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ABSTRACT 
The radii of the planetary and satellite orbits are in approximate agreement with geometric 
progressions. The question of whether the observed patterns have some physical basis or are 
due to chance may be addressed using a Monte Carlo approach. We find that the estimated prob- 
ability of chance occurrence depends sensitively on the restrictions imposed on the population 
of orbits. We argue that it is not possible to conclude unequivocally that laws of Titius-Bode 
type are, or are not, significant. Therefore, the possibility of a physical explanation for the 
observed distributions remains open. 
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1 INTRODUCTION 

The approximate regularity in the sequence of distances from the 
Sun of the planets of our Solar system, which is described by the 
empirical relationship known as the Titius-Bode law, has been a 
subject of interest and controversy for centuries. The law played 
a significant role during the search for new planetary bodies. The 
discovery of Uranus by Herschel in 1781 and of the largest asteroid 
Ceres by Piazzi in 1801 appeared to confirm the accuracy of the 
law. Both Adams and Leverrier used the Titius-Bode law in their 
calculations for a new planet (Neptune). However, there is a substan- 
tial deviation between the observed orbital radius of Neptune and 
the value indicated by the empirical law. For Pluto, the connection 
breaks down completely. 

The Titius-Bode law, or Bode’s law for short, states that the orbital 
radii of the planets are given, in astronomical units, by the formula 

rn = 0.4 + 0.3 x T, n = -oo, 0, 1, 2, 3,.... (1) 

The values produced by this formula and the observed values are 
compared in Table 1. It is clear that, with the exceptions noted above, 
the agreement is remarkable. However, Newman, Haynes & Terzian 
(1994) have considered the psychological tendency to find pattern 
where none exists, and have also discussed how inappropriate in- 
ferences regarding astronomical phenomena have been drawn from 
statistical analyses. Interest in the Titius-Bode law has been height- 
ened by the discovery of extrasolar planets, although it may be many 
years before its relevance in this context can be tested. 

We will not attempt to review the extensive literature devoted 
to the Titius-Bode law, and mention only a few key contributions. 
Nieto (1972) traced the history of the law up to about 1970 and 
reviewed the many attempts to explain it in physical terms. Several 
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references to more recent work may be found in Hayes & Tremaine 
(1998). White (1972) argued that jet streams may develop in a rotat- 
ing gaseous disc at discrete orbital distances given by a geometric 
progression. It is arguable that such a hydrodynamic process could 
have determined the gross features of the planetary distribution of 
the Solar system. Variations from this might well be associated with 
the apparent tendency of the system to move, over its lifetime, to- 
wards resonant configurations. The possible relationship between 
Bode’s law and the well-known near-resonances between periods 
in the planetary and satellite systems (Molchanov 1968) remains to 
be clarified. Molchanov’s total resonance theory has been reviewed, 
in the light of more recent understanding, by Beletsky (2001, sec- 
tion 4.5). In contrast to theories relying on specific physical pro- 
cesses, Graner & Dubrulle (1994) argued that a Titius-Bode type 
law emerges automatically as a consequence of the scale invariance 
and rotational symmetry of the protoplanetary disc, and that such 
geometric relationships are a generic characteristic of a broad range 
of physical systems. 

Despite the distinguished part the Titius-Bode law has played 
in the evolution of our knowledge of planetary dynamics, no theo- 
retical explanation of it has been advanced that has found general 
acceptance. Indeed, the view has frequently been expressed that the 
putative relationship between the orbital radii is coincidental, and 
that the observed pattern is due to chance. It is this question which 
we wish to address. 

2 A PROBABILISTIC PARADOX 

The decision as to whether a given event is the result of chance, or is 
so unlikely as to suggest a definite causative origin, is fraught with 
difficulty. The measure of probability of the observed event is not 
normally definable in a unique manner, so that different conclusions 
may result from different methods of measurement. A simple exam- 
ple illustrates the problem. Let us consider the following question: 
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Table 1. Planetary radii given by the Titius-Bode law compared to 
the observed values. 

Planetary 
body 

Radius from 
Bode’s law 

Observed mean 
radius (au) 

—oo 
0 
1 
2 
3 
4 
5 
6 
7 

Mercury 
Venus 
Earth 
Mars 
(Ceres) 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

0.4 
0.7 
1.0 
1.6 
2.8 
5.2 

10.0 
19.6 
38.8 
77.2 

0.39 
0.72 
1.00 
1.52 
2.77 
5.20 
9.54 

19.18 
30.06 
39.44 

What is the probability that a randomly chosen chord intersecting 
a circle will have a radius greater than the length of the side of an 
inscribed equilateral triangle? (For a unit circle, the length is s/3.) 
We consider three alternative methods of defining the chord: 

(i) Choose an arbitrary point within the circle as the mid-point 
of the chord. 

(ii) Specify randomly the two points at which the chord intersects 
the circle. 

(hi) Choose a random point on an arbitrary radius as the mid- 
point of the chord. 

Elementary reasoning shows that the probability of the event is 
1/4, 1/3 and 1/2 respectively for the three methods. The paradox 
is resolved by recognizing that the question is not well posed: the 
answer depends on the method by which the chord is chosen. To 
have a unique answer, we must specify the manner of choice. 

The same problem arises in deciding whether Bode’s Law is 
merely a coincidence or something deeper. We may ask if the ob- 
served planetary pattern could have occurred by chance, but the 
estimated probability may depend strongly upon the manner of its 
estimation. 

3 THE URANIAN SATELLITE SYSTEM 

The admissible values of n in equation (1) appear unnatural and 
contrived to force a fit, especially the choice n = — oo for Mercury. 
Most investigators have considered that the significant element is the 
exponential dependence on planet number, and have used simple ge- 
ometric series to study the significance of patterns of the Titius-Bode 
type. Murray & Dermott (1999) considered a geometric progression 
of orbital periods 

Tn = T0A
n, n = 1, 2, 3, ..., (2) 

Table 2. Periods of the Uranian satellites given by the Murray & 
Dermott (1999) formula compared to the observed values. 

Satellite Murray-Dermott 
fitted period 

Observed 
period 

Miranda 
Ariel 
Umbriel 
Titania 
Oberon 

1.407 
2.500 
4.442 
7.893 

14.02 

1.413 
2.520 
4.144 
8.706 

13.46 

Murray & Dermott (1999) used a Monte Carlo technique to ad- 
dress this question. Using a method similar to that of Dermott ( 1973), 
they generated a series of 105 sets of periods for the five satellites, 
random but for certain restrictions on their distribution. The period 
of the innermost satellite was fixed in agreement with the observed 
period of Miranda (T ¡ = 1.413). The other four periods were gen- 
erated by the formula 
Tn+i — L xn(JJ — IS), n = 1,2, 3, 4, (4) 

where L and U are fixed lower and upper limits on the ratio of 
successive periods and xn are randomly chosen in the interval 
[0, 1]. For the observed system, L = 1.546 and U = 2.101. For 
each system, the parameters T0 and A that minimized the deviation 
X were determined. The number of systems having rms deviation x 
less than the deviation (xo = 0.0247) for the observed system was 
calculated, and thus the probability P{x < Xo) of this event was 
estimated to be 0.79. Murray & Dermott (1999) concluded that the 
probability that the observed configuration of satellites has arisen by 
chance is about 80 per cent. It is this conclusion which we believe 
is open to question. 

In Fig. 1(a), a sample of the population of 105 sets of orbital 
periods of the five satellites in the population chosen by Murray 
& Dermott (1999) is illustrated in the upper left panel (for clarity, 
only 50 cases are shown). The limiting cases permitted under the 
imposed restrictions are indicated by the dotted lines. We see that 
the satellite periods fall within a triangular region on the plot. In 
Fig. 1(b) (lower left panel) the cumulative probability distribution 
of x Is shown. The shaded area represents the cases where x < Xo- 
It confirms that most cases have rms deviation less than that of the 
actual system. 

The pattern of equation (4) chosen by Murray & Dermott (1999) 
is only one of limitless possibilities. We consider now an alternative 
choice. The values of the parameters, T{) = 0.7919 and A = 1.777, 
are those which yield the best fit to the observed system. The best- 
fitting periods are those in column 3 of Table 2, given by 

log Tf = log r0 + ft log A, ft = 1,2, 3,4,5. (5) 

and compared the values produced by this formula with the observed 
periods of the five major satellites of Uranus. The parameters T 0 and 
A were obtained by considering the logarithm of (2) and minimizing 
the mean square deviation 

X2 = 5 X! N r»obs - (log To + n log A)]2, (3) 
n=\ 

where Tf are the observed periods, given in Table 2. The resulting 
values are r0 = 0.7919 and A = 1.777. For these parameters the 
discrepancy is x = 0.0247 and the periods given by equation (2) are 
in close agreement with the observed values (Table 2). The question 
is whether this agreement is statistically significant. 

To generate the alternative population of sets of periods, we allow 
the logarithm of the period of each satellite to take a value at random 
within a band centred on the best-fitting value: 

log Tn = log 7() + (ft + kyn ) log A. (6) 

Here yn is a random number in the range [— 1 /2, +1/2] and & is a 
fixed positive parameter that determines the width of the band. For 
£ = 1, the bands abut each other. 

In Fig. 1(c), we show a sample of the population of sets of or- 
bital periods in the alternative population (upper right panel; only 50 
cases are shown). The orbital bandwidth in equation (6) is £ = 2/3. 
This choice is arbitrary, but allows substantial variation in the possi- 
ble configuration of satellites whilst ensuring that close encounters, 

e 2003 RAS, MNRAS 341,1174-1178 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



2 0
 0 

3M
N

R
A

S.
34

1.
11

74
L 

1176 R Lynch 
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Figure 1. Distribution of the five principal Uranian satellites, (a) Logarithm of periods given by the Murray & Dermott (1999) formula (equation 4) (only the 
first 50 random sets are shown), (b) Cumulative probability distribution calculated for 105 cases of equation (4). The shaded area is for y < xo- (c) Logarithm 
of periods given by the alternative distribution (equation 6) for k = 2/3 (only the first 50 random sets are shown), (d) Cumulative probability distribution 
calculated for 105 cases of equation (6). The shaded area is for x < Xo- 

which might result in catastrophic instabilities, cannot occur. The 
limiting cases permitted under the imposed restrictions are again 
indicated by the dotted lines. The permitted satellite periods fall 
within a strip with parallel sides. In Fig. 1 (d) (lower right panel), the 
corresponding cumulative probability distribution of x is shown. 
The shaded area represents the cases where x < Xo- It confirms 
that, in marked contrast to the Murray & Dermott (1999) popula- 
tion, most cases have rms deviation greater than that of the actual 
system. From the sample of 105 cases, we estimate that P(x < Xo) 
= 0.20. When the bandwidth parameter is increased to k = 1, the 
estimated probability of the observed pattern is reduced to P(x < 
Xo) = 0.05, indicating that the actual disposition of the satellites is 
very unlikely to have arisen by chance. 

4 THE SOLAR SYSTEM 

We now apply the above analysis to the planets of the Solar sys- 
tem. There are arguments about whether the asteroid belt, which 
may be the residue of a former planet, or may have been prevented 
by the tidal stresses of Jupiter from ever forming a planet, should 
be included or omitted. We recall that the gap in the pattern of 
the Titius-Bode law was noted long before the observation of the 
first asteroid, Ceres, and indeed contributed to the detection of this 
celestial body. It appears reasonable to include Ceres as a represen- 
tative of the putative former planet. In a similar vein Pluto, which 

is nowhere near the position expected from the Titius-Bode law, 
may be a recently captured interloper and this may explain its large 
deviation from the prediction. However, its omission would seem 
artificial, and might justify criticism that inconvenient data were 
being disregarded. In summary, we have decided that the most ob- 
jective choice is to include in the analysis all ten ‘planets’ listed in 
Table 1. 

We postulate a geometric progression of planetary orbital radii 

Rn = R0A
n, « = 1, 2, ..., 10 (7) 

and choose the parameters Rq and A by minimizing the rms deviation 
from the observed periods of the planets. Since the planetary radii 
Rn and periods Tn are related by Kepler’s third law, equation (7) 
is equivalent in form to equation (2). The resulting values of the 
parameters are Rq = 0.2139 and A = 1.706; for these parameters, 
the discrepancy is xo = 0.0544 and the radii given by equation (7) 
are in broad agreement with the observed values (Table 3). [We 
note that the rms discrepancy for the original Titius-Bode formula 
(4) is Xxb = 0.0993, so the geometric progression (7) is a better 
fit!] 

We now estimate the probability that the agreement between the 
observed planetary distribution and that arising from the assumed 
geometric law might result from chance. The random population 
chosen by Murray & Dermott (1999) was generated using equa- 
tion (4), with the observed lower and upper limits of the ratios of 
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Table 3. Planetary radii given by the best-fitting geometric progres- 
sion (equation 7) compared to the observed values. 

Planetary 
body 

Radius from 
best fit (7) 

Observed mean 
radius (au) 

—oo 
0 
1 
2 
3 
4 
5 
6 
7 

Mercury 
Venus 
Earth 
Mars 
(Ceres) 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

0.37 
0.63 
1.07 
1.83 
3.13 
5.36 
9.17 

15.68 
26.82 
45.88 

0.39 
0.72 
1.00 
1.52 
2.77 
5.20 
9.54 

19.18 
30.06 
39.44 

planetary configuration would fit the Titius-Bode law as closely as 
the observed system is only about 40 per cent. 

When the alternative population given by equation (6) is used, 
another conclusion suggests itself. In Fig. 2(c), we show a sample 
of the population of sets of orbital periods in this population (upper 
right panel) for orbital bandwidth ^ = 2/3. In Fig. 2(d) (lower right 
panel), the corresponding cumulative probability distribution of x is 
shown. In contrast to the Murray & Dermott ( 1999) population, most 
cases have rms deviation less than that of the actual system. From 
the sample of 105 cases, we estimate that P(x < Xo) = 0-99. This 
prompts the conclusion that the observed pattern is almost certainly 
due to chance. When the bandwidth parameter is increased iok= 1, 
the estimated probability of the observed pattern is reduced to P(x < 
Xo) = 0.34, about the same value as for the Murray-Dermott 
population. 

successive planetary radii, L = 1.503 and U = 2.851. In Fig. 2, 
50 sets of orbital periods of the planets in this population are illus- 
trated in the upper left panel; the total sample size was 105 sets. In 
Fig. 2(b) (lower left panel) the cumulative probability distribution 
of x is shown. The shaded area represents the cases where x < 
Xo- It confirms that most cases have rms deviation greater than that 
of the actual system. The probability P(x < Xo) is approximately 
0.39. One might conclude that the chance that a randomly chosen 

(a) Murray-Dermott Population 
4 

-“I  ^ 1 1 1  
2 4 6 8 10 

5 SUMMARY 

The estimated probability of a chance agreement with a geometric 
progression was derived for the major Uranian satellites and for the 
Solar system, using a Monte Carlo approach, with two distinct popu- 
lations generated with different constraints. For the Uranian system, 
the Murray & Dermott (1999) method gave a greater probability of 
chance occurrence than the alternative method (with k = 2/3). Sur- 
prisingly, for the Solar system, the opposite situation obtained: the 

(c) Alternative Population 

RMS deviation, x0 

Figure 2. Distribution of the Solar system planetary radii, (a) Logarithm of periods given by the Murray & Dermott (1999) formula (equation 4) (only the 
first 50 random sets are shown), (b) Cumulative probability distribution calculated for 105 cases of equation (4). The shaded area is for x < Xo- (c) Logarithm 
of periods given by the alternative distribution (equation 6) for k = 2/3 (only the first 50 random sets are shown), (d) Cumulative probability distribution 
calculated for 105 cases of equation (6). The shaded area is for x < Xo- 
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alternative population indicated a very high probability of chance 
agreement with a geometric progression. However, the value varied 
strongly with the bandwidth parameter k. Murray and Dermott also 
found that the choice of L and U strongly affected the outcome. 
We conclude that the estimated probability is very sensitive to the 
method of defining the ‘random’ set of planetary systems. 

Hayes & Tremaine (1998) studied simulated solar systems using 
a wide variety of radius exclusion laws. They found that the results 
were quite sensitive to details of the exclusion method chosen. They 
concluded that the significance of Bode’s law is simply that stable 
planetary systems tend to be regularly spaced. They conjectured 
that this conclusion could be strengthened by making long-term 
orbit integrations to reject unstable planetary configurations. Their 
conclusion may be looked at in another way: the stability of the Solar 
system may yet be shown to ‘explain’ the regularity encapsulated 
in Bode’s law. 

We make no claim as to the relative merits of the alternative meth- 
ods of choosing the random populations. Indeed, there is unlimited 
scope for yet other choices. We note that, for the Solar system, the 
alternative population with k = 2/3 implies a minimum ratio of suc- 
cessive radii Rn+ilRn ^ 1.13 and successive periods Tn+i/Tn > 
1.20. Murray & Dermott (1999) stated that there is no compelling 
evidence that the Uranian satellite system obeys any Titius-Bode 
type relation, beyond what would be expected by chance. They go 
on to suggest that the law as applied to the planets is also without 
significance. The main result of the current study is that this conclu- 

sion is unsafe, and that the possibility that the observed regularity in 
the patterns of the planetary and satellite systems has some physical 
explanation is still open. 
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