
2 0
 0 

3M
N

RA
S.

34
3.
 .

89
1T

 

Mon. Not. R. Astron. Soc. 343, 891-899 (2003) 

Restoration of turbulence profile from scintillation indices 

A. Tokovinin,1* V. Kornilov,2* N. Shatsky2* and O. Voziakova2* 
1 Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile 
2Sternberg Astronomical Institute, Universitetsky prosp. 13, 119992 Moscow, Russia 

Accepted 2003 April 17. Received 2003 April 15; in original form 2003 February 26 

ABSTRACT 
An algorithm that permits one to measure atmospheric turbulence by statistical analysis of 
light flux fluctuations in four concentric-ring apertures is described in detail. It consists of 
computing the scintillation indices for each aperture and pairwise aperture combination and 
in fitting the set of measured indices to a model with a small number of turbulent layers. The 
performance of this method is analysed by means of simulations and using the real data from a 
multi-aperture scintillation sensor. It is shown that a turbulence profile with a vertical resolution 
of Ah/h ~ 0.5 can be reconstructed and that the errors of the measured intensities of turbulent 
layers are typically around 10 per cent of the integrated intensity. The integral parameters such 
as the seeing and the isoplanatic angle are measured with few per cent accuracy. 

Key words: turbulence - atmospheric effects - instrumentation: adaptive optics - site testing. 

1 INTRODUCTION 

Knowledge of the vertical distribution of optical turbulence in 
the terrestrial atmosphere is essential for understanding the phe- 
nomenon of seeing, for selecting good astronomical sites and for 
predicting the performance of various imaging techniques. For ex- 
ample, the size of a field corrected by adaptive optics (both classi- 
cal and multiconjugate) depends on the turbulence profile (Roddier 
1999). If only the ground turbulent layer is adaptively corrected, as 
suggested by Rigaut (2002), the resulting improvement of seeing is 
also profile-dependent. 

Stellar scintillation is a natural way to sense turbulence remotely. 
It results from the propagation of wave-fronts distorted by turbulent 
layers: phase perturbations are converted to intensity fluctuations. 
The amplitude and characteristic size of intensity fluctuations in- 
crease with the propagation distance. Hence, it is possible to perform 
remote turbulence sounding by a scintillation analysis, as suggested 
by Peskoff (1968). 

Existing techniques for turbulence profile (TP) measurement such 
as balloon microthermal sounding or remote optical sounding with 
double stars, Scintillation Detection and Ranging (SCIDAR) (Fuchs, 
Talion & Vernin 1998), are expensive and not suitable for contin- 
uous monitoring. Tokovinin & Kornilov (2002) proposed to obtain 
low-resolution profiles from the statistical analysis of light fluxes 
in four concentric-ring apertures. Such a multi-aperture scintilla- 
tion sensor (MASS) was actually built and tested by Kornilov et al. 
(2003). Compared with the previous single-star scintillometer of 
Ochs et al. (1976), MASS has a better vertical resolution of Ah/h ~ 
0.5 and good absolute calibration. This has been achieved by means 
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of careful signal processing and interpretation. In this paper we de- 
scribe this algorithm step by step. Although the algorithm was de- 
veloped for a specific instrument, MASS, it is more general and can 
be applied to other instruments that would use the same principle. 

A simple and robust TP monitor such as MASS is of interest 
for modern site testing and for support of adaptive optics and in- 
terferometry operations at the existing observatories. It is already 
being used to study the statistics of TP at Cerro Tololo (Tokovinin, 
Baumont & Vasquez 2003) and La Silla observatories in Chile and 
at Mauna Kea (Hawaii); more applications are planned in the near 
future. 

The principle of MASS operation is briefly introduced in Sec- 
tion 2. Fluctuations of stellar light caused by scintillation are char- 
acterized by the scintillation indices (Sis) that are computed by the 
algorithm presented in Section 3. Turbulent layers in the atmosphere 
contribute to a given SI according to the corresponding weighting 
function (WF, Section 4). Knowing both indices and WFs, we can 
restore the TP if a simple model of atmosphere with few discrete lay- 
ers is adopted, as explained in Section 5. In Section 6, we study the 
vertical resolution and precision of such a restoration technique and 
show examples of its application. Alternatively, some atmospheric 
parameters of interest can be derived directly from Sis without ex- 
plicit profile restoration (Section 7). The conclusions are given in 
Section 8. 

2 THE MASS INSTRUMENT 

In Fig. 1, the principle of MASS and its data processing are illus- 
trated. Upon propagation through a turbulent layer and further down 
to the ground, light from a stellar source acquires amplitude and 
phase fluctuations. Amplitude fluctuations are the cause of scintilla- 
tion (twinkling) of stars, they resemble a pattern of ‘flying shadows’ 
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Figure 1. Principle of turbulence profile measurement with MASS. This 
figure is available in colour in the online version of the journal on Synergy. 

on the ground. The characteristic size of the flying shadows is of the 
order of the Fresnel radius \fkz for a propagation distance z and a 
wavelength À. Thus, the spatial structure of single-star scintillation 
contains information on the distance to turbulent layers (Peskoff 
1968). 

In MASS, the flux of a bright star in four concentric apertures A, 
B, C and D is registered. Those apertures together act as a spatial 
filter. The smallest aperture A has a diameter of 2 cm, it is sensitive 
to turbulence at altitudes above 0.5 km. The largest aperture D has an 
outer diameter of 13 cm and senses mostly the high layers. Statistical 
analysis of the scintillation signals in all four apertures permits one 
to localize turbulent layers and to measure their intensities. 

The MASS instrument is described by Kornilov et al. (2003). 
Briefly, it consists of a feeding telescope with a clear (unobstructed) 
aperture of 14-cm diameter and a detector box. Within the box, the 
image of the exit pupil is segmented into rings by a system of con- 
centric mirrors with different tilts - a segmentator. The four beams 
A, B, C and D are then directed to the four photomultipliers (PMTs), 
which work in photon-counting mode with a pulse resolution of ap- 
proximately 15 ns. The spectral response of MASS is determined 
by a glass filter, which passes the wavelength band from 400 to 
550 nm, with a full-width at half maximum (FWHM) bandwidth of 
100 nm. A star of Z? = 0 mag gives a count rate in the smallest A aper- 
ture of approximately 200 count ms-1. The series of photon counts 
are used to compute the 10 Sis (four normal and six differential) 
and to restore the TP as explained below. 

MASS in its normal mode is not sensitive to the near-ground 
turbulence because the latter does not produce any scintillation. 
When a positive lens is placed in the focal plane, the image of a pupil 
on the segmentator is defocused and corresponds to the additional 
‘virtual’ propagation, following the idea of generalized SCIDAR 
(Fuchs et al. 1998). This generalized mode permits one to detect 
low-altitude turbulence and thus to measure the total seeing. During 
acquisition, a lens is placed and removed periodically, so that both 
normal and ‘shifted’ indices are accumulated quasi-simultaneously. 
We use only three ‘shifted’ indices from the smallest apertures, 
extending the set of measured indices from 10 to 13. Additional 
instrumental effects (diffraction at the entrance pupil, guiding errors, 
optical aberrations) complicate data acquisition and interpretation 
in the generalized mode and limit the altitude shift to small values 
(e.g. 0.5 km). For this reason, we do not use a generalized mode 
with a small feeding telescope. 

MASS can be used both with its own feeding telescope and with 
any other telescope. In the latter case, a two-lens ‘transformer’ is 
placed before the entrance aperture to adapt the instrument to a 
specific telescope focal length, projecting the segmentator on to the 
primary mirror with a suitable scale. In Cassegrain telescopes with 

central obscuration the segmentator must be projected off-axis on 
to a clear part of the pupil. If the clear part is much larger than 
14 cm, the generalized mode becomes feasible because diffraction 
and guiding errors are no longer troublesome. 

3 SCINTILLATION INDICES 
AND THEIR ERRORS 

In this section we explain how the series of raw photon counts are 
processed to obtain Sis. Suppose that the instantaneous light flux 
received by a given MASS aperture is X. The SI is defined as a 
variance of flux normalized by the square of the average flux: 

sr = (x-Y)2/(V)2 = (x/V)2-l. (i) 

The differential SI (Tokovinin 1998, 2002) is defined similarly 
as a variance of the difference of normalized fluxes X and F in a 
pair of apertures: 

^ = {X/X - Y/Y)1 = sx + s, - 2XY/(X • F) + 2. (2) 

Differential Sis are related to covariances. 
The instantaneous fluxes X and F are not known. Instead, we 

measure the series of photon counts in the four channels with a 
finite microexposure time t. Let xt and yt be these counts in two 
channels, where N is the number of samples during a 1-s exposure 
(N = 1000 for i = 1 ms). To obtain correct Sis from this data, we 
must take into account the non-linearity of photon counters, subtract 
the contribution from photon noise, and extrapolate the indices to 
zero exposure time, thus removing the bias caused by finite t. A 
correction for the background (dark count of PMTs and light from 
the sky) must be made as well. These operations are performed in 
several steps. 

Step 1. Compute the mean count values x for all channels. 
Step 2. Compute the raw auto- and cross-covariances of the counts 

in all channels. Auto-covariances are needed for time lags of 0, 1, 
2 sampling intervals, cross-covariances - only for lags 0 and 1. For 
any two channels x and y (x = y for auto-covariance) and for a time 
lag k (k = 0, 1,2) the covariance p'xy k is found as 

1 N-k 
p'xy.k = 2(W _ ^ - x){yi+k - ÿ) + {xi+k - x)(y¡ - ÿ)]. 

Step 3. Correct the raw covariances and mean counts (designated 
here by a prime superscript) for the non-linearity of photon counters 
(Kornilov & Pogrosheva 1989). The non-linearity parameter L = 
x ¡t is the ratio of counter dead time r to the microexposure time t. 

x = xr(\ + Lx!), Pxy = (1 - 2Lx')(l - 2Lÿf) (4) 

Step 4. Compute the Sis that are free of photon noise, corrected 
for background and extrapolated to zero microexposure time (1 ms 
is not short enough to freeze scintillations in the smallest apertures). 
The background Bx is the number of background counts in channel 
x per microexposure; it is almost always less than 1 per cent of the 
signal and not critical for data reduction. The non-Poisson parameter 
p is the ratio of the variance of photon counts to their mean value 
at constant light, p = (x2 — x2)/x. For an ideal photon counter p 
= 1, but for real PMTs at low fluxes the measured p is typically in 
the range from 1 to 1.1. The covariances are already corrected for 
non-linearity at this point. The normal and differential Sis are: 

1 -5(P.«,o - P*) - 0.5pxxJ ^ = p—^—2 , (5) (x - Bxy 
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¿’a-v   SX + Sy — 2 
1 .5ßxy,{) 0.5pxy' i 
(x - BX)(J - By) • (6) 

The derivation of these formulae is given in Appendix A. The set of 
10 Sis is computed every second. Thus, slow flux variations (below 
1 Hz) caused by unstable transparency, changing zenith distance, 
etc. do not contribute to the Sis. 

Step 5. Estimate average Sis and their errors from = 60 1-s 
measurements accumulated during 1 min. If 1-s measurements were 
uncorrelated, the error of the mean would be simply ^/K times less 
than the rms scatter of the data. Partial correlation of data is taken 
into account by the following formula for the variance <jj of the 
average SI 5: 

1 
K-\ 

Ps,o + 2 ^~^(1 — k/K)psJi , 
k=l 

(7) 

where p^k is the auto-covariance of SI 5 for the lag k computed 
by the same formula (3) as used for photon counts. We found 
that the relative errors aj/~s of all normal and differential Sis es- 
timated by the above formula are approximately 2 per cent, except 
for the smallest differential SI sab where the photon noise is im- 
portant and the relative error is 3-7 per cent, depending on the 
photon flux. Below we explain why all other Sis have the same rel- 
ative errors independent of the scintillation strength and the stellar 
flux. 

The variance of the normalized light intensity from which SI is 
derived is a sum of the scintillation variance and the photon noise 
variance 1/x; the latter is subtracted (equation 5), but its statistical 
uncertainty still contributes to the SI error. The relative proportion 
of those two terms depends on the photon flux, TP and type of the 
index considered. For example, a 1-ms flux in the smallest aperture 
A for a 2.5-mag star is x = 20 photons, while typically 5A 0.1, 
making the photon noise contribution unimportant. This applies to 
other indices as well. Only the differential SI in the smallest aperture 
pair under good (0.5-arcsec) seeing is smaller than the photon noise 
variance (sAB ^ 0.006), explaining why this SI is measured with a 
larger error. 

The contribution of these terms to the error of SI also depends 
on the correlation time of these signals, which is different. It is 
well known that a signal with a correlation time r measured during 
acquisition time T would have a relative error of its variance estimate 
of \Jx¡T = 0.013 for r ~ 0.01 s. The photon noise has a white 
spectrum, so for a sampling time r = 1 ms the relative error of 
the photon noise variance estimate is only «Jt/T = 0.004, or ~3 
times less than for the same scintillation signal. In fact, turbulence 
is not quite stationary even during 1 min, increasing the scatter of 
1-s Sis and the errors of mean Sis compared with the estimates for a 
stationary case given above; this is why we rely on the experimental 
estimates of SI errors. 

If the relative noise in the measured Sis is more or less constant, 
the relative noise of TPs restored from this data will also be constant. 
It means that the sensitivity of MASS improves when turbulence is 
weak and degrades under strong turbulence, as confirmed below by 
the analysis of real data. 

4 WEIGHTING FUNCTIONS 

Atmospheric turbulence can be considered as a collection of inde- 
pendent turbulent layers at altitudes hi. The intensities of those layers 
Ji are the integrals of refractive index structure constant C\(h) over 
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the layers 

Ji= / Cl(h)áh, (8) 
J /th layer 

they are measured in m1/3. The TP is completely defined by the set of 
{hi, Ji] values. This might appear different from the classical view 
of TP as a continuous function C^Qi), although it is nothing else 
but a discrete representation of such a function. The optical effect 
of turbulence is directly related to the intensities Jt rather than to 
Cl(h). 

The theory of weak perturbations (Tatarsky 1961; Roddier 1981) 
establishes a linear relation between some scintillation index and 
the intensities of all layers: 

/ 
Ji Wx(hi sec y) secy, (9) 

i=i 
where y is the zenith distance of a star, z = htsccy is the propagation 
distance, and the altitudes hi are counted from the observatory level 
rather than from sea level. The coefficients Wx(z) are called weight- 
ing functions (WFs), they depend on wavelength and aperture size. 
Equation (9) is valid only for weak (non-saturated) scintillations, 
which means practically sA < 0.3. Application of the linear theory 
to saturated scintillations will result in an underestimation of 7,. 

The formulae to compute WFs for normal Sis and monochro- 
matic light can be found in many publications. Tokovinin (1998, 
2002) gives these formulae for both normal and differential Sis 
and for apertures of arbitrary shape. However, it turns out that for 
differential Sis the effect of spectral bandpass is significant and 
the polychromatic WFs cannot be computed as a weighted aver- 
age of monochromatic WFs. Formulae for polychromatic WFs are 
provided in Tokovinin (2003) and reproduced in Appendix B for 
completeness. 

Polychromatic WFs computed for the two smallest MASS aper- 
tures are plotted in Fig. 2. The MASS bandpass is wide enough, so 
we have to take into account the variations of the energy distribution 
in the stellar spectrum within the bandpass. Stars are subdivided into 
12 groups according to their spectra and the WFs are pre-computed 
for each spectral group separately. During observations, an adequate 
table of WFs is selected depending on the star. 

Equation (9) can be written in a matrix form by considering the 
vector of indices S of length M = 10 (M= 13 in generalized mode), 

Figure 2. Example of the weighting functions for the two smallest MASS 
apertures, A and B, computed for the combination of the actual filter band- 
pass, PMT sensitivity, and spectral energy distribution of a star of spectral 
type A5. This figure is available in colour in the online version of the journal 
on Synergy. 
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the vector of layer intensities J of length I and the matrix W with 
elements Wmi = secy)secy: 

S = \NJ. (10) 

This formula is the basis of TP restoration. 

5 RESTORATION OF THE TURBULENCE 
PROFILE 

5.1 The model 

We measure only a small number of indices, much fewer than any 
realistic number of atmospheric layers. However, in order to obtain 
some information on TP we fit the data (indices) to a model with only 
a few layers. It will be shown that such a procedure leads to a low- 
resolution TP, which adequately represents any real TP. The ‘layers’ 
restored in this way are in fact thick slabs of turbulence. Despite the 
crudeness of such a model, layer intensities are measured correctly. 

Two alternative restoration techniques are used. The first fixed- 
layer method assumes layers at some pre-defined altitudes hi. In this 
case the relation between data S and unknowns J is linear (equation 
10). The second floating-layer method uses a model with only three 
layers that can be located at any altitude and solves equation (10) for 
the unknowns hi, Ji. In both models the number of unknowns must 
be less than the number of measurements M. In fitting models to the 
data, we search for model parameters that minimize the y 2 function. 
Let ~sm be the measured average indices, a^m, their variances (as 
estimated from equation 7), sm, the expected (or model) indices 
computed from equation (10), then 

X 2 (H) 

The minimum value of y2 is a measure of the correspondence be- 
tween the model and the data. In theory, its expected value is M — /, 
where I is the number of model parameters. In practice it is almost 
always larger for many reasons (e.g. inadequate model, biased data). 
The data (indices) are not mutually independent because 10 Sis are 
computed from only four light fluxes. 

Below we consider each restoration method in more detail. 

5.2 Fixed-layers restoration 

For fixed-altitude layers the system (10) is linear and a solution J 
that minimizes y 2 is found by the least-squares method (Press et al. 
1992): 

j = (VJt\N) '\NS, (12) 

where the system matrix W and the data are renormalized by the 
errors, \Nmi = \Nmi/<j?n and Sm = ~smlo-sm. 

The noise variance of the /th restored layer intensity a2 • is then 
equal to the ith diagonal element of the inverse normal matrix: 

4 =(WTW)-1. (13) 

Given that the least-squares method is not quite applicable in our 
case (correlated data, non-negativity constraint), equation (13) can 
be used only for a rough estimate of the resulting errors. 

It is well known that the normal matrix of the least-squares prob- 
lem can be ill-conditioned. This happens when two or more un- 
knowns have a similar influence on the data. For example, if we se- 
lect two pre-defined layers at 10 and 11 km, the WFs for these layers 
will be very similar, hence the matrix W will be almost degener- 
ate. A reasonable choice of layer altitudes is essential for successful 

restoration. We have chosen a logarithmic altitude grid (1, 2, 4, 8, 
16 km) that matches the character of WFs. A sixth layer at 0.5 km 
was added after it became clear that it was required to model data 
in some cases. A layer at 0 km is added in the generalized mode. 
On the other hand, if the model contains too few layers the fit to the 
data will be poor (large y2). 

Linear restoration does not take into account the fact that layer 
intensities must be non-negative. So, instead of solving (10) by 
the least-squares method, we minimize y2 (equation 11) directly 
with this additional constraint. Technically, we change variables to 
Ji = anc[ minimize y 2 over y/ using the standard Powell method. 

5.3 Floating-layers restoration 

The second restoration method uses a model with only three layers 
and six parameters {hi, Ji}. Real TPs often contain strong layers 
that can be localized with this technique. Of course, the continuously 
distributed turbulence that is also always present in the atmosphere 
is included into the three layers as well. 

The implementation of the floating-layer method is more com- 
plicated and computer-intensive than for fixed layers. The problem 
is highly non-linear, so minimization of y2 by gradient techniques 
leads to local minima. Instead, we check all plausible combinations 
of altitudes and for each combination find the best-fitting layer in- 
tensities and the corresponding y2. The altitude of the lowest layer 
hi is selected among the grid points (with a logarithmically uniform 
step). For each h\, the altitude /z2 is selected from the same grid to 
be larger than h\, then h^ is selected to be larger than h2. This pro- 
cess eliminates duplicate computation. For each altitude combina- 
tion {hi} layer intensities are found by direct inversion of the linear 
equation (10) (the matrix W is in fact inverted by singular-value 
decomposition). Negative Jt that may result from this procedure are 
set to zero, and the y2 that corresponds to the given {hi} is finally 
computed. When all altitude combinations are checked, the one with 
minimum y2 is taken as a solution. Floating-layer restoration takes 
less than 1 s on a modern PC computer. 

5.4 Example of profile restoration 

The example of application of both methods to real data is shown 
in Fig. 3 (see also Kornilov et al. 2003). The consistency between 
successive profiles is immediately seen - convincing evidence that 
restoration is indeed successful. The changing character of turbu- 
lence is apparent: after 3 h ut, the floating-layer method does not 
give consistent layer altitudes, indicating that turbulence is likely to 
be distributed continuously. The two restoration methods are com- 
plementary to each other. 

The residuals of three representative Sis to the fixed-layer model 
are plotted in Fig. 4 for the same data. It is typical that relative 
residuals are under 5 per cent most of the time. Some systematic 
deviations from zero (few per cent) are observed in so, signalling 
that the actual structure of high-altitude turbulence is not perfectly 
represented by our simple model. The residuals to the floating-layer 
model are quite similar. Low residuals translate to low y2/A, typi- 
cally under 10. 

6 PERFORMANCE OF FIXED-LAYER 
RESTORATION 

6.1 Numerical modelling: one and two layers 

The fixed-layer restoration was studied by numerical simulations. 
For some input TP, we computed true Sis, added a realistic noise 
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Figure 3. Turbulence profile evolution during several hours on 2002 
September 11/12 as measured with MASS at Cerro Tololo (Chile): (a) fixed- 
layer method and (b) floating-layer method. The length of bars is proportional 
to the intensities of turbulent layers with the scale indicated on the right. This 
figure is available in colour in the online version of the journal on Synergy. 

Figure 4. Relative residuals (observed minus modelled divided by mod- 
elled) of scintillation indices in apertures A, D and AB for the data in Fig. 3, 
fixed-layers restoration. This figure is available in colour in the online version 
of the journal on Synergy. 

(2 per cent relative for all Sis, 4 per cent for sAb) and restored the TP 
using the fixed-layers method. Our simulations assume independent 
noise on all Sis, which is only an approximation. 

First, we simulated restoration of a single layer located at differ- 
ent altitudes. For each layer altitude, independent noise realizations 
were added to the scintillation indices, as in real data. When the layer 
altitude coincides with one of the pre-defined model altitudes h¿, its 
intensity is retrieved correctly. Otherwise, a layer is redistributed 
among the two nearest slabs, but the total intensity of these slabs is 
again equal to the input layer intensity. In Fig. 5(a) a reaction of each 
slab is plotted when a single ‘floating’ layer changes its altitude. It 
is seen that response functions of pre-defined slabs are triangular. 
The sum of response functions is practically constant, which means 

© 2003 RAS, MNRAS 343, 891-899 
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Moving layer range, km 

Figure 5. (a) Simulation of the response of the fixed-layers restoration to 
a single turbulent layer located at different altitudes (horizontal axis). The 
length of bars shows the reaction of slabs in relative units. The upper curve 
shows the sum of all reactions, (b) Same for two equal layers, one moving 
and another fixed at 4 km. 

that the total turbulence intensity (hence free-atmosphere seeing) is 
measured correctly for all layer altitudes. Noise in the restoration is 
barely noticeable. 

A reaction of MASS to two layers is simulated in Fig. 5(b). Here 
the input TP consists of two equal layers, one fixed at 4 km and an- 
other with variable altitude. The overlapping layers are successfully 
separated, but the noise is more pronounced. However, the noise 
mostly tends to redistribute the intensity between adjacent slabs, 
with less effect on the total intensity. 

6.2 Realistic profiles 

The fixed-layer restoration procedure was simulated with real turbu- 
lence profiles and was shown to give reasonable results (Tokovinin 
& Kornilov 2002). Here we repeat this exercise with realistic noise 
levels appropriate for MASS (see above). We use the same set of 
12 real turbulence profiles measured by balloons at Cerro Paranal 
in Chile during the PARSCA campaigns (Fuchs & Yemin 1993); 
those profiles are plotted in Le Louarn et al. (2000). 

Figs 6 and 7 illustrate the results for two very distinct cases. 
The scintillation indices were computed from real profiles (with 
100-m vertical resolution) and artificially corrupted by noise. Then 
a restoration procedure was applied several times, with different 
noise realizations. True intensities of the ‘layers’ were computed 
by integrating the products of profiles and triangular response func- 
tions, to be compared with the results of restoration. Here we ad- 
dress two problems: (i) the reaction of the crude six-layer model to 
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Figure 8. Normalized auto-covariance functions for the 0.5-km (full line 
and asterisks) and 16-km (dashed line and diamonds) layers for the night of 
2002 June 19. The dotted line shows the extrapolation to zero from the first 
two points. 

in the estimate of the total intensity. Indeed, the relative rms error of 
the ‘measured’ J{ot is only from 5 to 10 per cent for all 12 profiles. 

Figure 6. (a) The turbulence profile number 50 as measured at Paranal (full 
line) and the idealized response functions of MASS in relative units (dotted 
lines), (b) The results of 10 restorations with independent noise realizations 
normalized by /tot' the true profile as a full line and restored profiles as 
dotted lines. 

Figure 7. Same as in Fig. 6 for Paranal profile number 51. 

6.3 Noise estimates from real data 

The performance of fixed-layer restoration was checked on real data 
by analysing the reproducibility of the measured profiles. We at- 
tempted to separate real variations of the turbulence strength occur- 
ring in each slab and the instrumental noise by means of covariance 
analysis. Let /(L) be the strength of some layer (slab) as measured 
by MASS on moments ti (with a time resolution of 1 min). Then the 
auto-covariance C j^t is 

Cy,At = ^ + Af>’ C14) 

where N is the total number of samples entering into the sum. An 
example of the auto-covariance is given in Fig. 8. 

The idea of noise estimation is to extrapolate C linearly to zero 
using the first and second points. Then the difference with the actual 
value will be a rough estimate of the MASS noise variance: 

a] = Cj.o - (2C,.! - Cj.2). (15) 

It should be stressed that tfy is actually an upper limit for noise 
because it includes natural short-scale variations of the turbulence 
intensity. 

The results of the calculations are given in Table 1. The nights 
selected for this analysis are different: the first two had an excep- 
tionally calm upper atmosphere, 2002 July 10 was typical and 2002 
July 24 was worse than average. The total number of profiles Nwot 
and the average turbulence integral for each night Jioi are given 
for reference. In one case the extrapolation method failed to give a 
non-negative noise estimate, which is not surprising for a statistical 
technique. 

realistic complex profiles and (ii) stability of restoration with respect 
to noise. 

The root-mean-square (rms) restoration error was computed for 
each layer and expressed as a fraction of the total integral Jioi (the 
sum of true layer intensities), because errors in MASS are propor- 
tional to the signal. These errors are larger for lower (0.5 and 1 km) 
layers, reaching 20 per cent in the worst cases and around 10 per 
cent typically. For the highest 16-km layer the errors are only a few 
per cent. The curves in Figs 6 and 7 show that the restoration errors 
mostly consist in redistributing turbulence between slabs rather than 

Table 1. Noise of measured layer intensities a/ in 10 13 m1/3. 

Date N prof j to 
(2002) 0.5 1 

Layers (km) 
2 4 16 

19/06 597 1.0 0.10 0.07 0.13 0.08 0.12 0.04 
22/06 473 0.8 0.04 0.07 0.03 0.04 0.05 0.03 
10/07 546 3.2 0.14 0.15 0.45 0.17 0.10 0.06 
24/07 498 8.3 0.60 0.81 0.36 0.27 - 0.03 
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The signal-dependent noise characteristics are confirmed by the 
actual analysis: noise is roughly proportional to 7tot- h never ex- 
ceeds 0.14/tot, and this is an upper limit because some fast turbu- 
lence variations are included. The absolute sensitivity of MASS is 
impressively high, especially at high altitudes. A noise-equivalent 
/ of 0.03 x 10“13 m1/3 corresponds to a seeing of only 0.04 arcsec. 
The worst-case error encountered in Table 1 is 0.8 x 10“13 m1/3, or 
a seeing of 0.3 arcsec. It should remain clear that noise in MASS 
is not a bias, it must not to be subtracted from the measured layer 
strengths or seeing. 

6.4 Optimization of the aperture geometry 

The size of apertures in MASS was selected to match the Fresnel 
radii for turbulent layers at different altitudes. Now we can refine 
this choice and look for such an aperture geometry that would lead 
to most accurate profile restoration. This can be performed with the 
help of equation (13), under the approximation that input data are 
independent and the best least-squares restoration corresponds to 
the best separation of turbulent layers by MASS apertures. How- 
ever, the problem of aperture optimization does not have a unique 
solution. First, the optimum geometry depends on the desired ver- 
tical resolution, i.e. the number and altitudes of pre-defined slabs. 
Secondly, the noise in MASS depends on the turbulence profile. 

We selected five fixed-layer altitudes at 1, 2, 4, 8 and 16 km. The 
noise was modelled as 2 per cent of scintillation indices (except 
sAB where it was 4 per cent) for a fiducial profile with 0.6 of its 
energy at 1 km and the rest equally divided between 4 and 16 km. 
The wavelength of 450 nm and spectral bandwidth of 100 nm were 
assumed, close to real MASS parameters. For each trial aperture 
geometry the WFs and indices were found and then the noise of /; 
was computed from equation (13). The maximum value of relative 
noise /y = a ji / Jtot was taken as a measure of restoration quality. We 
found that the best aperture diameters are 2, 3,6 and 8.5 cm and that 
the maximum noise of r = 0.1 occurs at the 4-km layer. Optimum 
aperture geometry only weakly depends on the input turbulence 
profile. Restoration quality is quite forgiving of the deviations from 
the optimum aperture geometry; for the actual MASS apertures it is 
only marginally worse than for the optimal apertures. 

7 DIRECT MEASUREMENT OF SEEING AND 
ISOPLANATIC ANGLE 

Seeing is related to the integral of Cl(h) over the whole atmosphere, 
/tot- MASS is not sensitive to ground-layer turbulence (unless a 
generalized mode is used), but it can measure the seeing produced 
by all higher layers, which we call free-atmosphere seeing. The 
FWHM of long-exposure stellar image in a large telescope, c, is the 
generally accepted seeing characteristic. The standard turbulence 
theory provides one-to-one correspondence between e and the Fried 
parameter r0, c = 0.98À/r0. The relation of r0 to the turbulence 
integral /tüt is well known (Roddier 1981). 

The free-atmosphere seeing at zenith is defined to be 

5.307À~1/5 
-, 3/5 

C;(/!)W,o(/î)d/î (16) 

where the function Wo(h) determines which layers contribute to the 
seeing: it is equal to 1 at high altitudes and drops to zero at ground 
level. The integration is performed over all altitudes, from the ob- 
servatory level up. Free-atmosphere seeing is thus dependent on the 
somewhat arbitrary definition of Wo(h). With W0(h) = 1 every- 
where we obtain the standard relation of seeing to the zeroth mo- 
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ment of turbulence profile Jioi (Roddier 1981). The constant 5.307 = 
0.98 x 0.4323/5 x (27t)6/5. 

The isoplanatic angle 0q characterizes the size of the corrected 
field of view in adaptive optics (Fried 1982). It is related to the |rd 
moment of turbulence profile. Putting W5ß(h) = h5/3, the isopla- 
natic angle at zenith is 

<90 = 0.1334k6/5 

/ 

-, -3/5 
CÏODWymdh (17) 

where 0.1334 = (2.9l7t2)-3/5. 
The turbulence moments can be obtained from Sis directly, with- 

out profile restoration. Each SI is an integral over altitude of C2 

multiplied by some WF. Thus, any linear combination of Sis cor- 
responds to the linear combination of WFs. If it approximates the 
desired moment-generating weights Wq and W5/3, the moments can 
be estimated from linear combinations of indices. For example, in 
order to estimate 6/ we search for coefficients c®n such that 

M 
Wo(z) ** 

m=\ 
(18) 

where we substitute altitude h with the propagation distance z. When 
e f and Go are computed, they are transformed to viewing at zenith 
by multiplication by (cos y)3/5 and (sec y)8/5, respectively. How- 
ever, the lower cut-off of the free-atmosphere seeing weight Wo(h) 
does depend on y : somewhat lower layers are included into the c f 

estimate for non-zenith viewing. 
To obtain c^, we write equation (18) in matrix form for a discrete 

set of altitudes {z,-} and solve for the vector cm by singular-value 
decomposition of the matrix Wm(zi). The same procedure applies 
for W5/3(h). 

The coefficients cm for moment estimation obtained by this pro- 
cedure depend on the choice of altitude grid and the set of indices 
that enter into equation (18). Of course, we can use all measured 
indices and require the approximation to be as precise as possible. 
However, the coefficients thus obtained are large and of both pos- 
itive and negative signs. In computation of moments the errors of 
index measurements would increase to the point that even negative 
moments can sometimes be obtained. 

To avoid noise amplification, we restrict both the set of indices 
used for moment computation and the finesse of the altitude grid. 
For free-atmosphere seeing we take only the indices sa, sb, and sAb 
and select the coarse altitude grid: 1,2, 4, 8,16 km. This results in a 
very reasonable Wo(h) (Fig. 9) with the coefficients of —0.06, 0.09 

Altitude, km 

Figure 9. Ratio of the MASS weighting functions for free-atmosphere 
seeing Wo(h) (full line) and isoplanatic angle W3/3(h) (dashed line) to the 
ideal h° and h5^3 laws, respectively. 
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Figure 10. Comparison of the full atmospheric seeing as measured by 
the differential image motion monitor, DIMM (line with diamonds) and the 
free-atmosphere seeing measured by MASS (filled circles) on the night of 
2002 March 27/28. Strong turbulence layer at altitude around 1 km appeared 
sometimes and completely dominated the seeing, in which case DIMM and 
MASS measured the same seeing. Otherwise the seeing measured by DIMM 
is always worse than 6 / because it includes a large contribution of the ground 
layer, which is not sensed by MASS. This figure is available in colour in the 
online version of the journal on Synergy. 

and 1 for sA, vB and sAb, respectively. Noise in the estimate of 6/ is 
dominated by the noise in vAB (4 per cent relative), permitting seeing 
measurements with a relative accuracy of 2.4 per cent. A similar 
approximation for W5p(h) is also shown in Fig. 9. The deviations 
from the ideal h5/3 at low altitudes are not important because low 
altitudes are weighted by h5/3. Actual approximations used in data 
reduction are slightly different from those in Fig. 9, depending on 
software implementation details, the spectral type of the star used, 
etc. 

Moments are computed from the Sis measured every second. 
For a total 1 -min accumulation, the moments are averaged and their 
errors are estimated from the scatter of individual values in the same 
way as for the average indices (equation 7). 

In Fig. 10 a comparison of 6¡ with full seeing 6 measured si- 
multaneously on the same site is shown. Despite the fact that the 
two instruments, MASS and Differential Image Motion Monitor, 
use completely different principles (scintillation analysis and image 
motion, respectively), their results coincide when the dominating 
turbulent layers are in the free atmosphere (Tokovinin et al. 2003). 

We compared 6 f computed directly from the moments with 6 f 
computed from the restored profiles and found that they agree to 
within 2 per cent. This is not surprising, given that both are cal- 
culated from the same set of Sis. We found that € / from profiles 
is systematically larger than 6 f from moments when turbulence at 
low altitudes is present. This is explained by the specific altitude 
weighting: for profile restoration the sum of response functions has 
a ‘hump’ around 0.5 km (Fig. 5), where our Wo(h) smoothly decays 
(Fig. 9). 

8 CONCLUSIONS 

The principle of TP measurement from Sis in concentric-ring aper- 
tures is presented, with detailed description of data-processing steps 
needed to convert the raw photon counts into altitudes and strengths 

of turbulent layers. This technique is based on photometry; the only 
calibration parameters needed for correct data interpretation are the 
sizes of apertures, the spectral response of the instrument and the 
characteristics of photon counters. Examples of real data reductions 
are given. 

MASS is an inexpensive instrument that uses only a small tele- 
scope. It is well adapted for TP monitoring at existing observatories 
and at new sites. We have started to use this technique for building 
an extensive data base of TPs at several sites (e.g. Tokovinin et al. 
2003). When these data are complemented with meteorological in- 
formation and three-dimensional computer modelling of turbulence, 
a better understanding of the ‘seeing’ phenomenon will result, with 
important practical consequences for site selection. Another use of 
MASS will be to support the operation of adaptive-optics systems 
that can be enhanced or made more efficient if TP is known in real 
time. 
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APPENDIX A: DERIVATION OF 
EQUATIONS (5) AND (6) 

Here we derive the equations (5) and (6). Let be the individual 
photon counts in some aperture, Bx - average background flux in the 
same aperture. The scintillation index .sy cannot be computed from 
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its definition (1) by simply replacing the true flux X with photon 
counts Xi because counts fluctuate even at constant flux owing to 
the random nature of photodetection. The photon-noise variance is 
equal to the mean value x for an ideal detector. For real PMT it is 
px, where the non-Poisson factor p can be slightly more than 1 for 
many reasons, e.g. occasional after-pulses. Photon noise is indepen- 
dent from scintillation and must be subtracted from the measured 
variance. So, in order to obtain SI we compute the variance of pho- 
ton counts pXXi0 (equation 3), subtract photon noise and normalize 
to the square of the mean stellar flux x — Bx : 

S.xA 
Pxx,Q Px (Al) 

The notation sx ¡ reminds one that the SI is computed for a 1-ms 
sampling time and is not yet corrected to zero microexposure. 

Photon noise in any two channels v and y is not correlated and 
does not distort the covariance pxy,o- H follows from equation (2) 
that 

a — S.x,l + — 2— 
Pxy, ( ) 

(x-Bx)(ÿ-By) 
(A2) 

What remains is the extrapolation of indices to zero exposure 
time. This can be performed by binning the data and computing the 
index for double microexposure sX2- The SI for zero exposure sx,o 
can then be estimated by linear interpolation, 

sx,0 = 2sx,i - sx,2, (A3) 

which was shown to be a reasonable approximation (Tokovinin 
2002). Such a correction is really important for the differential Sis 
with the smallest MASS apertures, where 1 ms is not short enough 
to ‘freeze’ fast layers (for a 30 m s_1 wind speed the layer displace- 
ment is 3 cm, larger than the 2-cm aperture). For large apertures, 
the finite duration of microexposure is not important, although we 
still apply the correction. 

Instead of actually binning the counts and repeating all calcu- 
lations, we take advantage of pre-computed covariances with time 
lag. Let a 2 be the variance of doubly binned data, a]- the variance 
of unbinned data, and pxxj - the covariance with time lag 1. It can 
be easily shown that 

rr2
2 = 0.5 (fTj2 — (A4) 

The variance for zero exposure (Tq is extrapolated as al = 
1.5ai — 0.5pi. Now the transition from 1-ms indices as given by 
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equations (Al) and (A2) to 0-ms indices (equations 5 and 6) is 
straightforward. 

APPENDIX B: FORMULA FOR WEIGHTING 
FUNCTIONS 

Weighting functions for polychromatic scintillation were derived in 
Tokovinin (2003). Here we give the computing formulae without 
derivation. The WF W(z) is an integral over spatial frequency/: 

W(z) = 9.62 f-s/3A(f)S(z, f)df, (Bl) 
Jo 

where the factor S(z, f) depends on the propagation range z, wave- 
length k and the normalized spectral response F(k) (in photon nm-1 

for a photon-counting detector): 

S(z, /) = J k 1F(k) sin(7zkzf2) dk (B2) 

It can be seen that S(z, /) is equal to the squared imaginary part of 
the Fourier transform (FT) of F(k)/k. For monochromatic spectral 
response it reduces to the known k~2 sin2 (nkzf2) term, whereas 
for a real response we compute it using a FT. 

The aperture factor A is the square modulus of the FT of the nor- 
malized aperture transmission function P(x) or of their difference: 

A(/) = \P(f)\2 for normal SI (B3) 

A(f) = |Pi(/) — P2(/)|2 for differential SI. (B4) 

For a circular aperture of diameter D with a relative central ob- 
scuration € 

P(f) = 
1 

l-e2 
lUnDf) ^(enDf) 

ti Df ^ cnDf 
(B5) 

For a special ‘quasi-Gaussian’ spectral response with FWHM A 
and central wavelength A0 the WF is 

poo 
W(z) = 9.62kñ2 / d//_8/3A(/)exp(—1.780z2/4A2) 

Jo 
x sin2(7tA0z/

2). (B6) 

This paper has been typeset from a TeX/LTeX file prepared by the author. 
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