and the estimated densities obey

the (implicit) equations

4π

3
h3

i ρi = Nsphm, (6)

where Nsph is the typical number of smoothing neighbours, and m

is an average particle mass. Note that in many other formulations of

SPH, smoothing lengths are typically chosen such that the number of

particles inside the smoothing radius hi is nearly equal to a constant

value Nsph.

Starting from a discretized version of the fluid Lagrangian, we

can show (Springel & Hernquist 2002) that the equations of motion

for the SPH particles are given by

dvi

dt
= −

N
∑

j=1

m j

[

fi

Pi

ρ2
i

∇i Wi j (hi ) + f j

Pj

ρ2
j

∇i Wi j (h j )

]

, (7)

where the coefficients fi are defined by

fi =
(

1 +
hi

3ρi

∂ρi

∂hi

)−1

, (8)

and the abbreviation Wij(h) = W (|r i − r j |, h) has been used. The

particle pressures are given by Pi = Aiρ
γ

i . Provided there are no

2 We note that most of the literature on SPH defines the smoothing length

such that the kernel drops to zero at a distance 2h, and not at h as we have

chosen here for consistency with Springel et al. (2001a). This is only a

difference in notation without bearing on the results.
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shocks and no external sources of heat, the equations above already

fully define reversible fluid dynamics in SPH. The entropy Ai of

each particle remains constant in such a flow.

However, flows of ideal gases can easily develop discontinuities,

where entropy is generated by microphysics. Such shocks need to

be captured by an artificial viscosity in SPH. To this end, GADGET-2

uses a viscous force

dvi

dt

∣

∣

∣

∣

visc

= −
N

∑

j=1

m j
i j∇i W i j , (9)

where 
i j � 0 is non-zero only when particles approach each other

in physical space. The viscosity generates entropy at a rate

dAi

dt
=

1

2

γ − 1

ρ
γ−1

i

N
∑

j=1

m j
i jvi j · ∇i W i j , (10)

transforming kinetic energy of gas motion irreversibly into heat. The

symbol W i j is here the arithmetic average of the two kernels Wij(hi)

and Wij(hj).

The Monaghan–Balsara form of the artificial viscosity

(Monaghan & Gingold 1983; Balsara 1995) is probably the most

widely employed parametrization of the viscosity in SPH codes. It

takes the form


i j =
{

(

−αci jµi j + βµ2
i j

)

/ρi j if vi j · r i j < 0

0 otherwise,
(11)

with

µi j =
hi j vi j · r i j

∣

∣r i j

∣

∣

2
. (12)

Here, hij and ρ i j denote arithmetic means of the corresponding

quantities for the two particles i and j, with cij giving the mean sound

speed. The strength of the viscosity is regulated by the parameters α

and β, with typical values in the range α ≃ 0.5–1.0 and the frequent

choice of β = 2 α.

Based on an analogy with the Riemann problem and using the

notion of a signal velocity v
sig

i j between two particles, Monaghan

(1997) derived a slightly modified parametrization of the viscosity,

namely the Ansatz 
i j = −(α/2) wijv
sig

i j /ρ i j . In the simplest form,

the signal velocity can be estimated as

v
sig

i j = ci + c j − 3wi j , (13)

where w i j = vi j · r i j/|r i j | is the relative velocity projected on to

the separation vector, provided the particles approach each other,

i.e. for vi j · r i j < 0; otherwise we set wij = 0. This gives a viscosity

of the form


i j = −
α

2

(ci + c j − 3wi j )wi j

ρi j

, (14)

which is identical to equation (11) if one sets β = 3/2 α and re-

places wij with µi j . The main difference between the two viscosities

lies therefore in the additional factor of hij/rij that µi j carries with

respect to wij. In equations (11) and (12), this factor weights the

viscous force towards particle pairs with small separations. In fact,

after multiplying with the kernel derivative, this weighting is strong

enough to make the viscous force diverge as ∝1/rij for small pair

separations, unless µi j in equation (12) is softened at small separa-

tions by adding some fraction of h2
i j in the denominator, as is often

done in practice.

In the equation of motion, the viscosity acts like an excess pressure

P visc ≃ (1/2)ρ2
i j
i j assigned to the particles. For the new form (14)

of the viscosity, this is given by

Pvisc ≃
α

2
γ

[

wi j

ci j

+
3

2

(

wi j

ci j

)2
]

Ptherm, (15)

assuming roughly equal sound speeds and densities of the two par-

ticles for the moment. This viscous pressure depends only on a

Mach-number-like quantity w/c, and not explicitly on the particle

separation or smoothing length. We found that the modified viscos-

ity (14) gives equivalent or improved results in our tests compared

to the standard formulation of equation (11). In simulations with

dissipation, this has the advantage that the occurrence of very large

viscous accelerations is reduced, so that a more efficient and sta-

ble time integration results. For these reasons, we usually adopt the

viscosity (14) in GADGET-2.

The signal-velocity approach naturally leads to a Courant-like

hydrodynamical time-step of the form

�t
(hyd)

i =
Ccourant hi

max j (ci + c j − 3wi j )
(16)

which is adopted by GADGET-2. The maximum is here determined

with respect to all neighbours j of particle i.

Following Balsara (1995) and Steinmetz (1996), GADGET-2 also

uses an additional viscosity-limiter to alleviate spurious angular

momentum transport in the presence of shear flows. This is done by

multiplying the viscous tensor with ( fi + fj)/2, where

fi =
|∇ × v|i

|∇ · v|i + |∇ × v|i
(17)

is a simple measure for the relative amount of shear in the flow

around particle i, based on standard SPH estimates for divergence

and curl (Monaghan 1992).

The above equations for the hydrodynamics were all expressed

using physical coordinates and velocities. In the actual simulation

code, we use comoving coordinates x, comoving momenta p and

comoving densities as internal computational variables, which are

related to physical variables in the usual way. Because we continue

to use the physical entropy, adiabatic cooling due to expansion of

the Universe is automatically treated accurately.

2.3 Additional physics

A number of further physical processes have already been imple-

mented in GADGET-2, and were applied to study structure formation

problems. A full discussion of this physics (which is not included

in the public release of the code) is beyond the scope of this paper.

However, we here give a brief overview of what has been done so

far and refer the reader to the cited papers for physical results and

technical details.

Radiative cooling and heating by photoionization has been im-

plemented in GADGET-2 in a similar way as in Katz et al. (1996),

i.e. the ionization balance of helium and hydrogen is computed in

the presence of an externally specified time-dependent ultraviolet

background under the assumption of collisional ionization equilib-

rium. Yoshida et al. (2003) recently added a network for the non-

equilibrium treatment of the primordial chemistry of nine species,

allowing cooling by molecular hydrogen to be properly followed.

Star formation and associated feedback processes have been mod-

elled with GADGET by a number of authors using different physi-

cal approximations. Springel (2000) considered a feedback model

based on a simple turbulent pressure term, while Kay (2004) studied
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thermal feedback with delayed cooling. A related model was also

implemented by Cox et al. (2004). Springel & Hernquist (2003a,b)

implemented a subresolution multiphase model for the treatment of

a star-forming ISM. Their model also accounts for energetic feed-

back by galactic winds, and includes a basic treatment of metal

enrichment. More detailed metal enrichment models that allow for

separate treatments of Type II and Type I supernovae while also

properly accounting for the lifetimes of different stellar populations

have been independently implemented by Tornatore et al. (2004)

and Scannapieco et al. (2005). A different, more explicit approach

to describe a multiphase ISM has been followed by Marri & White

(2003), who introduced a hydrodynamic decoupling of cold gas

and the ambient hot phase. A number of studies also used more

ad hoc models of feedback in the form of pre-heating prescriptions

(Springel, White & Hernquist 2001b; Tornatore et al. 2003; van den

Bosch, Abel & Hernquist 2003).

A treatment of thermal conduction in hot ionized gas has been

implemented by Jubelgas, Springel & Dolag (2004) and was used

to study modifications of the intracluster medium of rich clusters

of galaxies (Dolag et al. 2004c) caused by conduction. An SPH

approximation of ideal magnetohydrodynamics has been added to

GADGET-2 and was used to study deflections of ultrahigh-energy

cosmic rays in the local Universe (Dolag et al. 2004b, 2005).

Di Matteo, Springel & Hernquist (2005) and Springel, Di Matteo

& Hernquist (2005a) introduced a model for the growth of super-

massive black holes at the centres of galaxies, and studied how

energy feedback from gas accretion on to a supermassive black hole

regulates quasar activity and nuclear star formation. Cuadra et al.

(2005) added the ability to model stellar winds and studied the feed-

ing of Sgr A* by the stars orbiting in the vicinity of the centre of

the Galaxy.

Finally, non-standard dark matter dynamics has also been in-

vestigated with GADGET. Linder & Jenkins (2003) and Dolag et al.

(2004a) independently studied dark energy cosmologies. Also, both

Yoshida et al. (2000) and Davé et al. (2001) studied halo formation

with self-interacting dark matter, modelled by explicitly introducing

collisional terms for the dark matter particles.

3 G R AV I TAT I O NA L A L G O R I T H M S

Gravity is the driving force of structure formation. Its computation

thus forms the core of any cosmological code. Unfortunately, its

long-range nature and the high dynamic range posed by the struc-

ture formation problem make it particularly challenging to compute

the gravitational forces accurately and efficiently. In the GADGET-2

code, both the collisionless dark matter and the gaseous fluid are

represented as particles, allowing the self-gravity of both compo-

nents to be computed with gravitational N-body methods, which we

discuss next.

3.1 The tree algorithm

The primary method that GADGET-2 uses to achieve the required

spatial adaptivity is a hierarchical multipole expansion, commonly

called a tree algorithm. These methods group distant particles into

ever larger cells, allowing their gravity to be accounted for by means

of a single multipole force. Instead of requiring N − 1 partial forces

per particle as needed in a direct-summation approach, the gravi-

tational force on a single particle can then be computed with just

O(log N ) interactions.

In practice, the hierarchical grouping that forms the basis of the

multipole expansion is most commonly obtained by a recursive sub-

division of space. In the approach of BH, a cubical root node is used

to encompass the full mass distribution, which is repeatedly subdi-

vided into eight daughter nodes of half the side length each, until

one ends up with ‘leaf’ nodes containing single particles. Forces are

then obtained by ‘walking’ the tree, i.e. starting at the root node, a

decision is made whether or not the multipole expansion of the node

is considered to provide an accurate enough partial force (which will

in general be the case for nodes that are small and distant enough).

If the answer is ‘yes’, the multipole force is used and the walk along

this branch of the tree can be terminated; if it is ‘no’, the node is

‘opened’, i.e. its daughter nodes are considered in turn.

It should be noted that the final result of the tree algorithm will in

general only represent an approximation to the true force. However,

the error can be controlled conveniently by modifying the opening

criterion for tree nodes, because higher accuracy is obtained by

walking the tree to lower levels. Provided sufficient computational

resources are invested, the tree force can then be made arbitrarily

close to the well-specified correct force.

3.1.1 Details of the tree code

There are three important characteristics of a gravitational tree code:

the type of grouping employed, the order chosen for the multipole

expansion and the opening criterion used. As a grouping algorithm,

we prefer the geometrical BH oct-tree instead of alternatives such as

those based on nearest-neighbour pairings (Jernigan & Porter 1989)

or a binary kD-tree (Stadel 2001). The oct-tree is ‘shallower’ than the

binary tree, i.e. fewer internal nodes are needed for a given number

N of particles. In fact, for a nearly homogeneous mass distribution,

only ≈0.3 N internal nodes are needed, while for a heavily clustered

mass distribution in a cosmological simulation, this number tends to

increase to about ≈0.65 N, which is still considerably smaller than

the number of ≈N required in the binary tree. This has advantages in

terms of memory consumption. Also, the oct-tree avoids problems

due to large aspect ratios of nodes, which helps to keep the magnitude

of higher-order multipoles small. The clean geometric properties of

the oct-tree make it ideal for use as a range-searching tool, a further

application of the tree we need for finding SPH neighbours. Finally,

the geometry of the oct-tree has a close correspondence with a space-

filling Peano–Hilbert curve, a fact we exploit for our parallelization

algorithm.

With respect to the multipole order, we follow a different ap-

proach from that used in GADGET-1, where an expansion including

octopole moments was employed. Studies by Hernquist (1987) and

Barnes & Hut (1989) indicate that the use of quadrupole moments

may increase the efficiency of the tree algorithm in some situations,

and Wadsley et al. (2004) even advocate hexadecopole order as an

optimum choice. Higher order typically allows larger cell-opening

angles (i.e. for a desired accuracy, fewer interactions need to be eval-

uated). This advantage is partially compensated by the increased

complexity per evaluation and the higher tree construction and tree

storage overhead, such that the performance as a function of multi-

pole order forms a broad maximum, where the precise location of

the optimum may depend sensitively on fine details of the software

implementation of the tree algorithm.

In GADGET-2, we deliberately went back to monopole moments,

because they feature a number of distinct advantages which make

them very attractive compared to schemes that carry the expansions

to higher order. First of all, gravitational oct-trees with monopole

moments can be constructed in an extremely memory efficient way.

In the first stage of our tree construction, particles are inserted one

by one into the tree, with each internal node holding storage for

indices of eight daughter nodes or particles. Note that for leaves
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themselves, no node needs to be stored. In a second step, we com-

pute the multipole moments recursively by walking the tree once in

full. It is interesting to note that these eight indices will no longer be

needed in the actual tree walk – all that is needed for each internal

node is the information about which node would be the next one to

look at in case the node needs to be opened, or alternatively, which

is the next node in line in case the multipole moment of the node

can be used. We can hence reuse the memory used for the eight

indices and store in it the two indices needed for the tree walk, plus

the multipole moment, which in the case of monopole moments is

the mass and the centre-of-mass coordinate vector. We additionally

need the node side length, which adds up to seven variables, leaving

one variable still free, which we use however in our paralleliza-

tion strategy. In any case, this method of constructing the tree at

no time requires more than ∼0.65 × 8 × 4 ≃ 21 bytes per particle

(assuming four bytes per variable), for a fully threaded tree. This

compares favourably with memory consumptions quoted by other

authors, even compared with the storage optimized tree construction

schemes of Dubinski et al. (2004), where the tree is only constructed

for part of the volume at a given time, or with the method of Wadsley

et al. (2004), where particles are bunched into groups, reducing the

number of internal tree nodes by collapsing ends of trees into nodes.

Note also that the memory consumption of our tree is lower than

required for just storing the phase-space variables of particles, leav-

ing aside additional variables that are typically required to control

time-stepping, or to label the particles with an identifying number.

In the standard version of GADGET-2, we do not quite realize this

optimum because we also store the geometric centre of each tree in

order to simplify the SPH neighbour search. This can in principle

be omitted for purely collisionless simulations.

Very compact tree nodes as obtained above are also highly ad-

vantageous given the architecture of modern processors, which typ-

ically feature several layers of fast ‘cache’ memory as workspace.

Computations which involve data that are already in cache can be

carried out with close to maximum performance, but access to the

comparatively slow main memory imposes large numbers of wait

cycles. Small tree nodes thus help to make better use of the avail-

able memory bandwidth, which is often a primary factor limiting

the sustained performance of a processor. By ordering the nodes

in the main memory in a special way (see Section 5.1), we can in

addition help the processor and optimize its cache utilization.

Finally, a further important advantage of monopole moments is

that they allow simple dynamical tree updates that are consistent

with the time integration scheme discussed in detail in Section 4.

GADGET-1 already allowed dynamic tree updates, but it neglected the

time variation of the quadrupole moments. This introduced a time

asymmetry, which had the potential to introduce secular integration

errors in certain situations. Note that particularly in simulations

with radiative cooling, the dynamic range of time-steps can easily

become so large that the tree construction overhead would become

dominant unless such dynamic tree update methods can be used.

With respect to the cell-opening criterion, we usually employ

a relative opening criterion similar to that used in GADGET-1, but

adjusted to our use of monopole moments. Specifically, we consider

a node of mass M and extension l at distance r for usage if

G M

r 2

(

l

r

)2

� α |a|, (18)

where |a| is the size of the total acceleration obtained in the last time-

step, and α is a tolerance parameter. This criterion tries to limit the

absolute force error introduced in each particle–node interaction by

comparing a rough estimate of the truncation error with the size
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Figure 1. Force errors of the tree code for an isolated galaxy, consisting of

a dark halo and a stellar disc. In the top panel, each line shows the fraction

of particles with force errors larger than a given value. The different line

styles are for different cell-opening criteria: the relative criterion is shown

as solid lines and the standard BH criterion as dot-dashed lines. Both are

shown for different values of the corresponding tolerance parameters, taken

from the set {0.0005, 0.001, 0.0025, 0.005, 0.01, 0.02} for α in the case of

the relative criterion, and from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} in the case of the

opening angle θ used in the BH criterion. In the lower panel, we compare the

computational cost as a function of force accuracy. Solid lines compare the

force accuracy of the 99.9 per cent percentile as a function of computational

cost for the relative criterion (triangles) and the BH criterion (boxes). At the

same computational cost, the relative criterion always delivers somewhat

more accurate forces. The dotted lines show the corresponding comparison

for the 50 per cent percentile of the force error distribution.

of the total expected force. As a result, the typical relative force

error is kept roughly constant and, if needed, the opening criterion

adjusts to the dynamical state of the simulation to achieve this goal;

at high redshift, where peculiar accelerations largely cancel out,

the average opening angles are very small, while they can become

larger once matter clusters. Also, the opening angle varies with the

distance of the node. The net result is an opening criterion that

typically delivers higher force accuracy at a given computational

cost compared to a purely geometrical criterion such as that of BH. In

Fig. 1, we demonstrate this explicitly with measurements of the force

accuracy in a galaxy collision simulation. Note that for the first force
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computation, an estimate of the size of the force from the previous

time-step is not yet available. We then use the ordinary BH opening

criterion to obtain such estimates, followed by a recomputation of

the forces in order to have consistent accuracy for all steps.

Salmon & Warren (1994) pointed out that tree codes can produce

rather large worst-case force errors when standard opening criteria

with commonly employed opening angles are used. These errors

originate in situations where the distance to the nearest particle

in the node becomes very small. When coming very close to or

within the node, the error can even become unbounded. Our relative

opening criterion (18) may suffer such errors because we may in

principle encounter a situation where a particle falls inside a node

while still satisfying the cell-acceptance criterion. To protect against

this possibility, we impose an additional opening criterion, i.e.

|rk − ck | � 0.6 l. (19)

Here, c = (c1, c2, c3) is the geometric centre of the node, r is the

particle coordinate, and the inequality applies for each coordinate

axis k ∈ {1, 2, 3} separately. We hence require that the particle lies

outside a box about 20 per cent larger than the tree node. Tests

have shown that this robustly protects against the occurrence of

pathologically large force errors while incurring an acceptably small

increase in the average cost of the tree walk.

3.1.2 Neighbour search using the tree

We also use the BH oct-tree for the search of SPH neighbours,

following the range-search method of Hernquist & Katz (1989).

For a given spherical search region of radius hi around a target

location r i , we walk the tree with an opening criterion that examines

whether there is any geometric overlap between the current tree

node and the search region. If yes, the daughter nodes of the node

are considered in turn; otherwise, the walk along this branch of the

tree is immediately discarded. The tree walk is hence restricted to

the region local to the target location, allowing an efficient retrieval

of the desired neighbours. This use of the tree as a hierarchical

search grid makes the method extremely flexible and insensitive in

performance to particle clustering.

A difficulty arises for the SPH force loop, where the neighbour

search depends not only on hi, but also on properties of the target

particles. We here need to find all pairs with distances |r i − r j | <

max(hi, hj), including those where the distance is smaller than hj

but not smaller than hi. We solve this issue by storing in each tree

node the maximum SPH smoothing length occurring among all

particles represented by the node. Note that we update these values

consistently when the SPH smoothing lengths are redetermined in

the first part of the SPH computation (i.e. the density loop). Using

this information, it is straightforward to modify the opening criterion

such that all interacting pairs in the SPH force computation are

always correctly found.

Finally, a few notes on how we solve the implicit equation (6)

for determining the desired SPH smoothing lengths of each parti-

cle in the first place. For simplicity, and to allow a straightforward

integration into our parallel communication strategy, we find the

root of this equation with a binary bisection method. Convergence

is significantly accelerated by choosing a Newton–Raphson value

as the next guess instead of the mid-point of the current interval.

Given that we compute ∂ρ i/hi anyway for our SPH formulation,

this comes at no additional cost. Likewise, for each new time-step,

we start the iteration with a new guess for hi based on the expected

change from the velocity divergence of the flow. Because we usually

only require that equation (6) is solved to a few per cent accuracy,

finding and adjusting the SPH smoothing lengths are subdominant

tasks in the CPU time consumption of our SPH code.

3.1.3 Periodic boundaries in the tree code

The summation over the infinite grid of particle images required for

simulations with periodic boundary conditions can also be treated

in the tree algorithm. GADGET-2 uses the technique proposed by

Hernquist, Bouchet & Suto (1991) for this purpose. The global BH

tree is only constructed for the primary mass distribution, but it is

walked such that each node is periodically mapped to the closest im-

age as seen from the coordinate under consideration. This accounts

for the dominant forces of the nearest images. For each of the partial

forces, the Ewald summation method can be used to complement the

force exerted by the nearest image with the contribution of all other

images of the fiducial infinite grid of nodes. In practice, GADGET-2

uses a 3D lookup table (in one octant of the simulation box) for the

Ewald correction, as proposed by Hernquist et al. (1991).

In the first version of our code, we carried out the Ewald cor-

rection for each of the nodes visited in the primary tree walk over

nearest node images, leading to roughly a doubling of the computa-

tional cost. However, the sizes of Ewald force correction terms have

a very different distance dependence than the ordinary Newtonian

forces of tree nodes. For nodes in the vicinity of a target particle, i.e.

for separations small against the boxsize, the correction forces are

negligibly small, while for separations approaching half the box-

size they become large, eventually even cancelling the Newtonian

force. In principle, therefore, the Ewald correction only needs to be

evaluated for distant nodes with the same opening criterion as the

ordinary Newtonian force, while for nearby ones, a coarser opening

angle can be chosen. In GADGET-2 we take advantage of this and carry

out the Ewald corrections in a separate tree walk, taking the above

considerations into account. This leads to a significant reduction of

the overhead incurred by the periodic boundaries.

3.2 The TreePM method

The new version of GADGET-2 used in this study optionally allows

the pure tree algorithm to be replaced by a hybrid method consisting

of a synthesis of the PM method and the tree algorithm. GADGET-

2’s mathematical implementation of this so-called TreePM method

(Xu 1995; Bode, Ostriker & Xu 2000; Bagla 2002) is similar to that

of Bagla & Ray (2003). The potential of equation (3) is explicitly

split in Fourier space into a long-range part and a short-range part

according to φk = φ
long

k + φshort
k , where

φ
long

k = φk exp
(

−k2r 2
s

)

, (20)

with rs describing the spatial scale of the force split. This long-range

potential can be computed very efficiently with mesh-based Fourier

methods. Note that if rs is chosen slightly larger than the mesh scale,

force anisotropies that exist in plain PM methods can be suppressed

to essentially arbitrarily small levels.

The short-range part of the potential can be solved in real space

by noting that for r s ≪ L the short-range part of the real-space

solution of equation (3) is given by

φshort(x) = −G
∑

i

mi

ri

erfc

(

ri

2rs

)

. (21)

Here, ri = min(|x − r i − nL|) is defined as the smallest distance

of any of the images of particle i to the point x. Because the com-

plementary error function rapidly suppresses the force for distances

large compared to rs (the force drops to about 1 per cent of its
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Newtonian value for r ≃ 4.5 rs), only this nearest image has any

chance to contribute to the short-range force.

The short-range force corresponding to equation (21) can now be

computed by the tree algorithm, except that the force law is modi-

fied by a short-range cut-off factor. However, the tree only needs to

be walked in a small spatial region around each target particle, and

no corrections for periodic boundary conditions are required. To-

gether, these can result in a very substantial performance improve-

ment. In addition, one typically gains accuracy in the long-range

force, which is now basically exact, and not an approximation as

in the tree method. We stress that in our approach for the TreePM

method there is one global, fully threaded tree that encompasses the

whole simulation volume, and that the TreePM method is applied

throughout the volume in the same fashion. The force resolution is

hence equal everywhere, unlike in some earlier implementations of

the TreePM method (e.g. Xu 1995; Bode & Ostriker 2003). Also

note that the TreePM approach maintains all of the most important

advantages of the tree algorithm, namely its insensitivity to cluster-

ing, its essentially unlimited dynamic range, and its precise control

about the softening scale of the gravitational force.

3.2.1 Details of the TreePM algorithm

To compute the PM part of the force, we use a clouds-in-cells

(CIC) assignment (Hockney & Eastwood 1981) to construct the

mass density field on to the mesh. We carry out a discrete Fourier

transform of the mesh, and multiply it with the Green func-

tion for the potential in periodic boundaries, −4πG/k2, mod-

ified with the exponential truncation of the short-range force.

We then deconvolve for the CIC kernel by dividing twice with

sinc2(kxL/2Ng) sinc2(kyL/2Ng) sinc2(kzL/2Ng). One deconvolution

corrects for the smoothing effect of the CIC in the mass assignment,

the other for the force interpolation. After performing an inverse

Fourier transform, we then obtain the gravitational potential on the

mesh.

We approximate the forces on the mesh by finite differencing the

potential, using the four-point differencing rule

∂φ

∂x

∣

∣

∣

∣

i jk

=
1

�x

[

2

3
(φi+1, j,k − φi−1, j,k)

−
1

12
(φi+2, j,k − φi−2, j,k)

]

(22)

which offers order O(�x4) accuracy, where �x = L/N mesh is the

mesh spacing. It would also be possible to carry out the differentia-

tion in Fourier space, by pulling down a factor −ik and obtaining the

forces directly instead of the potential. However, this would require

an inverse Fourier transform separately for each coordinate, i.e. three

instead of one, with little (if any) gain in accuracy compared to the

four-point formula.

Finally, we interpolate the forces to the particle positions using

again a CIC, for consistency. Note that the fast Fourier transforms

(FFTs) required here can be efficiently carried out using real-to-

complex transforms and their inverse, which saves memory and

execution time compared to fully complex transforms.

In Fig. 2, we illustrate the spatial decomposition of the force and

show the force error of the PM scheme. This has been computed

by randomly placing a particle of unit mass in a periodic box, and

then measuring the forces obtained by the simulation code for a

set of randomly placed test particles. We compare the force to the

theoretically expected exact force, which can be computed by Ewald

summation over all periodic images, and then by multiplying with
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Figure 2. Force decomposition and force error of the TreePM scheme.

The top panel illustrates the size of the short-range (dot-dashed) and long-

range (solid) forces as a function of distance in a periodic box. The spatial

scale rs of the split is marked with a vertical dashed line. The bottom panel

compares the TreePM force with the exact force expected in a periodic box.

For separations of the order of the mesh scale (marked by a vertical dotted

line), maximum force errors of 1–2 per cent due to the mesh anisotropy arise,

but the rms force error is well below 1 per cent even in this range, and the

mean force tracks the correct result accurately. If a larger force-split scale is

chosen, the residual force anisotropies can be further reduced, if desired.

the pre-factor

fl = 1 − erfc

(

r

2 rs

)

−
r

√
πrs

exp

(

−
r 2

4 r 2
s

)

, (23)

which takes out the short-range force, exactly the part that will

be supplied by the short-range tree walk. The force errors of the

PM force are mainly due to mesh anisotropy, which shows up on

scales around the mesh size. However, thanks to the smoothing of

the short-range force and the deconvolution of the CIC kernel, the

mean force is very accurate, and the rms force error due to mesh

anisotropy is well below 1 per cent. Note that these force errors com-

pare favourably to those reported by P3M codes (e.g. Efstathiou et al.

1985). Also, note that in the above formalism, the force anisotropy

can be reduced further to essentially arbitrarily small levels by sim-

ply increasing rs, at the expense of slowing down the tree part of

the algorithm. Finally we remark that while Fig. 2 characterizes the

magnitude of PM force errors due to a single particle, it is not yet

a realistic error distribution for a real mass distribution. Here the

PM force errors on the mesh scale can partially average out, while

there can be additional force errors from the tree algorithm on short

scales.
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3.2.2 TreePM for ‘zoom’ simulations

GADGET-2 is capable of applying the PM algorithm also for non-

periodic boundary conditions. Here, a sufficiently large mesh needs

to be used such that the mass distribution completely fits in one

octant of the mesh. The potential can then be obtained by a real-

space convolution with the usual 1/r kernel of the potential, and

this convolution can be efficiently carried out using FFTs in Fourier

space. For simplicity, GADGET obtains the necessary Green function

by simply Fourier transforming 1/r once, and storing the result in

memory.

However, it should be noted that the four-point differencing of the

potential requires that there are at least two correct potential values

on either side of the region that is actually occupied by particles.

Because the CIC assignment/interpolation involves two cells, we

therefore have the following requirement for the minimum dimen-

sion N mesh of the employed mesh:

(Nmesh − 5)d � L. (24)

Here, L is the spatial extension of the region occupied by particles

and d is the size of a mesh cell. Recall that due to the necessary zero

padding, the actual dimension of the FFT that will be carried out is

(2N mesh)3.

The code is also able to use a two-level hierarchy of FFT meshes.

This was designed for ‘zoom simulations’, which focus on a small

region embedded in a much larger cosmological volume. Some of

these simulations can feature a rather large dynamic range, being as

extreme as putting much more than 99 per cent of the particles in

less than 10−10 of the volume (Gao et al. 2005). Here, the standard

TreePM algorithm is of little help because a mesh covering the full

volume would have a mesh size still so large that the high-resolution

region would fall into one or a few cells, so that the tree algorithm

would effectively degenerate to an ordinary tree method within the

high-resolution volume.

One possibility to improve upon this situation is to use a second

FFT mesh that covers the high-resolution region, such that the long-

range force is effectively computed in two steps. Adaptive mesh

placement in the AP3M code (Couchman et al. 1995) follows a

similar scheme. GADGET-2 allows the use of such a secondary mesh

level and places it automatically, based on a specification of which

of the particles are ‘high-resolution particles’. However, there are a

number of additional technical constraints in using this method. The

intermediate-scale FFT works with vacuum boundaries, i.e. the code

will use zero padding and a FFT of size (2N mesh)3 to compute it. If

LHR is the maximum extension of the high-resolution zone (which

may not overlap with the boundaries of the box in case the base

simulation is periodic), then condition (24) for the minimum high-

resolution cell size applies. However, in addition, this intermediate-

scale FFT must properly account for the part of the short-range force

that complements the long-range FFT of the whole box, i.e. it must

be able to properly account for all mass in a sphere of size Rcut

around each of the high-resolution particles. There must hence be at

least a padding region of size Rcut still covered by the mesh octant

used for the high-resolution zone. Because of the CIC assignment,

this implies the constraint L HR + 2R cut � d HR(N mesh − 1). This

limits the dynamic range one can achieve with a single additional

mesh level. In fact, the high-resolution cell size must satisfy

dHR � max

(

LHR + 2Rcut

Nmesh − 1
,

LHR

Nmesh − 5

)

. (25)

For our typical choice of R cut = 4.5 × rs = 1.25 × 4.5 × d LR, this

means that the high-resolution mesh size cannot be made smaller
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Figure 3. Force decomposition and force error of the TreePM scheme in

the case when two meshes are used (‘zoom simulations’). The top panel

illustrates the strength of the short-range (dot-dashed), intermediate-range

(thick solid) and long-range (solid) forces as a function of distance in a

periodic box. The spatial scales of the two splits are marked with vertical

dashed lines. The bottom panel shows the error distribution of the PM force.

The outer matching region exhibits a very similar error characteristic as the

inner match of tree and PM force. In both cases, for separations of the order

of the fine or coarse mesh scale (dotted lines), respectively, force errors of up

to 1–2 per cent arise, but the rms force error remains well below 1 per cent,

and the mean force tracks the correct result accurately.

than d HR ≃ 10 d LR/(N mesh − 1), i.e. at least slightly more than

10 low-resolution mesh cells must be covered by the high-resolution

mesh. Nevertheless, provided there are a very large number of par-

ticles in a quite small high-resolution region, the resulting reduction

of the tree walk time can outweigh the additional cost of performing

a large, zero-padded FFT for the high-resolution region.

In Fig. 3, we show the PM force error resulting for such a two-

level decomposition of the PM force. We here placed a particle of

unit mass randomly inside a high-resolution region of side length

1/20 of a periodic box. We then measured the PM force accuracy of

GADGET-2 by randomly placing test particles. Particles that were

falling inside the high-resolution region were treated as high-

resolution particles such that their PM force consists of two FFT

contributions, while particles outside the box receive only the long-

range FFT force. In real simulations, the long-range forces are de-

composed in an analogous way. With respect to the short-range

force, the tree is walked with different values for the short-range

cut-off, depending on whether a particle is characterized as belong-

ing to the high-resolution zone or not. Note however that only one

global tree is constructed containing all the mass. The top panel of
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Fig. 3 shows the contributions of the different force components as

a function of scale, while the bottom panel gives the distribution of

the PM force errors. The largest errors occur at the matching regions

of the forces. For realistic particle distributions, a large number of

force components contribute, further reducing the typical error due

to averaging.

4 T I M E I N T E G R AT I O N

4.1 Symplectic nature of the leapfrog

Hamiltonian systems are not robust in the sense that they are not

structurally stable against non-Hamiltonian perturbations. Numer-

ical approximations for the temporal evolution of a Hamiltonian

system obtained from an ordinary numerical integration method

(e.g. Runge–Kutta) in general introduce non-Hamiltonian perturba-

tions, which can completely change the long-term behaviour. Unlike

dissipative systems, Hamiltonian systems do not have attractors.

The Hamiltonian structure of the system can be preserved during

the time integration if each step of it is formulated as a canon-

ical transformation. Because canonical transformations leave the

symplectic two-form invariant (equivalent to preserving Poincaré

integral invariants, or stated differently, to preserving phase space),

such an integration scheme is called symplectic (e.g. Hairer, Lubich

& Wanner 2002). Note that the time evolution of a system can be

viewed as a continuous canonical transformation generated by the

Hamiltonian. If an integration step is the exact solution of a (partial)

Hamiltonian, it represents the result of a phase-space conserving

canonical transformation and is hence symplectic.

We now note that the Hamiltonian of the usual N-body problem

is separable in the form

H = Hkin + Hpot. (26)

In this simple case, the time-evolution operators for each of the

parts Hkin and Hpot can be computed exactly. This gives rise to the

following ‘drift’ and ‘kick’ operators (Quinn et al. 1997)

Dt (�t) :







pi �→ pi

xi �→ xi +
pi

mi

∫ t+�t

t

dt

a2

(27)

K t (�t) :







xi �→ xi

pi �→ pi + f i

∫ t+�t

t

dt

a

(28)

where

f i = −
∑

j

mi m j

∂φ(xi j )

∂xi

is the force on particle i.

Note that both Dt and K t are symplectic operators because they

are exact solutions for arbitrary �t for the canonical transformations

generated by the corresponding Hamiltonians. A time integration

scheme can now be derived by the idea of operator splitting. For

example, one can try to approximate the time evolution operator

U (�t) for an interval �t by

Ũ (�t) = D

(

�t

2

)

K (�t) D

(

�t

2

)

, (29)

or

Ũ (�t) = K

(

�t

2

)

D(�t) K

(

�t

2

)

, (30)

which correspond to the well-known drift–kick–drift (DKD) and

kick–drift–kick (KDK) leapfrog integrators. Both of these integra-

tion schemes are symplectic, because they are a succession of sym-

plectic phase-space transformations. In fact, Ũ generates the exact

time evolution of a modified Hamiltonian H̃ . Using the Baker–

Campbell–Hausdorff identity for expanding U and Ũ , we can in-

vestigate the relation between H̃ and H. Writing H̃ = H + Herr, we

find (Saha & Tremaine 1992)

Herr =
�t2

12

{

{Hkin, Hpot}, Hkin +
1

2
Hpot

}

+ O(�t4) (31)

for the KDK leapfrog, where ‘{ }’ denote Poisson brackets. Provided

H err ≪ H , the evolution under H̃ will be typically close to that under

H. In particular, most of the Poincaré integral invariants of H̃ can be

expected to be close to those of H, so that the long-term evolution

of H̃ will remain qualitatively similar to that of H. If H is time-

invariant and conserves energy, then H̃ will be conserved as well.

For a periodic system, this will then usually mean that the energy in

the numerical solution oscillates around the true energy, but there

cannot be a long-term secular trend.

We illustrate these surprising properties of the leapfrog in Fig. 4.

We show the numerical integration of a Kepler problem of high ec-

centricity e = 0.9, using second-order accurate leapfrog and Runge–

Kutta schemes with fixed time-step. There is no long-term drift in

the orbital energy for the leapfrog result (top panel); only a small

residual precession of the elliptical orbit is observed. On the other

hand, the Runge–Kutta integrator, which has formally the same error

per step, catastrophically fails for an equally large time-step (mid-

dle panel). Already after 50 orbits the binding energy has increased

by ∼30 per cent. If we instead employ a fourth-order Runge–Kutta

scheme using the same time-step (bottom panel), the integration is

only marginally more stable, giving now a decline of the binding

energy by ∼40 per cent over 200 orbits. Note however that such

a higher-order integration scheme requires several force computa-

tions per time-step, making it computationally much more expensive

for a single step than the leapfrog, which requires only one force

evaluation per step. The underlying mathematical reason for the re-

markable stability of the leapfrog integrator observed here lies in its

symplectic properties.

4.2 Individual and adaptive time-steps

In cosmological simulations, we are confronted with a large dynamic

range in time-scales. In high-density regions, such as at the centres

of galaxies, orders of magnitude smaller time-steps are required than

in low-density regions of the intergalactic medium, where a large

fraction of the mass resides. Evolving all particles with the smallest

required time-step hence implies a substantial waste of computa-

tional resources. An integration scheme with individual time-steps

tries to cope with this situation more efficiently. The principal idea is

to compute forces only for a certain group of particles in a given kick

operation, with the other particles being evolved on larger time-steps

and being ‘kicked’ more rarely.

Unfortunately, due to the pairwise coupling of particles, a for-

mally symplectic integration scheme with individual time-steps is

not possible, simply because the potential part of the Hamiltonian

is not separable. However, we can partition the potential between

two particles into a long-range part and a short-range part, as we

have done in the TreePM algorithm. This leads to a separation of

the Hamiltonian into

H = Hkin + Hsr + Hlr. (32)
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Figure 4. A Kepler problem of high eccentricity evolved with different

simple time integration schemes, using an equal time-step in all cases. Even

though the leapfrog and the second-order Runge–Kutta produce comparable

errors in a single step, the long-term stability of the integration is very

different. Even a computationally much more expensive fourth-order Runge–

Kutta scheme, with a smaller error per step, performs dramatically worse

than the leapfrog in this problem.

Figure 5. Schematic illustration of the short- and long-range time-stepping

used by GADGET-2. The code always drifts the whole particle system to the

next time when a force computation is required. At that time, ‘kicks’ (i.e.

changes of the particle momenta) are applied based on short-range or long-

range forces, or on both.

We can now easily obtain symplectic integrators as a generalization

of the ordinary leapfrog schemes by ‘subcycling’ the evolution under

H kin + H sr (Duncan, Levison & Lee 1998). For example, we can

consider

Ũ (�t) = K lr

(

�t

2

)

×
[

Ksr

(

�t

2m

)

D

(

�t

m

)

Ksr

(

�t

2m

)]m

K lr

(

�t

2

)

(33)

where m is a positive integer. This is the scheme GADGET-2 uses

for integrating simulations run with the TreePM algorithm. The

long-range PM force has a comparatively large time-step, which is

sufficient for the slow time variation of this force. Also, we always

evaluate this force for all particles. The evolution under the short-

range force, however, which varies on shorter time-scales, is carried

out on a power of two subdivided time-scale. Here, we optionally

also allow particles to have individual time-steps, even though this

perturbs the symplectic nature of the integration (see below). Note

that unlike the PM algorithm, tree forces can be easily computed

for a small fraction of the particles, at a computational cost that is

to first order strictly proportional to the number of particles con-

sidered. This is true as long as the subfraction is not so small that

tree construction overhead becomes significant. PM forces, on the

other hand, are either ‘all’ or ‘nothing’. The above decomposition

is hence ideally adjusted to these properties.

Note that despite the somewhat complicated appearance of equa-

tion (33), the integration scheme is still a simple alternation of drift

and kick operators. In practice, the simulation code simply needs

to drift the whole particle system to the next synchronization point

where a force computation is necessary. There, a fraction of the par-

ticles receive a force computation and their momenta are updated

accordingly, as illustrated in Fig. 5. Then the system is drifted to the

next synchronization point.

As we have discussed, the integration is no longer symplectic in

a formal sense when individual short-range time-steps are chosen

for different particles. However, in the limit of collisionless dynam-

ics, we can argue that the particle number is so large that particles

effectively move in a collective potential, where we assume that

any force between two particles is always much smaller than the

total force. In this desired limit, two-body collisions become unim-

portant, and the motion of particles is to good approximation col-

lisionless. We can then approximate the particles as moving quasi-

independently in their collective potential, which we may describe

by a global potential �(x, t). Obviously, in this approximation the

Hamiltonian separates into a sum of single particle Hamiltonians,

where we have now hidden their coupling in the collective potential

�(x, t). Provided we follow the evolution of each particle accu-

rately in this fiducial collective potential �(x, t), the evolution of

the potential itself will also be faithful, justifying the integration
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Figure 6. A Kepler problem of high eccentricity integrated with leapfrog

schemes using a variable time-step from step to step, based on the �t ∝
1/

√
|a| criterion commonly employed in cosmological simulations. As a

result of the variable time-steps, the integration is no longer manifestly time

reversible, and long-term secular errors develop. Interestingly, the error in

the KDK variant grows four times slower than in the DKD variant, despite

being of equal computational cost.

of particles with individual time-steps in an N-body system that

behaves collisionlessly. While not formally being symplectic, the

evolution can then be expected to reach comparable accuracy to a

phase-space conserving symplectic integration.

Treating the potential as constant for the duration of a kick, each

particle can be integrated by a sequence of KDK leapfrogs, which

may have a different time-step from step to step. Note that changing

the time-step in the leapfrog from step to step does not destroy the

simplecticity of the integrator, because the implied transformation is

constructed from steps which are simplectic individually. However,

what we find in practice is that the superior long-term stability of

periodic motion is typically lost. This is because each time the time-

step is changed, the error Hamiltonian appearing in equation (31)

is modified. This introduces an artificial temporal dependence into

the numerical Hamiltonian which is not in phase with the orbit itself

because the time-step criterion usually involves information from

the previous time-step. The associated time asymmetry destroys the

formal time reversibility of the integration, and the phase lag of the

time-step cycle in each orbit produces a secular evolution. We illus-

trate this behaviour in Fig. 6 for an integration of the Kepler problem

considered earlier, but this time using a leapfrog with an adaptive

time-step according to �t ∝ 1/
√

|a|, where a is the acceleration of

the last time-step. Interestingly, while being equivalent for a fixed

time-step, the DKD and KDK leapfrogs behave quite differently in

this test. For the same computational effort, the energy error grows

four times as fast in the DKD scheme compared with the KDK

scheme. This is simply because the effective time asymmetry in the

DKD scheme is effectively twice as large. To see this, consider what

determines the size of a given time-step when integrating forward

or backwards in time. In the DKD scheme, the relevant acceleration

that enters the time-step criterion stems from a moment that lies half

a time-step before or behind the given step. As a result, there is a

temporal lapse of two time-steps between forward and backwards

integration. For the KDK, the same consideration leads only to a

temporal asymmetry of one time-step, half as large.

The KDK scheme is hence clearly superior once we allow for

individual time-steps. It is also possible to try to recover time re-

versibility more precisely. Hut, Makino & McMillan (1995) discuss

an implicit time-step criterion that depends on both the beginning

and end of the time-step, and similarly Quinn et al. (1997) dis-

cuss a binary hierarchy of trial steps that serves a similar purpose.

However, these schemes are computationally impractical for large

collisionless systems. However, fortunately, here the danger to build

up large errors by systematic accumulation over many periodic or-

bits is much smaller, because the gravitational potential is highly

time-dependent and the particles tend to make comparatively few

orbits over a Hubble time.

In GADGET-2, a time-step criterion for collisionless particles of the

form

�tgrav = min

[

�tmax,

(

2 η ǫ

|a|

)1/2
]

(34)

is adopted, where η is an accuracy parameter, ǫ gives the gravita-

tional softening and a is the acceleration of the particle. The max-

imum allowed time-step is given by �t max, and is usually set to a

small fraction of the dynamical time of the system under study. In

cosmological simulations, we choose the logarithm of the expan-

sion factor as a time integration variable, then �t max corresponds

to a fixed fraction of the instantaneous Hubble time. It is possible

that there are more efficient time-step criteria than equation (34) for

collisionless cosmological simulations but, as Power et al. (2003)

have shown, criterion (34) produces quite robust results, while other

simple criteria such as those suggested by Springel et al. (2001a)

have failed to show any clear advantage. We therefore adopt cri-

terion (34) for now, but note that the time-step criterion can be

easily changed in the code if desired. For SPH particles, we extend

the time-step criterion by the Courant condition (16), and pick the

smaller of the two. When the TreePM scheme is used, the time-step

criterion (34) only applies to the short-range dynamics governed by

the gravitational tree forces. The size of the long-range PM step is

instead controlled by �t max. If needed, the code reduces �t max in

the course of a simulation such that the particles can travel at most a

small fraction of the mesh size with the rms particle velocity during

one step.

In the normal integration mode of GADGET-2, we discretize the

time-steps in a power of two hierarchy, where all time-steps are a

power of two subdivision of a global time-step. Particles may always

move to a smaller time-step, but to a larger one only every second

step, when this leads to synchronization with the higher time-step
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hierarchy. The level of synchronization achieved by this is beneficial

for minimizing the required number of particle drifts and tree con-

structions. Alternatively, the code also allows a more flexible way to

populate time-steps, where time-steps are discretized as integer mul-

tiples of the minimum time-step occurring among the particle set.

This has the advantage of producing a more homogeneous distribu-

tion of particles across the time-line, which can simplify work-load

balancing.

4.3 Time integration scheme of SPH particles

For gas particles, similar considerations apply in principle, because

in the absence of viscosity, SPH can also be formulated as a Hamilto-

nian system. However, because shocks occur in any non-trivial flow,

hydrodynamics will in practice always be irreversible; hence, the

long-term integration aspects of Hamiltonian systems do not apply

as prominently here. Also, in systems in hydrodynamic equilibrium

the gas particles do not move, and hence do not tend to accumulate

errors over many orbits as in dynamical equilibrium. However, if

SPH particles are cold and rotate in a centrifugally supported disc,

long-term integration aspects can become important again. So it is

desirable to treat the kinematics of SPH particles in close analogy

to that of the collisionless particles.

The reversible part of hydrodynamics can be described by adding

the thermal energy to the Hamiltonian, i.e.

Htherm =
1

γ − 1

∑

i

mi Aiρ
γ−1

i . (35)

Note that the SPH smoothing lengths are implicitly given by equa-

tion (6), i.e. the thermal energy depends only on the entropy per unit

mass, and the particle coordinates. Hence the same considerations

apply as for the collisionless leapfrog, and as long as there is no en-

tropy production included, time integration is fully time reversible.

This is actually different to mesh codes, which in non-trivial flows

always produce some entropy due to mixing, even when the fluid

motion should in principle be fully adiabatic. These errors arise from

the advection over the mesh, and are absent in the above formulation

of SPH.

5 PA R A L L E L I Z AT I O N S T R AT E G I E S

There are a number of different design philosophies for construct-

ing powerful supercomputers. So-called vector machines employ

particularly potent CPUs, which can simultaneously carry out com-

putational operations on whole arrays of floating point numbers.

However, not all algorithms can easily exploit the full capabilities

of such vector processors. It is easier to use scalar architectures, but

here large computational throughput is only achieved by the simul-

taneous use of a large number of processors. The goal is to let these

CPUs work together on the same problem, thereby reducing the

time to solution and allowing larger problem sizes. Unfortunately,

the required parallelization of the application program is not an easy

task in general.

On symmetric multiprocessing (SMP) computers, several scalar

CPUs share the same main memory, so that time-intensive loops

of a computation can be distributed easily for parallel execution

on several CPUs using a technique called threading. The code for

creation and destruction of threads can be generated automatically

by sophisticated modern compilers, guided by hints inserted into the

code in the form of compiler directives (e.g. based on the OpenMP

standard). The primary advantage of this method lies in its ease of

use, requiring few (if any) algorithmic changes in existing serial

code. A disadvantage is that the compiler-assisted parallelization

may not always produce an optimum result and, depending on the

code, sizable serial parts may remain. A more serious limitation

is that this technique prevents one from using processor numbers

and memory larger than available on a particular SMP computer.

Also, such shared-memory SMP computers tend to be substantially

more expensive than a set of single computers with comparable

performance, with the price tag quickly rising the more CPUs are

contained within one SMP computer.

A more radical approach to parallelization is to treat different

scalar CPUs as independent computers, each of them having their

own separate physical memory, and each of them running a separate

instance of the application code. This approach requires extension

of the program with instructions that explicitly deal with the neces-

sary communication between the CPUs to split up the computational

work and to exchange partial results. Memory is distributed in this

method. In order to allow a scaling of the problem size with the total

available memory, each CPU should only store a fraction of the total

data of the problem in its own memory. Successful implementation

of this paradigm therefore requires substantial algorithmic changes

compared to serial programs and, depending on the problem, a con-

siderably higher complexity than in corresponding serial codes may

result. However, such massively parallel programs have the poten-

tial to be scalable up to very large processor number, and to exploit

the combined performance of the CPUs in a close to optimum fash-

ion. Also, such codes can be run on computers of comparatively low

cost, such as clusters of ordinary PCs.

GADGET-2 follows this paradigm of a massively parallel simu-

lation code. It contains instructions for communication using the

standardized Message Passing Interface (MPI). The code itself was

deliberately written using the language C (following the ANSI stan-

dard) and the open-source libraries GSL and FFTW. This results in

a very high degree of portability to the full family of UNIX systems,

without any reliance on special features of proprietary compilers.

The parallelization algorithms of the code are flexible enough to

allow its use on an arbitrary number of processors, including just

one. As a result GADGET-2 can be run on a large variety of machines,

ranging from a laptop to clusters of the most powerful SMP comput-

ers presently available. In the following, we describe in more detail

the parallelization algorithms employed by the code.

5.1 Domain decomposition and Peano–Hilbert order

Because large cosmological simulations are often memory-bound,

it is essential to decompose the full problem into parts that are suit-

able for distribution to individual processors. A commonly taken

approach in the gravitational N-body/SPH problem is to decom-

pose the computational volume into a set of domains, each assigned

to one processor. This has often been realized with a hierarchical

orthogonal bisection, with cuts chosen to approximately balance the

estimated work for each domain (e.g. Dubinski 1996). However, a

disadvantage of some existing implementations of this method is

that the geometry of the tree eventually constructed for each do-

main depends on the geometry of the domains themselves. Because

the tree force is only an approximation, this implies that individual

particles may experience a different force error when the number

of CPUs is changed, simply because this in general modifies the

way the underlying domains are cut. Of course, provided the typical

size of force errors is sufficiently small, this should not pose a severe

problem for the final results of collisionless simulations. However, it

complicates code validation, because individual particle orbits will

then depend on the number of processors employed. Also, there is
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the possibility of subtle correlations of force errors with domain

boundaries, which could especially in the very high redshift regime

show up as systematic effects.

Here we propose a new scheme for domain decomposition that

guarantees a force that is independent of the processor number. It

also avoids other shortcomings of the orthogonal bisection, such

as high aspect ratios of domains. Our method uses a space-filling

fractal, the Peano–Hilbert curve, to map 3D space on to a one-

dimensional (1D) curve. The latter is then simply chopped off into

pieces that define the individual domains. The idea of using a space-

filling curve for the domain decomposition of a tree code was first

proposed by Warren & Salmon (1993, 1995). They however used

Morton ordering for the underlying curve, which produces irregu-

larly shaped domains.

In Fig. 7, we show examples of the Peano–Hilbert curve in two

and three dimensions. The Peano curve in two dimensions can be

constructed recursively from its basic ‘U’-shaped form that fills a

2 × 2 grid, together with the rules that determine the extension of

this curve on to a 4 × 4 grid. As can be seen in Fig. 7, these rules

mean that the bar of the ‘U’ has to be replaced with two smaller

copies of the underlying ‘U’, while at the two ends, rotated and

mirrored copies have to be placed. By repeated application of these

rules we can construct an area-filling curve for arbitrarily large grids

of size 2n × 2n . In three dimensions, a basic curve defined on a

2 × 2 × 2 grid can be extended in an analogous way, albeit with

somewhat more complicated mapping rules, to the 3D space-filling

curve shown in Fig. 7.

An interesting property of these space-filling curves is their self-

similarity. Suppose we describe the Peano–Hilbert curve that fills a

2n × 2n × 2n grid with a one-to-one mapping pn(i , j , k), where the

value pn ∈ [0, . . . , n3 − 1] of the function is the position of the cell (i ,

j , k) along the curve. Then we have pn/2 (i/2, j/2, k/2) = pn(i , j ,

k)/8, where all divisions are to be understood as integer divisions.

We can hence easily ‘contract’ a given Peano–Hilbert curve and

again obtain one of lower order. This is a property we exploit in the

code.

A second important property is that points that are close along

the 1D Peano–Hilbert curve are in general also close in 3D space,

Figure 7. Space-filling Peano–Hilbert curve in two (bottom) and three (top) dimensions.

i.e. the mapping preserves locality. If we simply cut a space-filling

Peano curve into segments of a certain length, we obtain a do-

main decomposition which has the property that the spatial domains

are simply connected and quite ‘compact’, i.e. they tend to have

small surface-to-volume ratios and low aspect ratios, a highly desir-

able property for reducing communication costs with neighbouring

domains.

Thirdly, we note that there is a close correspondence between the

spatial decomposition obtained by a hierarchical BH oct-tree, and

that obtained from segmenting a Peano–Hilbert curve. For example,

consider a fiducial Peano–Hilbert curve that fills a box (the root

node), encompassing the whole particle set. Cutting this curve into

eight equally long pieces, and then recursively cutting each segment

into eight pieces again, we regenerate the spatial oct-tree structure of

the corresponding BH tree. If we hence assign an arbitrary segment

of the Peano–Hilbert curve to a processor, the corresponding volume

is compatible with the node structure of a fiducial global BH tree

covering the full volume, i.e. we effectively assign a collection of

branches of this tree to each processor. Because of this property, we

obtain a tree whose geometry is not affected by the parallelization

method, and the results for the tree force become strictly independent

of the number of processors used.

We illustrate these concepts in Fig. 8, where we show a sketch of

a global BH tree and its decomposition into domains by a Peano–

Hilbert curve. For simplicity, we show the situation in two dimen-

sions. Note that the sizes of the largest nodes assigned to each proces-

sor in this way need not all be of the same size. Instead, the method

can quite flexibly adjust to highly clustered particle distributions, if

required.

In order to carry out the domain decomposition in practice, we first

compute a Peano–Hilbert ‘key’ for each particle. This is simply the

integer returned by the function p, where the coordinates of particles

are mapped on to integers in the range [0, 2n − 1]. The construction

of the Peano–Hilbert key can be carried out with a number of fast bit-

shift operations, and short lookup tables that deal with the different

orientations of the fundamental figure. We typically use n = 20,

such that the key fits into a 64-bit-long integer, giving a dynamic

range of the Peano–Hilbert curve of ∼106 per dimension. This is
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Figure 8. Illustration of the relation between the BH oct-tree and a domain decomposition based on a Peano–Hilbert curve. For clarity, the sketch is drawn in

two dimensions. The fiducial Peano curve associated with the simulation volume visits each cell of a regular mesh exactly once. The simulation volume is cut

into domains by segmenting this curve at arbitrary intermediate points on cell boundaries. This generates a rule for distributing the particle set on to individual

processors. Because the geometric structure of the BH tree is commensurable with the mesh, each mesh cell corresponds to a certain branch of a fiducial global

BH tree. These branches then reside entirely on single processors. In addition, each processor constructs a ‘top-level tree’ where all nodes at higher level are

represented. The missing data on other processors is marked using ‘pseudo-particles’ in this tree.

enough for all present applications but could be easily extended if

needed.

In principle, we would then like to sort these keys and divide the

sorted list into segments of approximately constant work-load. How-

ever, because the particle data (including the keys) are distributed,

a global sort is a non-trivial operation. We solve this problem using

an adaptive hashing method. Each processor first considers only its

locally sorted list of keys and uses it to recursively construct a set of

segments (by chopping segments into eight pieces of equal length)

until each holds at most sN/N cpu particles, where we usually take

s ≃ 0.1. This operation partitions the load on each processor into

a set of reasonably fine pieces, but the total number of these seg-

ments remains small, independent of the clustering state of matter.

Next, a global list of all these segments is established, and seg-

ments that overlap are joined and split as needed, so that a global

list of segments results. This corresponds to a BH tree where the

leaf nodes hold of the order of sN/N cpu particles. We can now as-

sign one or several consecutive segments to each processor, with

the divisions chosen such that an approximate work-load balance is

obtained, subject to the constraint of a maximum allowed memory

imbalance. The net result of this procedure is that a range of keys is

assigned to each processor, which defines the domain decomposi-

tion and is now used to move the particles to their target processors,

as needed. Note that unlike a global sort, the above method requires

little communication.

For the particles of each individual processor, we then construct

a BH tree in the usual fashion, using the full extent of the particle

set as the root grid size. In addition, we insert ‘pseudo-particles’

into the tree, which represent the mass on all other processors. Each

of the segments in the global domain list, which was not assigned

to the local processor, is represented by a pseudo-particle. In the

tree, these serve as placeholders for branches of the tree that reside

completely on a different processor. We can obtain the multipole

moments of such a branch from the corresponding remote proces-

sor, and give the pseudo-particle these properties. Having inserted

the pseudo-particles into each local tree therefore results in a ‘top-

level tree’ that complements the tree branches generated by local

particles. The local tree is complete in the sense that all internal

nodes of the top-level tree have correct multipole moments, and

they are independent of the domain decomposition resulting for a

given processor number. However, the local tree has some nodes that

consist of pseudo-particles. These nodes cannot be opened because

the corresponding particle data reside on a different processor, but

when encountered in the tree walk, we know precisely on which

processor this information resides.

The parallel tree force computation proceeds therefore as follows.

For each of its (active) local particles, a processor walks its tree in the

usual way, collecting force contributions from a set of nodes, which

may include top-level tree nodes and pseudo-particles. If the node

represented by a pseudo-particle needs to opened, the walk along the

corresponding branch of the tree cannot be continued. In this case,

the particle is flagged for export to the processor the pseudo-particle

came from, and its coordinates are written into a buffer list, after

which the tree walk is continued. If needed, the particle can be put

several times into the buffer list, but at most once for each target pro-

cessor. After all local particles have been processed, the particles in

the buffer are sorted by the rank of the processor they need to be sent

to. This collects all the data that need to be sent to a certain proces-

sor in a contiguous block, which can then be communicated in one

operation based on a collective hypercube communication model.
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The result is a list of imported particles for which the local tree is

walked yet again. Unlike in the normal tree walk for local particles,

all branches of the tree that do not exclusively contain local mass can

be immediately discarded, because the corresponding force contri-

butions have already been accounted for by the processor that sent

the particle. Once the partial forces for all imported particles have

been computed, the results are communicated back to the sending

processors, using a second hypercube communication. A processor

that sent out particles receives in this way force contributions for

nodes that it could not open locally. Adding these contributions to

the local force computed in the first step, the full force for each local

particle is then obtained. The forces are independent of the number

of processors used and the domain cuts that where made. In prac-

tice, numerical round-off can still introduce differences however,

because the sequence of arithmetic operations that leads to a given

force changes when the number of CPUs is modified.

Unlike in GADGET-1, particles are not automatically exported to

other processors, and if they are, then only to those processors that

hold information that is directly needed in the tree walk. Particularly

in the TreePM scheme and in SPH, this leads to a drastic reduction

in the required communication during the parallel force computa-

tions, an effect that is particularly important when the number of

CPUs is large. Because the domains are locally compact and the tree

walk is restricted to a small short-range region in SPH and TreePM,

most particles will lie completely inside the local domain, requiring

no information from other processors at all, and if they have to be

exported, then typically only to one or a few other processors. We

also remark that the above communication scheme tends to hide

communication latency, because the processors can work indepen-

dently on (long) lists of particles before they meet for an exchange

of particles or results.

Finally, we note that we apply the Peano–Hilbert curve for a

second purpose as well. Within each local domain, we order the

particles in memory according to a finely resolved Peano–Hilbert

curve. This is done as a pure optimization measure, designed to in-

crease the computational speed. Because particles that are adjacent

in memory after Peano–Hilbert ordering will have close spatial co-

ordinates, they also tend to have very similar interaction lists. If the

microprocessor works on them consecutively, it will hence in many

cases find the required data for tree nodes already in local cache

memory, which reduces wait cycles for the slower main memory.

Our test results show that the Peano–Hilbert ordered particle set can

result in nearly twice the performance compared to random order,

even though the actual tree code that is executed is the same in both

cases. The exact speed-up obtained by this trick is architecture- and

problem-dependent, however.

5.2 Parallel Fourier transforms

In the TreePM algorithm, we not only need to parallelize the tree

algorithm, but also the PM computations. For the Fourier trans-

forms themselves we employ the massively parallel version of the

FFTW library developed at the Massachusetts Institute of Technol-

ogy (MIT). The decomposition of the data is here based on slabs

along one coordinate axis. The Fourier transform can then be carried

out locally for the coordinate axes parallel to the slabs. However, the

third dimension requires a global transpose of the data cube, a very

communication intensive step which tends to be quite restrictive for

the scalability of massively parallel FFTs, unless the communica-

tion bandwidth of the computer is very high. Fortunately, in most

applications of interest, the cost of the FFTs is so subdominant that

even a poor scaling remains unproblematic up to relatively large

processor numbers.

A more important problem lies in the slab data layout required

by the FFT, which is quite different from the, to first order, ‘cubical’

domain decomposition that is ideal for the tree algorithm. Dubinski

et al. (2004) and White (2002) approached this problem by choosing

a slab decomposition also for the tree algorithm. While being simple,

this poses severe restrictions on the combinations of mesh size and

processor number that can be run efficiently. In particular, in the

limit of large processor number, the slabs become very thin, so that

work-load balancing can become poor. In addition, due to the large

surface-to-volume ratio of the thin slabs, the memory cost of ghost

layers required for the CIC assignment and interpolation schemes

can become quite sizable. In fact, in the extreme case of slabs that are

one mesh cell wide, one would have to store three ghost layer zones,

which would then have to come from more than one processor on

the ‘left’ and ‘right’.

An obvious alternative is to use different decompositions for the

tree algorithm and the PM part. This is the approach GADGET-2 uses.

One possibility would be to swap the data between the Peano–

Hilbert decomposition, and the slab decomposition whenever a PM

force computation is necessary. However, this approach has a num-

ber of drawbacks. First of all, it would require the exchange of a

substantial data volume, because almost all particles and their asso-

ciated data would have to be moved in the general case. Secondly, be-

cause the slab decomposition essentially enforces an equal volume

decomposition, this may give rise to large particle-load imbalance

in highly clustered simulations, for example in ‘zoom’ simulations.

An extreme case of this problem would be encountered when FFTs

with vacuum boundaries are used. Here, at least half of the slabs,

and hence processors, would be completely devoid of particles if

the particle set was actually swapped to the slab decomposition.

We therefore implemented a second possibility, where the parti-

cle data remains in place, i.e. in the order established for the tree

algorithm. For the FFT, each processor determines by itself with

which slab its local particle data overlaps. For the corresponding

patch, the local particle data is then CIC-binned, and this patch is

transmitted to the processor that holds the slab in the parallel FFT.

In this way, the required density field for each slab is constructed

from the contributions of several processors. In this scheme only

the scalar density values are transmitted, which is a substantially

smaller data volume than in the alternative scheme, even when the

PM grid is chosen somewhat larger than the effective particle grid.

After the gravitational potential has been computed, we collect in

the same way the potential for a mesh that covers the local particle

set. We can here pull the corresponding parts from the slabs of in-

dividual processors, including the ghost layers required around the

local patch for finite differencing of the potential. Because the local

domains are compact, they have a much smaller surface-to-volume

ratio than the slabs, so that the memory cost of the ghost layers

remains quite small. After the local patch of the potential has been

assembled, it can be finite differenced and interpolated to the par-

ticle coordinates without requiring any additional communication.

This method hence combines the PM computation in a quite flexible

way with the tree algorithm, without putting any restriction on the

allowed processor number, and avoiding, in particular, the memory-

and work-load balancing issues mentioned above.

5.3 Parallel I/O

Current cosmological simulations have reached a substantial size,

with particle numbers well in excess of 107 used quite routinely.
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Time slices of such simulations can reach up to a few GByte in

size, at which point it becomes very time-consuming to write or

read these data sequentially on a single processor. Also, it can be

impractical to store the data in a single file. GADGET-2 therefore

allows simulation data to be split across several files. Each file is

written or read by one processor only, with data sent to or received

by a group of processors. Several of these files can be processed

in parallel. This number can be either equal to the total number of

files requested, or restricted to a smaller value in order to prevent

a ‘flooding’ of the I/O subsystem of the operating system, which

can be counterproductive. Unlike in previous versions of the code,

GADGET-2 does not pose restrictions on the number of files and the

number of simultaneously processed files in relation to the number

of processors used.

In the largest simulation carried out with GADGET-2 thus far, a

simulation with 21603 particles (Springel et al. 2005b), the total

size of a snapshot slice was more than 300 GB. Using parallel

I/O on the high-performance IBM p690 system of the Max-Planck-

Gesellschaft (MPG) computing centre in Garching, these time slices

could be written in slightly less than 300 s, translating in an effective

disc bandwidth of ∼1 GB s−1. Without parallel I/O, this would have

taken a factor of ≃50–60 longer.

5.4 Miscellaneous features

We note that unlike previous versions, GADGET-2 can be run on an

arbitrary number of processors, including a single processor. There

is hence no longer a need for separate serial and parallel versions.

Lifting the restriction for the processor numbers to be powers of

two can be quite useful, particularly for loosely coupled clusters of

workstations, where windows of opportunity for simulations may

arise that offer ‘odd’ processor numbers for production runs.

This flexibility is achieved despite the code’s use of a commu-

nication model that operates with synchronous communication ex-

clusively. The principal model for communication in the force com-

putations follows a hypercube strategy. If the processor number is

a power of two, say 2p, then a full all-to-all communication cycle

can be realized by 2p − 1 cycles, where in each cycle 2p−1 disjoint

processor pairs are formed that exchange messages. If the processor

number is not a power of two, this scheme can still be used, but

the processors need to be embedded in the hypercube scheme cor-

responding to the next higher power of two. As a result, some of the

processors will be unpaired in a subfraction of the communication

cycle, lowering the overall efficiency somewhat.

GADGET-2 can also be used to set up ‘glass’ initial conditions, as

suggested by White (1996). Such a particle distribution arises when

a Poisson sample in an expanding periodic box is evolved with

the sign of gravity reversed until residual forces have dropped to

negligible values. The glass distribution then provides an alternative

to a regular grid for use as an unperturbed initial mass distribution

in cosmological simulations of structure formation. To speed up

convergence, the code uses an ‘inverse Zel’dovich’ approximation

based on the measured forces to move the particles to their estimated

Lagrangian positions.

We have also added the ability to simulate gas-dynamical simu-

lations in two dimensions, both with and without periodic bound-

ary conditions. A further new feature in GADGET-2 is the optional

use of the Hierarchical Data Format (HDF5), developed by the

National Center for Supercomputing Applications (NCSA). This

allows storage of snapshot files produced by GADGET-2 in a platform-

independent form, simplifying data exchange with a variety of anal-

ysis software.

6 T E S T P RO B L E M S

Unfortunately, it is not possible to formally demonstrate the correct-

ness of complex simulation codes such as GADGET-2. However, the

reliability of a code can be studied empirically by applying it to a

wide range of problems, under a broad range of values of nuisance

code parameters. By comparing with known analytical solutions and

other independent numerical methods, an assessment of the numer-

ical reliability of the method can be established, which is essential

for trusting the results of simulations where no analytical solutions

are known (which is of course the reason to perform simulations to

begin with).

We begin with a simple shock-tube test for the SPH component of

GADGET-2, which has known analytical solutions. We then consider

the more elaborate problem of the collapse of a cold sphere of gas

under self-gravity. This 3D problem couples self-gravity and gas dy-

namics over a dynamic range similar to that encountered in structure

formation simulations. There are no analytical solutions, but highly

accurate results from 1D shock-capturing codes exist for compari-

son. We then move on and consider the highly dissipative collapse

of an isothermal cloud of gas, the ‘standard isothermal test case’ of

Boss & Bodenheimer (1979), where we carry out a resolution study

that examines the reliability of the onset of fragmentation.

As a test of the accuracy of the dark matter dynamics, we con-

sider the dark matter halo mass function and the two-point corre-

lation function obtained for two 2563 simulations of cosmological

structure formation. Our initial conditions are the same as those

used recently by Heitmann et al. (2005) in a comparison of several

cosmological codes. We also use their results obtained for these

different codes to compare with GADGET-2.

We then consider the formation of the ‘Santa Barbara cluster’

(Frenk et al. 1999), a realistic hydrodynamical simulation of the

formation of a rich cluster of galaxies. The correct solution for this

complex problem, which is directly tied to our theoretical under-

standing of the intracluster medium, is not known. However, results

for GADGET-2 can be compared to the 12 codes examined in Frenk

et al. (1999), which can serve as a broad consistency check.

Finally, we briefly consider a further hydrodynamical test prob-

lem, which involves strong shocks and vorticity generation. This is

the interaction of a blast wave with a cold cloud of gas embedded

at pressure equilibrium in ambient gas. This forms an advanced test

of the capabilities of the SPH solver and has physical relevance for

models of the ISM, for example.

6.1 Shock tube

We begin by considering a standard Sod shock-tube test, which

provides a useful validation of the code’s ability to follow basic

hydrodynamical phenomena. We consider an ideal gas with γ =
1.4, initially at rest, where the half-space x < 0 is filled with gas at

unit pressure and unit density (ρ 1 = 1, P 1 = 1), while x > 0 is filled

with low-pressure gas (P 2 = 0.1795) of lower density (ρ 2 = 0.25).

These initial conditions have been frequently used as a test for SPH

codes (e.g. Hernquist & Katz 1989; Rasio & Shapiro 1991; Wadsley

et al. 2004). We realize the initial conditions in three dimensions

using an irregular glass-like distribution of particles of equal mass,

embedded in a periodic box that is longer in the x-direction than in

the y- and z-directions.

In Fig. 9, we show the result obtained with GADGET-2 at time

t = 5.0. The agreement with the analytical solution is good, with

discontinuities resolved in about three interparticle separations, or

equivalently two to three SPH smoothing lengths. At the contact
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Figure 9. Sod shock test carried out in three dimensions. The gas is initially

at rest with ρ1 = 1.0, P 1 = 1.0 for x < 0, and ρ2 = 0.25, P 2 = 0.1795 for

x > 0. The numerical result is shown with circles (with a spacing equal to

the mean particle spacing in the low-density region) and compared with the

analytical result at t = 5.0. A shock of Mach number M = 1.48 develops.

discontinuity, a characteristic pressure blip is observed, and some

excess entropy has been produced there as a result of the sharp

discontinuity in the initial conditions, which has not been smoothed

out and therefore is not represented well by SPH at t = 0. Note

that while the shock is broadened, the post-shock temperature and

density are computed very accurately.

6.2 Collapse of an adiabatic gas sphere

A considerably more demanding test problem is the adiabatic col-

lapse of an initially cold gas cloud under its own self-gravity. Origi-

nally proposed by Evrard (1988), this problem has been considered

by many authors (e.g. Hernquist & Katz 1989; Davé et al. 1997;

Wadsley et al. 2004) as a test of cosmological codes. The initial

conditions in natural units (G = 1) take the form of a spherical

γ = 5/3 cloud of unit mass and unit radius, with a ρ ∝ 1/r den-

sity profile, and with an initial thermal energy per unit mass of

u = 0.05. When evolved forward in time, the cloud collapses gravi-

tationally until a central bounce develops with a strong shock moving

outward.

In Fig. 10 we show spherically averaged profiles of density, radial

velocity and entropy of the system at time t = 0.8, and compare it

to a 1D high-precision calculation carried out with the piece-wise

parabolic method (PPM) by Steinmetz & Mueller (1993). An ana-

lytical solution is not available for this problem. We show results

for two different resolutions, 1.56 × 106 and 1.95 × 105 particles;

lower-resolution runs are still able to reproduce the overall solution

well, although the shock becomes increasingly more broadened.

We see that for sufficiently high resolution, the 3D SPH calculation

reproduces the 1D PPM result reasonably well. In the region just

outside the shock, we see appreciable pre-shock entropy generation.

As pointed out by Wadsley et al. (2004), this arises due to the arti-

ficial viscosity which is here already triggered at some level by the

strong convergence of the flow in the pre-shock region. This reduces

the entropy production in the actual shock somewhat, biasing the

entropy of the post-shock flow low. Note that thanks to our entropy

formulation, the entropy profile is well reproduced at the outer edge

of the flow, unlike the test calculation by Wadsley et al. (2004) using

a traditional SPH formulation.

6.3 Isothermal collapse

Another demanding test problem that couples the evolution un-

der self-gravity and hydrodynamics is the ‘standard isothermal test

case’ introduced by Boss & Bodenheimer (1979). We consider this

fragmentation calculation in the variant proposed by Burkert &

Bodenheimer (1993), where a smaller initial non-axisymmetric per-

turbation is employed; this form of the initial conditions has been

used in numerous test calculations since then. The initial state con-

sists of a spherical cloud with sound speed cs = 1.66 × 104 cm s−1

and an isothermal equation of state, P = c2
s ρ. The cloud radius is

R = 5 × 1016 cm, its mass is M = 1 M⊙, and it is in solid body

rotation with an angular velocity of ω = 7.2 × 10−13 rad s−1. The

underlying constant density distribution (ρ 0 = 3.82 × 10−18 g cm−3)

is modulated with an m = 2 density perturbation

ρ(φ) = ρ0[1 + 0.1 cos(2φ)], (36)

where φ is the azimuthal angle around the rotation axis. We imple-

ment the initial conditions with a sphere of particles carved out of a

regular grid, where the 10 per cent density perturbation is achieved

with a mass perturbation in the otherwise equal-mass particles.

This simultaneous collapse and fragmentation problem requires

high spatial resolution and accuracy, both in the treatment of self-

gravity and in the hydrodynamics. A particular difficulty is that

only a small fraction of the simulated mass eventually becomes

sufficiently self-gravitating to form fragments. As Bate & Burkert

(1997) discuss, numerical results are only trustworthy if the Jeans

mass is resolved during the calculation. Also, if the gravitational

softening is too large, collapse may be inhibited and the forming

clumps may have too large mass. In fact, Sommer-Larsen, Vedel &

Hellsten (1998) show that for a finite choice of softening length, an

arbitrarily large mass of gas in pressure equilibrium can be deposited

in a non-singular isothermal density distribution with a radius of the

order of the softening length. On the other hand, a gravitational

softening much smaller than the SPH smoothing length can lead

to artificial clumping of particles. The best strategy for this type of

fragmentation calculation therefore appears to be to make the grav-

itational softening equal to the SPH softening length, an approach

we use in this test calculation. While a varying gravitational soften-

ing formally changes the potential energy of the system, this energy
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Figure 10. Adiabatic collapse of a gas sphere (‘Evrard’ test). At time t = 0.8, we show radial profiles of density, velocity and entropy for two different

resolutions, in the top row for 1.56 × 106 particles, and in the bottom row for 1.95 × 105 particles. The solid lines mark the result of a 1D PPM calculation

(Steinmetz & Mueller 1993), which can be taken as a quasi-exact result in this case. The 3D SPH calculations reproduce the principal features of this solution

generally quite well. However, as expected, the shock is broadened, and also shows some pre-shock entropy generation. The latter effect is particularly strong in

this spherically symmetric problem because of the rapid convergence of the flow in the infall region in front of the shock, which triggers the artificial viscosity.

However, the post-shock properties of the flow are only mildly affected by this and show quite good agreement with the 1D PPM results.

perturbation can be neglected in the highly dissipative isothermal

case we consider here. Note that once fragmentation occurs, the den-

sity rises rapidly on a free-fall time-scale, and the smallest resolved

spatial scale as well as the time-step drop rapidly. This quickly

causes the simulation to stall, unless the dense gas is eliminated

somehow, for example by modelling star formation with sink parti-

cles (Bonnell et al. 1997).

In Fig. 11, we compare the density fields at t = 1.24 free-

fall times in the z = 0 plane, orthogonal to the rotation axis, for

four different numerical resolutions, ranging from 3.3 × 104 to

1.71 × 107. At this time, an elongated bar-like structure has formed

with two high-density regions at its ends. Due to a converging gas

flow on to these ends, they become eventually self-gravitating and

collapse to form two fragments. The onset of this collapse can be

studied in Fig. 12, where we plot the maximum density reached in

the simulation volume as a function of time. It can be seen that the

three high-resolution computations converge reasonably well, with

a small residual trend towards slightly earlier collapse times with

higher resolution, something that is probably to be expected. The

low-resolution run behaves qualitatively very similarly, but shows

some small oscillations in the maximum density in the early phases

of the collapse. Overall, our results compare favourably with those

of Bate & Burkert (1997), but we are here able to reach higher res-

olution and are also able to reproduce more cleanly a first density

maximum at t ≃ 1.1, which is also seen in the mesh calculations

considered by Bate & Burkert (1997).

6.4 Dark matter halo mass function and clustering

Cosmological simulations of structure formation are the primary

target of GADGET-2. Because the dominant mass component is dark

matter, the accuracy and performance of the collisionless N-body

algorithms in periodic cosmological boxes is of tantamount impor-

tance for this science application. To compare results of GADGET-2

to other codes, we make use of a recent extensive study by

Heitmann et al. (2005), who systematically compared the dark mat-

ter results obtained with a number of different simulation codes and

techniques. Among the codes tested was also the old public version

of GADGET-1 (Springel et al. 2001b). As a useful service to the com-

munity, Heitmann et al. (2005) have made their initial conditions as

well as the evolved results of their computations publicly available.

We here reanalyse the dark matter mass function and the two-point

autocorrelation function of their data using an independent mea-

surement code and we compare the results with those we obtained

with GADGET-2.

The simulations considered are two runs with 2563 particles in

periodic boxes of side length 64 and 256 h−1 Mpc, respectively, in

an �m = 0.314, �� = 0.686 universe with h = 0.71. Further details

about the initial conditions are given in Heitmann et al. (2005). We

use a comoving gravitational softening length equal to 1/35 of the

mean particle spacing.

Non-linear gravitational clustering leads to the formation of grav-

itationally bound structures that over time build up ever more
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Figure 11. Resolution study for the ‘standard isothermal collapse’ simulation. We show the gas density in a slice trough the centre of the simulated volume at

1.24 free-fall times, roughly when the two perturbations at the ends of the bar-like structure become self-gravitating and undergo gravitational collapse. From

the top left to the bottom row, the particle number increases from 3.3 × 104 to 1.71 × 107 by factors of 8.

massive haloes. The abundance of haloes as a function of mass

and time is arguably the most important basic result of structure for-

mation calculations. In Fig. 13, we show the differential halo mass

function, computed with the standard friends-of-friends (FOF) algo-

rithm using a linking length equal to 0.2 the mean particle spacing.

The top panel compares our new GADGET-2 result for the large box

at z = 0 with the result obtained by Heitmann et al. (2005) with

GADGET-1. We obtain very good agreement over the full mass range.

The bottom panel of Fig. 13 extends the comparison to the five

additional codes examined by Heitmann et al. (2005): the AMR

code FLASH (Fryxell et al. 2000), the parallel tree code HOT (Warren

& Salmon 1995), the adaptive P3M code HYDRA (Couchman et al.

1995), the parallel PM code MC
2 (Habib et al., in preparation) and

the tree-PM solver TPM (Bode & Ostriker 2003). We plot the rela-

tive halo abundance in each bin, normalized to the GADGET-2 result.

While there is good agreement for the abundance of massive haloes

within counting statistics, systematic differences between the codes

become apparent on the low-mass side. Particularly, the codes based

purely on mesh-based gravity solvers, MC
2 and FLASH, have prob-

lems here and show a substantial deficit of small structures. It is

expected that some small haloes are lost due to insufficient resolu-

tion in fixed-mesh codes, an effect that can be alleviated by using a

sufficiently fine mesh, as MC
2 demonstrates. It is worrying however

that current AMR codes have particularly severe problems in this

area as well. A similar conclusion was also reached independently

by O’Shea et al. (2005a) in a comparison of the AMR code ENZO

(O’Shea et al. 2005b) with GADGET. As gravity is the driving force of

structure formation, the novel AMR methods clearly need to keep an

eye on this issue and to improve their gravity solvers when needed,

otherwise part of the advantage gained by their more accurate

treatment of hydrodynamics in cosmological simulations may be

lost.
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Figure 12. Resolution study for the ‘standard isothermal collapse’ sim-

ulation. We here compare the temporal evolution of the maximum density

reached in simulations of different particle number, as indicated in the legend.

Symbols give the SPH result (8 × 104 particles) of Bate & Burkert (1997),

which agrees quite well with our result at comparable resolution. The small

residual differences are plausibly due to differences in the employed SPH

density estimator or the neighbour number.

In Fig. 14, we show a similar comparison for the two-point corre-

lation function of the dark matter in the small 64 h−1 Mpc box, again

normalized to the GADGET-2 results. As discussed in more detail by

Heitmann et al. (2005), on large scales all codes agree reassuringly

well, perhaps even better than might have been expected. On small

scales, the mesh-based codes tend to show a deficit of clustering,

consistent with the results for the mass function. Interestingly, the

result obtained by Heitmann et al. (2005) for GADGET-1 shows a no-

ticeable excess of clustering on very small scales compared to our

computation with GADGET-2. This happens on rather small scales,

comparable to the gravitational softening scale. This could simply be

the result of a different choice of gravitational softening length, but

we also believe that the GADGET-2 result is the more accurate here.

As shown by Power et al. (2003), the time integrator of GADGET-1

has the property that insufficient time integration settings can lead to

an increase of the central density in haloes due to secular integration

errors, while for very poor time-stepping the halo density is even-

tually suppressed. The numerical steepening of the central density

profile caused by this effect could then show up as a signature of

enhanced clustering at very small scales, just as is seen here in the

GADGET-1 result.

6.5 Santa Barbara cluster

In the ‘Santa Barbara cluster comparison project’ (Frenk et al. 1999),

a large number of hydrodynamic cosmological simulation codes

were applied to the same initial conditions, which were set up to give

rise to the formation of a rich cluster of galaxies in a critical density

CDM universe, simulated using adiabatic gas physics. In total, 12

codes were compared in this study, including SPH and Eulerian

codes, both with fixed and adaptive meshes. Each simulation group

was allowed to downsample the initial conditions in a way they

considered reasonable, given also their computational resources and
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Figure 13. Comparison of the differential halo mass function obtained with

different simulation codes for a 2563 �CDM simulation in a 256 h−1 Mpc

box. The top panel compares the results from GADGET-2 (filled circles with

Poisson error bars) with those obtained with the old version GADGET-1 (open

circles). The bottom panel shows the relative differences with respect to

GADGET-2 for a larger pool of six codes. The evolved density fields for the

latter have been taken from Heitmann et al. (2005). The dashed lines indicate

the size of the expected 1σ scatter due to counting statistics.

code abilities, so that the final comparison involved computations

of different effective resolutions.

The overall results of this comparison were encouraging in

the sense that bulk properties of the cluster agreed to within

∼10 per cent and the gas properties were similar in most codes,

although with large scatter in the inner parts of the cluster. However,

there have also been some systematic differences in the results, most

notably between mesh-based and SPH codes. The former showed

higher temperatures and entropies in the cluster centre than the SPH

codes. Also, the enclosed gas fraction within the virial radius was

systematically higher for mesh codes and closer to the universal

baryonic fraction, while the SPH codes only found about 90 per cent

of the universal fraction in the virial radius. Since then, the Santa

Barbara cluster has been repeatedly used as a test problem for cos-

mological codes, but the question of which is the ‘correct’ entropy

profile and gas fraction in an adiabatic cluster has not been settled

conclusively so far.
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Figure 14. Comparison of different codes with respect to the two-point

correlation of the evolved density of a 2563 �CDM simulation in a

64 h−1 Mpc box. We show the relative differences with respect to GADGET-2

for the group of six codes considered by Heitmann et al. (2005). The vertical

dotted line marks the gravitational softening length of ǫ = 10 kpc we used

for our GADGET-2 calculation. We explicitly checked that the latter is fully

converged with respect to the time integration and force accuracy settings.

We have simulated the Santa Barbara cluster at three different nu-

merical resolutions (2 × 2563, 2 × 1283 and 2 × 643) with GADGET-2,

in each case using a homogeneous sampling for the periodic box.

Frenk et al. (1999) supplied displacement fields at a nominal res-

olution of 2563, which we directly used for our high-resolution

2 × 2563 run. The initial conditions for the lower-resolution runs

were constructed by applying a filter in Fourier space to eliminate

modes above the corresponding Nyquist frequencies, in order to

avoid aliasing of power.

In Fig. 15, we compare our results in terms of spherically averaged

profiles for dark matter density, dark matter velocity dispersion, gas

density, enclosed gas fraction, temperature and specific entropy.

We use the original binning prescriptions of Frenk et al. (1999),

and the same axis ranges for easier comparison. Our simulations

converge quite well in all their properties, apart from the innermost

bins (we have plotted bins if they contained at least 10 dark matter

or gas particles). However, we note that we confirm the finding of

Wadsley et al. (2004) that there is a merger happening right at z =
0; in fact, in our high-resolution 2 × 2563 run, the infalling clump

is just passing the centre at z = 0, while this occurs with a slight

time offset in the other two runs. We have therefore actually plotted

the results at expansion factor a = 1.02 in Fig. 15, where the cluster

has relaxed again. The results at z = 0 look very similar: only the

temperature, gas entropy and dark matter velocity dispersion at r <

0.1 show larger differences between the simulations. As Wadsley

et al. (2004) point out, the effects of this unfortunate timing of the

merger presumably also contribute to the scatter found in the results

of Frenk et al. (1999).

Our results agree very well with the mean profiles reported in the

Santa Barbara cluster comparison project. Our resolution study also

suggests that GADGET-2 produces quite stable convergence for a clean

set of initial conditions of different resolutions. The mass resolution

has been varied by a factor of 64 and the spatial resolution per

dimension by a factor of 4 in this series; this is already a significant

dynamic range for 3D simulations, thereby helping to build up trust

in the robustness of the results of the code.

The entropy profile of our results at small radii (R ∼ 0.1) ap-

pears to lie somewhat above the SPH results reported in Frenk et al.

(1999) for other SPH codes. This is in line with the findings of

Ascasibar et al. (2003), and perhaps a consequence of the entropy-

conserving formulation of SPH that we have adopted in GADGET-2.

Also, the entropy profile appears to become slightly shallower at

small radii, which suggests a small difference from the near power-

law behaviour seen in other SPH codes (see, for example, the high-

resolution result of Wadsley et al. 2004). However, this effect ap-

pears to be too small to produce the large isentropic cores seen in

the mesh simulations of Frenk et al. (1999). Such a core has also

been found in the new AMR code by Quilis (2004). The system-

atic difference between the different simulation methods therefore

continues to persist. We suggest that it may be caused by entropy

production due to mixing; this channel is absent in the SPH code by

construction while it operates more efficiently in the mesh codes. It

is presently unclear whether the SPH codes do not allow for enough

mixing, or whether the mesh codes experience too much of it. Both

seem possible.

Another interesting point to observe is that our SPH simulations

clearly predict that the enclosed baryon fraction is well below the

universal baryon fraction at the virial radius of the adiabatic cluster.

It seems a solid result that our results converge at values of around

90 per cent, in clear contrast with results near ∼100 per cent pre-

dicted by the majority of mesh codes in the study by Frenk et al.

(1999). However, we note that the new AMR code ART of Kravtsov,

Nagai & Vikhlinin (2005) also gives values below the universal

baryon fraction, although not quite as low as the SPH codes. We can

also observe a clear break in the profile at ∼0.6 Mpc, which could

not be discerned as easily in the results of Frenk et al. (1999). At

this radius, the gas profile begins to notably flatten compared with

the dark matter profile.

6.6 Interaction of a strong shock with a dense gas cloud

As a final hydrodynamical test problem we consider the interaction

of a strong shock wave with an overdense cloud embedded at pres-

sure equilibrium in a background gas. This can be viewed as a sim-

ple model for the interaction of a supernova blast wave with a dense

cloud in the ISM. When the shock strikes the cloud, a complicated

structure of multiple shocks is formed, and vortices are generated

in the flow around the cloud which lead to its (partial) destruction.

Aside from its physical relevance for simple models of the ISM,

this makes it an interesting hydrodynamical test problem. The situ-

ation has first been studied numerically in a classic paper by Klein,

McKee & Colella (1994). Recently, Poludnenko, Frank & Blackman

(2002) have readdressed this problem with a high-resolution AMR

code; they also extended their study to cases of multiple clouds and

different density ratios and shock strengths.

As initial conditions, we adopt a planar shock wave of Mach

number M = 10 which enters gas of unit density and unit pressure

from the negative x-direction. In the frame of the ambient back-

ground gas, the shock approaches with velocity v = 9.586, leading

to a post-shock density of ρ ′ = 3.884. We adopt a two-dimensional

computational domain with periodic boundaries in the y-direction,

and formally infinite extension in the x-direction. The boxsize in

the y-direction is 25 length units, and the radius of the spherical

cloud of overdensity 5 is r = 3.5. The set-up of SPH particles was

realized with a glass-like particle distribution using equal-mass par-

ticles. We have first evolved the incident shock wave independently

in order to eliminate transients that typically arise if it is set up as

C© 2005 The Author. Journal compilation C© 2005 RAS, MNRAS 364, 1105–1134



The cosmological simulation code GADGET-2 1127

0.01 0.10 1.00 10.00
R [ Mpc ]

1011

1012

1013

1014

1015

1016

1017

ρ
D

M
(r

) 
 [

 M
O •
 M

p
c

-3
 ]

2 x  643

2 x 1283

2 x 2563

dark matter

0.01 0.10 1.00 10.00
R [ Mpc ]

400

600

800

1000

1200

1400

σ
D

M
  

[ 
k

m
 s

-1
 ]

2 x  643

2 x 1283

2 x 2563

dm velocity dispersion

0.01 0.10 1.00 10.00
R [ Mpc ]

1010

1011

1012

1013

1014

1015

1016

ρ
g

as
(r

) 
 [

 M
O •
 M

p
c

-3
 ]

2 x  643

2 x 1283

2 x 2563

gas density

0.01 0.10 1.00 10.00
R [ Mpc ]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

g
as

 f
ra

ct
io

n

2 x  643

2 x 1283

2 x 2563

gas fraction

0.01 0.10 1.00 10.00
R [ Mpc ]

107

108

T
g

as
 [

 K
 ]

2 x  643

2 x 1283

2 x 2563

gas temperature

0.01 0.10 1.00 10.00
R [ Mpc ]

-5

-4

-3

-2

-1

0

1

 e
n

tr
o

p
y

2 x  643

2 x 1283

2 x 2563

entropy profile

Figure 15. Radial profiles of the Santa Barbara cluster. From top left to bottom right, we show spherically averaged profiles of dark matter density, gas density,

temperature, dark matter velocity dispersion, enclosed gas fraction and specific entropy. In each case, we compare results for three different resolutions. The

vertical line marks the virial radius of the cluster. The average of all codes used in the Santa Barbara cluster comparison project is indicated with open circles.

The dashed line in the dark matter profile is a NFW profile with the parameters given by Frenk et al. (1999). The same profile is also shown in the gas density

plot to guide the eye (scaled by the baryon to dark matter density ratio).
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Figure 16. Time evolution of the interaction of a strong shock wave with a dense cloud of gas. The cloud of radius r = 3.5 has an initial relative overdensity

of 5, and is embedded at pressure equilibrium in ambient gas of unit density and unit pressure. From the left, a shock wave with Mach number M = 10.0

approaches and strikes the cloud. The gas has γ = 5/3, giving the shock an incident velocity of v = 9.586 and a compression factor of 3.884 with respect to

the background gas. Each panel shows the gas density in a region of size 62.5 × 25.0, with the time indicated in the top-right corner. The computation assumed

periodic boundaries at the top and bottom.

a sharp discontinuity, i.e. our incident shock is consistent with the

SPH smoothing scheme.

In Fig. 16, we show density maps of the system at different times

of its evolution. When the shock strikes the cloud, a complicated

structure of forward and reverse shocks develops. A detailed descrip-

tion of the various hydrodynamical features of the flow is given by

Poludnenko et al. (2002). Two pairs of primary vortices develop in

the flow around the cloud and start shredding the cloud. This can
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Figure 17. Local gradients in the gas density field at time t = 4.5, visualized

by a grey-scale image with intensity proportional to log (|∇ρ|/ρ). Clearly

visible are the two pairs of primary and secondary vortices, as well as the

stem of the backflow. The region shown has a size of 31.25 × 12.5.

be seen particularly well in the ‘Schlieren’ image of Fig. 17, where

we show a grey-scale map of the local density gradient. Overall, our

SPH results look similar to the AMR results of Poludnenko et al.

(2002), but there are also clearly some differences in detail. For ex-

ample, the small ‘droplets’ of gas chopped off from the cloud still

survive in the SPH calculation for a comparatively long time and

are not mixed efficiently with the background material, a clear dif-

ference with the mesh-based calculations. Presumably, small-scale

fluid instabilities should disperse these droplets eventually, so the

coherence they show in the SPH calculation may be a sign of insuf-

ficient mixing.

7 P E R F O R M A N C E A N D S C A L A B I L I T Y

The performance of a parallel simulation code is a complex func-

tion of many factors, including the type of physical problem studied,

the particle and processor numbers employed, the choices made for

various numerical parameters of the code (e.g. time integration set-

tings, maximum allowed memory consumption, etc.), and finally of

hardware and compiler characteristics. This makes it hard to objec-

tively compare the performance of different codes, which should

ideally be done at comparable integration accuracy for the same

physical system. Given these difficulties, we restrict ourselves to a

basic characterization of the performance and scaling properties of

GADGET-2 without attempting to compare them in detail with other

simulation codes.

7.1 Timing measurements for cosmological simulations

In Table 1, we list the total wall-clock time elapsed when running

the two 2563 dark matter simulations discussed in Section 6.4, based

on the initial conditions of Heitmann et al. (2005). The measured

times are for all tasks of the code, including force computations, tree

construction, domain decomposition, particle drifts, etc. A detailed

breakdown of the relative contributions is given in the table as well.

The hardware used was an 8-CPU partition on a small cluster of

Pentium-IV PCs (2.4-GHz clock speed, two CPUs per machine),

using the public MPICH library for communication via gigabit eth-

ernet.

We can see that the CPU consumption is dominated by the short-

range tree computation, while the PM force is subdominant overall.

The raw force speed in the short-range tree walk of these TreePM

simulations (using a 3843 mesh) reaches about 21 000 forces per

second per processor. This is a high number, significantly in excess

of what is reached with pure tree algorithms. In fact, the latter tend

to be significantly slower for this type of simulation, typically by a

factor of 4–10.

Table 1. CPU time consumption in different parts of the code for

two typical 2563 dark matter simulations. The initial conditions for

the two simulations are those of Heitmann et al. (2005). We first

give the total number of time-steps and the elapsed wall-clock time

to evolve the simulation to z = 0 on eight CPUs of a Pentium-IV

cluster. The total consumed time is then broken up in time spent in

different parts of code, as measured by the timing routines built into

GADGET-2.

Simulation boxsize (2563) 256 h−1 Mpc 64 h−1 Mpc

Time-steps 2648 5794

Total wall-clock time (s) 60 600 173 700

Tree walk 52.8 per cent 41.0 per cent

Tree construction 4.6 per cent 6.4 per cent

Tree walk communication 0.9 per cent 1.6 per cent

Work-load imbalance 6.7 per cent 14.4 per cent

Domain decomposition 13.0 per cent 15.2 per cent

PM force 4.4 per cent 4.9 per cent

Particle and tree drifts 5.3 per cent 4.9 per cent

Kicks and time-stepping 1.4 per cent 1.1 per cent

Peano keys and ordering 8.0 per cent 7.8 per cent

Misc (I/O, etc.) 2.9 per cent 2.6 per cent

Most of the auxiliary tasks of the simulation code, for example

particle drifting, I/O, and so on, typically require a few per cent

of the total CPU. Some of these tasks are due to the parallelization

strategy, namely the domain decomposition, the wait times due to

work-load imbalance, and the time needed for communication it-

self. However, provided these contributions remain subdominant,

we can still expect a significantly faster time to solution as a result

of parallelization, besides the possibility to carry out larger simu-

lations because of the availability of the combined memory of all

processors.

In cosmological hydrodynamical TreePM simulations, we find

that the CPU time required for the SPH computations is roughly

equal to that consumed for the short-range gravitational tree forces.

This is, for example, the case in the simulations of the Santa Barbara

cluster discussed in Section 6.5. The cost of self-gravity is hence

comparable to or larger than the cost of the hydrodynamical compu-

tations in GADGET-2. Even in simulations with dissipation, this ratio

shifts only moderately towards a higher relative cost of the hydro-

dynamics, but of course here the total cost of a simulation increases

substantially because of the much shorter dynamical times that need

to be resolved.

7.2 Scalability

The problem size is an important characteristic when assessing the

performance of a massively parallel simulation code. Due to the tight

coupling of gravitational problems, it is in general not possible to

obtain a nearly linear speed-up when a small problem is distributed

on to many processors. There are several reasons that make this

impossible in practice. (i) There is always some irreducible serial

part of the code that does not parallelize; this overhead is fixed and

hence its relative contribution to the total cost keeps becoming larger

when the parallel parts are accelerated by using more processors.

(ii) The more processors that are used, the less work each of them

has to do, making it harder to balance the work equally among them,

such that more and more time is lost to idle waiting of processors.

(iii) When more processors are used, a smaller particle-load per

processor results, which in turn leads to a larger communication-to-

compute ratio in tightly coupled problems.
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Figure 18. Diagram for the time consumption of a rather small galaxy col-

lision simulation evolved with a different number of processors between one

and eight. We show a sample of 64 time-steps in each case, each represented

by a vertical bar with a width proportional to the elapsed wall-clock time dur-

ing this step. Each step is additionally subdivided into different constituent

parts, drawn in different shades of grey as indicated in the legend.

For all of these reasons, perfect scalability at fixed problem size

can in general not be expected. In Fig. 18, we illustrate this with a

rather small galaxy collision simulation, consisting of two galaxies

with 30 000 collisionless particles each, distributed into a stellar disc

and an extended dark matter halo. We have evolved this simulation

with GADGET-2 using different processor numbers, from one to eight.

The diagram in Fig. 18 shows the time consumption in different parts

of the code, during 64 typical steps taken from the simulation. Each

step is shown with an area proportional to the elapsed wall-clock

time, and different shades of grey are used for different parts of the

code within each step. In particular, black is used for the actual tree

walk, while light grey marks losses of some sort or other (primarily

wait times due to work-load imbalance, and communication times).

We see that the relative fraction of this light grey area (at the top)

relative to the total keeps growing when the number of processors

is increased. In fact, the scaling is disappointing in this example,

falling significantly short of perfect scaling where the total area for

the 64 steps would decline as the inverse of the processor number.

However, this result is not really surprising for such a small prob-

lem; when typical time-steps last only fractions of a second and the

particle-load per processor is very low, the problem size is simply

too small to allow good scaling with GADGET-2’s massively parallel

algorithms. We also see that the widths of the different steps follow

a particular pattern, stemming from the individual time-step inte-

gration scheme, where the occupancy of certain steps with ‘active’

particles constantly changes. The two large grey bars represent the

computation of the gravitational potential for all particles, which

was here carried out in regular intervals to monitor energy conser-

vation of the code.

If a problem of larger size and higher spatial uniformity is se-

lected, better scalability over a larger number of processors can be

achieved. This is illustrated in Fig. 19, where the wall-clock time as

a function of processor number for the computation of one full step

of a dark matter simulation with 2703 particles is shown. The sim-

ulation follows a �CDM model in a periodic box of 62.5 h−1 Mpc

on a side, with 5 h−1 kpc force resolution, computed with the TreePM

scheme with a 5123 mesh. We show results both for z = 50 and z = 0

to compare the scalability for unclustered and strongly clustered par-

ticle distributions, respectively. To illustrate the dependence of the

code’s scalability on the communication network of the computer

used, we give results for different computer architectures, namely a

high-end cluster of IBM p690 computers with a very fast network,

and also for ‘Beowulf’ clusters, consisting of commodity computers

that are connected with much slower standard ethernet connections.

Beside the total time, we also give the times for the PM and tree

parts of the code separately. They together account for almost all of

the CPU time required by the code for a full step.

On the IBM p690 cluster with the fast ‘Federation Switch’ com-

munication system, scalability is essentially perfect at high redshift,

and only moderately degraded by work-load imbalance losses in the

tree part of the code at low redshift. On clusters of commodity work-

stations, the scaling of the PM part of the code is limited by the band-

width of the communication network that connects the computers.

Once the execution time of the PM part becomes communication-

bound, the PM speed can actually decline for a larger number of

processors, as this requires yet more communication in the parallel

FFT. The tree part of the code is however less sensitive to commu-

nication times, and scales to a larger number of processors even for

slow network connections. Note that in practice the code is typi-

cally run with individual and adaptive time-steps where most code

steps do not involve execution of the PM part. The overall scalability

of the code on clusters with slow network connections is therefore

somewhat better than suggested based on the results of Fig. 19 alone.

Also note that a reduction of the size of the PM mesh substantially

reduces the communication requirements, which extends the scala-

bility of the code on clusters with standard network connections, at

the prize of a slightly lower speed of the tree part of the algorithm.

Arguably of more practical relevance for assessing the scaling of

the code is to consider its performance when not only the processor

number but, at the same time, also the problem size is increased.

This is of immediate relevance for practical application of a simu-

lation code, where one typically wants to employ large numbers of

processors only for challengingly large problems, while small prob-

lem sizes are dealt with using correspondingly fewer processors.

A simultaneous variation of problem size and processor number

can alleviate all three of the scaling obstacles listed above. How-

ever, changing the problem size really means to change the physics

of the problem, and this aspect can be easily confused with bad

scaling when analysed superficially. For example, increasing the

problem size of a simulation of cosmological structure formation

either improves the mass resolution or the volume covered. In both

cases, typically more simulation time-steps will be required to in-

tegrate the dynamics, either because of better spatial resolution, or

because more massive systems of lower space-density can form.

The intrinsic computational cost of a simulation therefore typically
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Figure 19. Wall-clock time as a function of processor number for a full step of a 2703 dark matter simulation, using the TreePM mode of GADGET-2 with

5123 mesh cells. The two panels on top compare the scaling for the unclustered and strongly clustered states at z = 50 and z = 0, respectively, using an IBM

p690 cluster with the fast ‘Federation Switch’ communication system. The three panels on the bottom show scaling results for various clusters of workstations,

connected with different communication technologies. In all cases, solid circles show the total timings, while diamonds and triangles give the times for the tree

and PM parts of the code, respectively.
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Figure 20. Wall-clock times consumed by the test runs of the simulation

series. An extrapolation to the size of a 21603 simulation suggests that it

should require about 1.1 × 106 s on 1024 processors.

scales (sometimes considerably) faster than linear with the problem

size.

With these caveats in mind, we show in Fig. 20 the required

run times for a scaling experiment with cosmological �CDM dark

matter simulations, carried out with GADGET-2 on a cluster of IBM

p690 systems. In our series of five simulations, we have increased the

particle number from 106 to 108, in each step by roughly a factor of√
10. At the same time we also doubled the number of processors in

each step. We kept the mass and spatial resolutions fixed at values

of 109 h−1 M⊙ and ǫ = 5 h−1 kpc, respectively, i.e. the volume

of the simulations was growing in this series. We also increased

the size of the FFT mesh in lock step with the particle number. In

Table 2, we list the most important simulation parameters, while in

Fig. 20, we show the total wall-clock times measured for evolving

each of the simulations from high redshift to z = 0, as a function

of particle number. We note that the measurements include time

spent for computing on-the-fly FOF group catalogues, two-point

correlation functions, and power spectra for 64 outputs generated

by the runs. However, this amounts only to a few per cent of the

total CPU time.

We see that the simulation series in Fig. 20 follows a power law.

For a perfect scaling, we would expect T wall−clock ∝ N part/N cpu,

which would correspond to a power law with slope n = 1−log(4) ≃
0.4 for the series. Instead, the actually measured slope (fitted line) is

n = 0.52, slightly steeper. However, the perfect scaling estimate ne-

glects factors of log (N part) present in various parts of the simulation

algorithms (e.g. in the tree construction), and also the fact that the

larger simulations do need more time-steps than the smaller simu-

lations. In the series, the number of time-steps in fact increases by

23 per cent from S4 to S64. Overall, the scaling of the code is there-

fore actually quite good in this test. In fact, an extrapolation of the
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Table 2. Simulations performed for the scaling test. All runs

used the same mass and length resolutions of 1.03 × 109 h−1

M⊙ and 5 h−1 kpc, respectively, and were started at z init =
49. The runs used equal settings for force accuracy and time

integration parameters, and all were asked to produce the

same number of outputs, at which point they also carried

out group finding, power spectrum estimation and two-point

correlation function computation.

Name N CPU N part N FFT Lbox (h−1 Mpc)

S4 4 1003 1283 23.1

S8 8 1463 1923 33.8

S16 16 2163 2563 50.0

S32 32 3183 3843 73.6

S64 64 4643 5763 108.0
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Figure 21. Total elapsed wall-clock time per particle of each test run as a

function of cosmological scalefactor. The elapsed run times of each simula-

tion have been multiplied by the processor number, and normalized by the

particle number.

series to 21603 ≃ 1.0078 × 1010 particles in a 500 h−1 Mpc box sug-

gests that such a simulation should be possible on 1024 processors

in about 1.1 × 106 s. This simulation has in fact been realized with

GADGET-2 in the first half of 2004, finishing on June 14. This ‘Mil-

lennium’ simulation by the Virgo consortium (Springel et al. 2005b)

is the largest calculation carried out with GADGET-2 thus far, and it

is also the largest high-resolution cosmological structure formation

simulation at present, reaching a dynamic range of 105 everywhere

in the periodic simulation box. The total wall-clock time required

for the simulation on the 512 processors actually used was slightly

below 350 000 h, only about 10 per cent more than expected from the

above extrapolation over two orders of magnitude. This shows that

GADGET-2 can scale quite well even to very large processor partitions

if the problem size is sufficiently large as well.

Finally, in Fig. 21 we show the cumulative CPU time consumed

for the five simulations of the series as a function of cosmological

scalefactor. We have normalized the total CPU time consumption,

T cpu = T wall-clock × N cpu, to the number of particles simulated, such

that a measure for the computational cost per particle emerges. To

first order, the required CPU time scales roughly linearly with the

scalefactor, and grows to the order of a few dozen milliseconds per

particle. At the time of the test run, the p690 cluster was not yet

equipped with its fast interconnection network, which led to the

comparatively poorer performance of the S64 simulation as a result

of the communication intensive PM part taking its toll. On current

high-end hardware (which is already faster than the p690 machine),

GADGET-2 reaches a total CPU cost of about 10 ms per dark matter

simulation particle in realistic simulations of cosmological structure

formation evolved from high redshift to the present.

7.3 Memory consumption

The standard version of GADGET-2 in TreePM mode uses 20 vari-

ables for storing each dark matter particle, i.e. 80 bytes per particle

if single precision is used. For each SPH particle, an additional 21

variables (84 bytes) are occupied. For the tree, the code uses 12

variables per node, and for a secondary data structure that holds the

centre-of-mass velocity and maximum SPH smoothing lengths of

nodes, another four variables. For a typical clustered particle dis-

tribution, on average about ∼0.65 nodes per particle are needed, so

that the memory requirement amounts to about 42 bytes per par-

ticle. Finally, for the FFTs in the PM component, GADGET-2 needs

three variables per mesh cell, but the ghost cells required around

local patches increase this requirement slightly. Taking four vari-

ables per mesh cell as a conservative upper limit, we therefore need

up to 16 bytes (or 32 bytes for double precision) per mesh cell for

the PM computation. This can increase substantially for two-level

PM computations, because we here not only have to perform zero

padding but also store the Green function for the high-resolution

region.

While being already reasonably memory-efficient, the standard

version of GADGET-2 is not yet heavily optimized towards a lean

memory footprint. This has been changed however in a special lean

version of the code, where some of the code’s flexibility was sacri-

ficed in favour of very low memory consumption. This version of the

code was used for the Millennium simulation described above. The

memory optimizations were necessary to fit the simulation size into

the aggregated memory of 1 TB available on the supercomputer par-

tition used. By removing explicit storage for long- and short-range

accelerations, particle mass and particle type, the memory require-

ment per particle could be dropped to 40 bytes, despite the need to

use 34-bit numbers for labelling each particle with a unique number.

The tree storage could also be condensed further to about 40 bytes

per particle. Because the memory for PM and tree parts of the grav-

itational force computation are not needed concurrently, one can

hence run a simulation with a peak memory consumption of about

80 bytes per particle, provided the Fourier mesh is not chosen too

large. In practice, one has to add to this some additional space for a

communication buffer. Also, note that particle-load imbalance as a

result of attempting to equalize the work-load among processors can

lead to larger than average memory usage on individual processors.

8 D I S C U S S I O N

In this paper, we have detailed the numerical algorithms used in

the new cosmological simulation code GADGET-2, and we have pre-

sented test problems carried out with it. We have emphasized the

changes made with respect to the previous public version of the

code. We hope that the improvements made in speed, accuracy and

flexibility will help future research with this code by allowing novel

types of simulations at higher numerical resolution than accessible

previously.

In terms of accuracy, the most important change of the code lies

in an improved time integration scheme, which is more accurate
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for Hamiltonian systems at a comparable number of integration

steps, and in an ‘entropy-conserving’ formulation of SPH, which

especially in simulations with radiative cooling has clear accuracy

benefits. Also, large-scale gravitational forces are more accurate

when the TreePM method is used, and offer reduced computational

cost compared to a pure tree code.

In terms of speed, the new code has improved in essentially all

of its parts thanks to a redesign of core algorithms, and a complete

rewrite of essentially all parts of the simulation code. For example,

the domain decomposition and tree construction have been acceler-

ated by factors of several each. Likewise, the SPH neighbour search

has been sped up, as well as the basic tree walk, despite the fact that

it now has to visit many more nodes than before due to the lower

order of the multipole expansion.

In terms of flexibility, the code can now be applied to more

types of systems, for example to zoom simulations with a two-level

TreePM approach, or to gas-dynamical simulations in two dimen-

sions. GADGET-2 also uses considerably less memory than before,

which makes it more versatile. The code can now be run on an ar-

bitrary number of processors, and has more options for convenient

I/O. Also, the code has become more modular and can be more

easily extended, as evidenced by the array of advanced physical

modelling already implemented in it, as discussed in Section 2.3.

In summary, we think GADGET-2 is a useful tool for simulation

work that will hopefully stimulate further development of numerical

codes. To promote this goal, we release GADGET-2 to the public.3

In a time of exponentially growing computer power, it remains an

ongoing challenge to develop numerical codes that fully exploit

this technological progress for the study of interesting astrophysical

questions.
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