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ABSTRACT 
We present results from a numerical study of the runaway instability of thick discs around 
black holes. This instability is an important issue for most models of cosmic gamma-ray 
bursts, where the central engine responsible for the initial energy release is such a system 
consisting of a thick disc surrounding a black hole. We have carried out a comprehensive 
number of time-dependent simulations aimed at exploring the appearance of the instability. 
Our study has been performed using a fully relativistic hydrodynamics code. The general 
relativistic hydrodynamic equations are formulated as a hyperbolic flux-conservative system 
and solved using a suitable Godunov-type scheme. We build a series of constant angular 
momentum discs around a Schwarzschild black hole. Furthermore, the self-gravity of the disc 
is neglected and the evolution of the central black hole is assumed to be that of a sequence of 
exact Schwarzschild black holes of varying mass. The black hole mass increase is thus 
determined by the mass accretion rate across the event horizon. In agreement with previous 
studies based on stationary models, we find that by allowing the mass of the black hole to 
grow the disc becomes unstable. Our hydrodynamical simulations show that for all disc-to- 
hole mass ratios considered (between 1 and 0.05), the runaway instability appears very fast on 
a dynamical time-scale of a few orbital periods, typically a few 10 ms and never exceeding 1 s 
for our particular choice of the mass of the black hole (2.5 M0) and a large range of mass 
fluxes {fn ^ 10-3 M© s_ 1). The implications of our results in the context of gamma-ray bursts 
are briefly discussed. 

Key words: accretion, accretion discs - black hole physics - hydrodynamics - instabilities - 
gamma-rays: bursts. 

1 INTRODUCTION 

Thick accretion discs are probably present in many astrophysical 
objects, e.g. quasars and other active galactic nuclei, some X-ray 
binaries and microquasars, and the central engine of gamma-ray 
bursts (GRBs hereafter). They have been studied in great detail by 
many authors (see e.g. Rees 1984 and references therein). In 
particular, it is well known that in a system formed by a black hole 
surrounded by a thick disc, the gas flows in an effective 
(gravitational plus centrifugal) potential, the structure is compar- 
able with that of a close binary. The Roche torus surrounding the 
black hole has a cusp-like inner edge located at the Lagrange point 
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Li where mass transfer driven by the radial pressure gradient is 
possible (Kozlowski, Jaroszynski & Abramowicz 1978). 

The so-called runaway instability of such systems was first 
discovered by Abramowicz, Calvani & Nobili (1983). The 
underlying mechanism is the following: owing to accretion of 
material from the disc, the mass of the black hole increases and the 
gravitational field of the system changes. Therefore, an accretion 
disc can never reach a completely steady state. Starting from an 
initial disc filling its Roche lobe so that mass transfer is possible 
through the cusp located at the Lagrange point, two evolutions 
are feasible when the mass of the black hole increases: either (i) the 
cusp moves inwards towards the black hole, which slows down the 
mass transfer, resulting in a stable situation, or (ii) the cusp moves 
deeper inside the disc material. In this case the mass transfer speeds 
up, leading to the runaway instability. 

In their first study, Abramowicz et al. (1983) analysed the effect 
of the mass transfer under many simplifying assumptions (a 
pseudo-Newtonian potential for the black hole (Paczynski & Wiita 
1980), constant angular momentum in the disc, and approximate 
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Table 1. Summary of representative results concerning the runaway instability on stationary models of thick discs around 
black holes. 

Reference Framework Angular momentum BH rotation Disc self-gravity Results 

Abramowicz et al. (1983) Pseudo-Newt. 
Wilson (1984) GR 
Khanna & Chakrabarti (1992) Pseudo-Newt. 
Nishida et al. (1996) GR 
Daigne & Mochkovitch (1997) Pseudo-Newt. 
Abramowicz et al. (1998) GR 
Masuda et al. (1998) Pseudo-Newt. 
Lu et al. (2000) Pseudo-Newt. 

I = constant no approximate unstable1 

l = constant yes neglected stable 
l = constant yes approximate unstable 
l — constant yes exact unstable2 

/ oc Tjja, 0 ss a ss 0.5 no neglected stable3 

/ oc Tx7a, 0 ss a ss 0.5 yes neglected stable4 

/ oc ,u7a, ot — 0.2 no exact unstable5 

l oc jjTa, 0 ^ a ^ 0.5 no neglected stable6 

Notes: 
1 for a large range of disc-to-hole mass ratio and disc inner radius. 
" study made for only four intial models. 
3 The mass of the black hole is 2.44 M0. The mass of the disc is 0.36 M0. The system is stable for a ^ with acr — 0.1. 
4 Same parameters as Daigne & Mochkovitch (1997). The critical value o:cr decreases when the black hole rotation increases. 
5 Same parameters as Daigne & Mochkovitch (1997). The system becomes unstable for large transfer of mass only. 
6 Same conclusion as Daigne & Mochkovitch (1997) for a completely different range of masses (massive black hole of mass 
106Mo). 

treatment of the disc self-gravity). These authors found that the 
runaway instability occurs for a large range of parameters such as 
the disc-to-hole mass ratio and the location of the disc inner radius. 
More detailed studies followed, the main conclusions of which are 
summarized in Table 1. Notice that all these studies are based on 
stationary models in which a fraction of the mass and angular 
momentum of an initial disc filling its Roche lobe is transferred to 
the black hole, and the new gravitational field is used to compute 
the new position of the cusp, which controls whether the runaway 
instability occurs or not. The conclusions of these studies have yet 
to be confirmed on a dynamical framework. 

From Table 1 one sees that (i) taking into account the self- 
gravity of the disc seems to favour the instability (Khanna & 
Chakrabarti 1992; Nishida et al. 1996; Masuda, Nishida & 
Eriguchi 1998); (ii) the rotation of the black hole has a stabilizing 
effect (Wilson 1984; Abramowicz, Karas & Lanza 1998); (iii) 
taking into account a non-constant distribution of the angular 
momentum (increasing outwards) has a strong stabilizing effect 
(Daigne & Mochkovitch 1997; Abramowicz et al. 1998); (iv) using 
a fully relativistic potential instead of a pseudo-Newtonian 
potential for the black hole seems to act in the direction of 
favouring the instability (Nishida et al. 1996). It also becomes 
evident from Table 1 that there is not still a final consensus about 
the very existence of the instability. In the fully relativistic study of 
Nishida et al. (1996), it was shown that the runaway instability 
occurs when the angular momentum is constant in the disc. 
However, the work of Daigne & Mochkovitch (1997) showed the 
stabilizing effect of a distribution of angular momentum in the disc 
increasing outwards. It is worth pointing out that the complete 
calculation in this setup, i.e. in general relativity and including self- 
gravity and a rotating black hole, is extremely complex and has not 
been done yet. 

The consequences of the runaway instability could be very 
important in many cases. First because this is a purely dynamical 
effect, so that its time-scale is extremely short (only a few ms for a 
stellar mass black hole). This means that this instability should 
happen before any other processes (like the viscous transport of 
angular momentum) could play a role. Secondly, because the radial 
mass transfer is supposed to diverge, so that the thick disc could, in 
principle, be completely destroyed. 

In particular, Nishida et al. (1996) pointed out that the runaway 
instability could be a severe problem for most current models of 

GRBs. These models usually assume that the central engine is such 
a system consisting of a black hole and a thick disc, either formed 
at the late stages of the coalescence of two neutron stars (Kluzniak 
& Lee 1998; Ruffert & Janka 1999; Shibata & Uryü 2000) or after 
the gravitational collapse of a massive star (Paczynski 1986; 
Woosley 1993). Notice that in the latter case, the situation is 
somewhat more complicated because the mass of the disc increases 
with time, as long as the collapse proceeds (MacFadyen & Woosley 
1999; Aloy et al. 2000). The energy which can be extracted from 
this system comes from two reservoirs: the energy released by the 
accretion of disc material on to the black hole and the rotational 
energy of the black hole itself, which can be extracted via the 
Blandford-Znajek mechanism (Blandford & Znajek 1977). This 
amount of energy (a few 1053 -1054 erg depending on the disc mass 
and the black hole rotation and mass) is sufficient to power a GRB 
if the energy released can be eventually converted into y-rays with 
a large efficiency of about a few per cent. This number, however, 
depends strongly on the central engine model and on the expected 
beaming of the outflow, which is currently very poorly constrained. 
Such conversion cannot be done close to the source, the luminosity 
considered here being many orders of magnitude larger than the 
Eddington luminosity of the system. The energy is first injected 
into a very optically thick wind. This wind is accelerated via some 
mechanism which is still unknown but which involves probably 
MHD processes (Thompson 1994; Meszaros & Rees 1997b) and 
becomes eventually relativistic. The existence of such a relativistic 
wind has been directly inferred from the observations of radio 
scintillation in GRB 970508 (Waxman, Kulkami & Frail 1998) and 
is also needed to solve the so-called compactness problem and 
avoid photon-photon annihilation along the line of sight. 
Averaged Lorentz factors larger than 100 are required (Baring & 
Harding 1997; Lithwick & Sari 2001). The observed emission is 
produced at large distances from the source (r > 1011-1012 cm), 
probably via the formation of shock waves, either within the wind 
itself (internal shock model, proposed for the prompt y-ray 
emission: Rees & Meszaros 1994; Kobaysashi, Piran & Sari 1997; 
Daigne & Mochkovitch 1998) or caused by the deceleration of the 
wind by the external medium (external shock model, which 
reproduces correctly the afterglow emission: Meszaros & Rees 
1997a; Sari, Piran & Narayan 1998). 

The above general scenario clearly presupposes that the black 
hole plus thick disc system is stable enough to survive for a few 
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seconds (in particular, the internal shock model implies that the 
duration of the energy release by the source has a duration 
comparable with the observed duration of the GRB). However, if 
the runaway instability would occur, the disc would fall into the 
hole in just a few milliseconds! 

In order to establish the nature of instabilities in accretion flows 
one must rely upon highly accurate, time-dependent, non-linear 
numerical simulations in black hole space-times. These 
simulations are scarce and they have been mostly performed 
using a Newtonian or a pseudo-Newtonian potential which mimics 
the existence of an ‘event horizon’ (Paczyhski & Wiita 1980) (see 
Eggum, Coroniti & Katz 1988; Papaloizou & Szuszkiewicz 1994; 
Igumeshchev, Chen & Abramowicz 1996 for simulations in the 
context of thick discs). Concerning relativistic simulations, Wilson 
(1972) was the first to study numerically the time-dependent 
accretion of matter on to a rotating black hole. His simulations 
showed the formation of thick accretion discs. In a subsequent 
work Hawley, Wilson & Smarr (1984a,b) studied the evolution and 
development of non-linear instabilities in pressure-supported 
accretion discs formed as a consequence of the spiraling infall of 
fluid with some amount of angular momentum. Their constant 
angular momentum initial models were computed following the 
analytic theory of relativistic discs developed by Kozlowski et al. 
(1978). The code developed by Hawley et al. (1984a,b) was 
capable of keeping stable discs in equilibrium as well as of 
following the fate of initially unstable models. Yokosawa (1995) 
studied the structure and dynamics of relativistic accretion discs 
and the transport of energy and angular momentum in 
magnetohydrodynamical accretion on to a rotating black hole. 
More recently, Igumenshchev & Beloborodov (1997) performed a 
similar study as Hawley et al. (1984a,b), including the rotating 
black hole case and using improved numerical methods based on 
Riemann solvers. They found that the structure of the innermost 
part of the disc depends strongly on the black hole spin and, at the 
same time, they were able to confirm numerically the expected 
analytic dependence of the mass accretion rate with the 
gravitational energy gap at the cusp of the torus. 

A time-dependent and fully relativistic study of the runaway 
stability has not yet been presented in the literature. Masuda & 
Eriguchi (1997) performed a time-dependent simulation in a 
pseudo-Newtonian framework, using an SPH method so that the 
self-gravity was taken into account. Our work aims at providing 
the first relativistic study. We have investigated the likelihood of 
the instability in thick discs of constant angular momentum. In this 
first investigation we present results for a Schwarzschild black 
hole. The rotating case and the inclusion of accretion discs with a 
distribution of angular momentum increasing outwards will be 
presented elsewhere. Our simulations are performed in a fully 
relativistic framework, using a 3 + 1 conservative formulation of 
the hydrodynamic equations on a curved background (Banyuls 
et al. 1997) and employing Godunov-type numerical methods for 
their solution (see e.g. Font 2000 and references therein). As in the 
work of Hawley et al. (1984a,b) and Igumenshchev & Beloborodov 
(1997) we neglect viscous and radiative processes, assuming that 
the flow is isentropic. This is justified as we are only interested in 
phenomena occurring on a dynamical time-scale. Furthermore, as a 
major simplification of the computational burden, we neglect the 
self-gravity of the disc. The space-time dynamics has hence been 
treated in a simple way, assuming that the background space-time 
metric is nothing but a sequence of stationary exact black hole 
solutions (Schwarzschild or Kerr) of the Einstein equations, the 
dynamics of which is governed by the increase of the black hole 
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mass (and angular momentum). Such growth is controlled only by 
the rate at which the mass accretes on to the hole. We are aware that 
a fully consistent approach to study the problem would imply 
solving the coupled system of Einstein and hydrodynamic 
equations in three dimensions. This seems still a daunting task 
despite some major recent progress on numerically stable 
integrations of the Einstein equations (see e.g. Alcubierre et al. 
(2000); Font et al. (2001) and references therein). We believe that, 
as a first step, our approach is justified and can provide some 
insight on the problem. 

The paper is organized as follows: Section 2 reviews briefly the 
theory of stationary, relativistic accretion discs of constant angular 
momentum. In Section 3 we introduce the equations of general 
relativistic hydrodynamics in the way they are used in our code. 
The numerical schemes we use to solve those equations, as well as 
other relevant aspects of our numerical code are described in 
Section 4. In Section 5 we test the capability of the code in keeping 
numerically the equilibrium of stationary models in time- 
dependent simulations. The main results of the paper are presented 
in Section 6 which contains the simulations of the runaway 
instability. Finally, Section 7 presents a summary of our 
investigation. 

Unless explicitly stated, we are using geometrized units (G = 
c = 1) throughout the paper. Greek (Latin) indices run from 0 to 3 
(1 to 3). We also use the signature —+ + + . Usual cgs units are 
obtained by using the gravitational radius of the black hole, 
rg = GMbh/c2, as unit of length. Although this paper is only 
concerned with the Schwarzschild case we present all expressions 
for the most general setup of a Kerr black hole in order to refer to 
them in the forthcoming papers of this series. The code is already 
written for the Kerr metric and the results here presented have been 
obtained by just setting to zero the black hole angular momentum 
parameter. 

2 STATIONARY MODELS OF THICK 
ACCRETION DISCS 

The theory of stationary, relativistic thick discs (or tori) of constant 
angular momentum was first derived by Fishbone & Moncrief 
(1976) for isentropic discs and by Kozlowski et al. (1978) for discs 
obeying a barotropic equation of state (EoS). Although this theory 
is by now well-established and has been presented in great detail 
elsewhere, we have chosen to include here the relevant aspects and 
definitions in order to facilitate the self-consistency of the paper. 

2.1 Definitions 

2.1.1 Assumptions 

In order to build up constant angular momentum configurations for 
a given metric we assume a number of conditions. First, the torus is 
stationary and axially symmetric. We adopt the standard spherical 
coordinates (t, r, 0, </>) in which the metric coefficients neither 
depend on the time coordinate t (stationarity) or on the azimuthal 
coordinate <f) (axisymmetry). The line element of the space-time is 
given by 

di2 = g„dt2 + 2gt4,dtd(t> + g^dp + grrdr2 + geedd2. (1) 

We adopt the following convention: the angular momentum of the 
black hole is positive and the matter of the disc rotates in the 
positive (negative) direction of <fi for a prograde (retrograde) disc. 
We define the following quantity which is a relativistic 
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generalization of the ‘distance to the axis’: 

^ - gttgW’ (2) 

which in the Newtonian limit is simply m= r sin 9. 
The EoS of the fluid is assumed to be barotropic, so that p = p(e) 

wherep is the pressure and e is the total energy density. We define p 
as the rest mass density, w = £ + P as the enthalpy and h = wl pas 
the specific enthalpy. The four velocity of the fluid is = 
(V, 0,0, with the normalization condition u2 = = -1. 

2.7.2 Von ZeipeVs cylinders 

The Lagrangian angular momentum (angular momentum per unit 
inertial mass) and the angular velocity are respectively defined by 

1=-^ (3) 
ut 

and 

il = —. 
u1 (4) 

From = g^vu v it follows that 

gt(f) + g(j)(t)Q 
gtt + gt^ 

and guj> + gttl 
g(f><f> + gnpl 

(5) 

For a barotropic EoS, the equi-/ and equi-il surfaces coincide and 
they are called the von ZeipeTs cylinders. Their cylinder-like 
topology has been proved by Abramowicz (1974). If the metric is 
known, equation (5) allows to construct the von ZeipeTs cylinder 
defined by l0 and il0 by solving the following equation 

gttk + + ^Wo) + g<f>4>Qo — 0- (6) 

In particular, if the distribution of the angular momentum / = leq(r) 
is given in the equatorial plane 9 = tt/2, then the corresponding 
distribution of the angular velocity in the equatorial plane is given 
by 

g,¿(r, tt/2) + gK(r, Tr/2)/(r) 
g<M>(/> ^/2) + Trl2)l(r) ' 

(7) 

The equation of the von ZeipeTs cylinder intersecting the 
equatorial plane at a given radial point r = to is given by equation 
(6) so that 

¿Vo)[g«(>, d)g^(r0, tt/2) - gt$(r, d)g„(r0, tt/2)] 

+ Kro)[gtt(r, ff)gH(r0, tt/2) - g^(r, 6)g„(r0, tt/2)] (8) 

+ [gt4>(r, d)gH{r0, tt/2) - g^(r, e)gt<i>(r0, tt/2)] = 0. 

Notice that in the case of the Schwarzschild metric, = 0, and 
this equation reduces to 
gtt(r, %^(r0, tt/2) - g^(r, 9)git(r0, tt/2) = 0 (9) 
which is independent of the distribution of angular momentum. 

2.1.3 Equipotentials 

The dynamics of the gas flow is governed by the relativistic Euler 
equation, the integral form of which is 

W -W[ri = ln(—Mf) - ln(—Miin) 
ad/ 

(10) 
J/rn1 

The subscript ‘in’ refers to the inner edge (in the equatorial plane) 

of the disc, where the pressure vanishes. The quantity Wis defined by 

[p dp 
1E-Wm=- (11) 

Jo w 

In the Newtonian limit, the quantity W is the total (centrifugal plus 
gravitational) potential and equation (11) is the integral form of the 
equation of hydrostatic equilibrium. If the space-time metric is 
known and if the distribution of angular momentum in the 
equatorial plane is given, so that the von ZeipeTs cylinders have 
been computed, providing us with the value of / and Í1 at any given 
point within the disc, then the equipotentials surfaces VT(r, 9) are 
easily computed from equation (10) taking into account that ut 
can be expressed (from the 4-velocity normalization condition 
u2 = 1) as a function of / by 

-ut = 
g„l2 + 2g,jJ + 

(12) 

2.1.4 Construction of a thick disc 

In order to build a system consisting of a black hole surrounded by 
a thick disc we need several parameters: the mass M and the 
specific angular momentum a = JIM of the black hole, the 
distribution of the angular momentum of the disc in the equatorial 
plane /cq(r), the inner radius of the disc rin and the EoS of the fluid 
material of the disc. The procedure is then as follows. 

(i) Compute the metric coefficients in a Kerr background with 
free parameters a and M (these coefficients are given in the next 
section). 

(ii) From the distribution of the angular momentum in the 
equatorial plane, solve equation (6) to have the distribution of 
angular momentum /(r, 9). Then the corresponding distribution 
wt(r, 9) can be evaluated from equation (12). 

(iii) From the value of the inner radius rin, compute the 
corresponding value of the angular momentum lm = /eq(?m). Then 
the function 

F(r, 9) = 
4 fid/ 

. 1 - fl/ 

can be evaluated. 
(iv) Compute the potential 

W(r, 9) - Win = ln[-^(r, 9)] - \n(-utm) - F{r, 9). 

(13) 

The constant Win is fixed by the convention that limW(r, 9) = 0. 
(v) Compute all hydrodynamical quantities (p, p, c, w, etc) from 

the EoS and equation (11). In the following, we will only consider 
the particular case of isentropic fluids where 

,p dp , h 
— = ln7r 0 W «in 

(14) 

If the self-gravity of the disc is neglected, the procedure stops here. 
Otherwise, from the distribution of matter-energy we have 
computed, we need to solve the Einstein field equations to evaluate 
the new metric coefficients g^v. Then the procedure starts again at 
step 2. Such cycles are repeated until convergence. 

Once a disc has been built, one can estimate its mass with the 
expression 

m = jot + 7; + r» - r;)V=gdv, (15) 
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The runaway instability - I 387 

where T^vis the stress-energy tensor which, in the case of a perfect 
fluid is defined by = phu + pg In all the models we will 
consider in the following, we have p < e so that the mass of the 
disc can be accurately approximated by the rest-mass 

11 piu^u ^ - utu t)^fzrg dV 

and the distance to the axis is simply nr2 = r(r — 2) sin2 0. As the 
black hole is non-rotating, we also consider only positive values of 
the angular momentum (prograde discs). 

The von ZeipeTs cylinders are independent of /. Using equation 
(9), the cylinder intersecting the equatorial plane at r = ro is given 
by 

1 + ill 
1 - ill 

pJ=gdV. (16) 

2.2 Constant angular momentum thick discs orbiting a 
Schwarzschild black hole 

In this subsection we describe in detail the particular case we have 
considered for the time-dependent simulations of this paper: the 
black hole is non-rotating (a Schwarzschild black hole), the self- 
gravity of the disc is neglected, the angular momentum / is constant 
and the disc obeys a polytropic EoS with 
P = Kpy, (17) 
with K being the polytropic constant and y the adiabatic exponent. 
For convenience, we further assume that the mass of the black hole 
is equal to unity. The metric coefficients are given by 

= (18) 

gup = 0, 

= r2 sirrö, 

(19) 

(20) 

Figure 1. The von Zeipel’s cylinders for the Schwarzschild metric. The 
critical cylinder (thick line) has a cusp located at r — 3 in the equatorial 
plane. 

(ro-2)r3sin20-^(r-2) = O. (21) 

The result is shown in Fig. 1. Notice the cusp located at r = 3 in the 
equatorial plane (thick line). 

Since the angular momentum / is constant, the function F(r, 6) 
vanishes. Using equation (12), the component ut of the 4-velocity is 
given by 

I -ut = r sm 0\ - . _ —; ——r 
V r3 sm20 — (r — 2)/2 

and the potential W reads 

W(r, 6) = - In 
r2(r - 2) sin20 

r3 sin20 — l2(r — 2) ’ 

(22) 

(23) 

where we have used the condition lF(r, 0)—>0 for r—>+oo to 
eliminate rin. 

We describe now the equipotentials that are either closed 
{W < 0) or open (W > 0). The marginal case W = 0 is closed at 
infinity. The geometry of the equipotentials is fixed by the value 
of /. We impose that W{r) is defined everywhere outside the horizon 
in the equatorial plane, i.e. that the term r3 - l2(r — 2) never 
vanishes. Then / < lmax = 3V3 — 5.20. 

It can be easily shown that the presence of a cusp in the 
equatorial plane is related to the solutions of 

/K(r) - /, (24) 

where lK(r) is the Keplerian angular momentum of a particle 
located at a radius r in the equatorial plane. It is given by 

lK(r) = 1^. (25) r — 2 

Two useful radii can be defined, the radius of the last (marginally) 
stable orbit rms = 6 [corresponding to the minimum of /kWL and 
the radius of the last (marginally) bound orbit rmb =4. The 
corresponding values of /K are /ms = (3V6)/2 = 3.67 and /mb = 4. 
The properties of Mr, 6) are given in Table 2 for the different 
possible values of /. The corresponding equipotentials are drawn in 
Fig. 2 (right panel). The angular momentum and potential in the 
equatorial plane are also drawn on the left panel of Fig. 2. It is clear 
that the most interesting case is case (3) where lms < I < lmb so 
that there exist a cusp, a centre, and the equipotential of the cusp is 

Table 2. The possible equipotential configurations for a Schwarzschild black hole and a constant angular momentum disc. 

Angular momentum W ” ci: Me Comments 

/ < /ms ^ 3.67 
/ = /ms ^ 3.67 
7ns ^ ^ /mb 
/ /mb 4 
/mb ^ / ^ /max 
/ = /max - 5.20 

rCusp rms 6 
rmb ^ rcusp < rms 

Amsp rmb 4 
rcusp ^ rmb 

rcusn 3 

<0 
<0 

0 
>0 
+ 00 

reentre rms 6 
reentre ^ rms 

reentre ~ 10.47 
reentre ~ 10.47 
reentre ~ 22.39 

No cusp. No centre. Disc infinite. 
< 0 Cusp = centre. Disc infinite. 
< 0 Cusp. Center. Disc closed. 
< 0 Cusp. Center. Disc closed at infinity. 
<0 Cusp. Center. Disc infinite*. 
<0 Cusp marginally defined. Center. Disc infinite*. 

* Some closed equipotentials are still present around the centre. 
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388 J. A. Font and F. Daigne 

Figure 2. Constant angular momentum thick disc orbiting a Schwarzschild black hole: Equipotentials for different values of / (right column). The thick line 
corresponds to the equipotential of the cusp and a thick dot marks the centre. The physically interesting case (corresponding to a thick torus) is case (3). 

closed. From equation (17) and equation (14) we have indeed 

w-Win =-ln/¡ =-In^l(26) 

so that the matter can fill only the part where W ^ The density 
and the pressure are then easily determined from h\ 

h = eWi"-w, (27) 

P = 
^y_ lewm->y_ 

(28) 

P — K 
y — 1 e11 

(29) 

It is then possible to adjust the value of l and rm to fix the mass of 
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Figure 2 continued 

the disc, which is given by 

m — 2 it r3sin2e + (r- 2)/2 2 

^ r3 sin2 8 — (r — 2)l2 sin QdOdr. (30) 

If one imposes the condition that the disc is exactly filling its Roche 
lobe, the inner radius rin = rcusp is fixed. Otherwise, instead of 
specifying rin, one could prefer another parameter, such as the 

© 2002 RAS, MNRAS 334, 383-400 

potential barrier (energy gap) at the inner edge defined as 

AWin - Win - Wcusp. (31) 

The case AWin < 0 corresponds to a disc inside its Roche lobe. No 
mass transfer is possible. The case A Win > 0 corresponds to a disc 
overflowing its Roche lobe: mass transfer is possible at the cusp. 
An analytic estimation for the mass flux (flux of rest mass density) 
was derived by Kozlowski et al. (1978) for this last case, showing 
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the following dependence: 

m oc Awf7. (32) 

3 HYDRODYNAMIC EQUATIONS IN A KERR 
BACKGROUND 

Our purpose is to evolve in time the initial data described in the 
previous section. In order to do so we present in this Section the 
formulation of the general relativistic hydrodynamic equations in 
the form they have been implemented in our numerical code. 

Using Boyer-Lindquist (t, r, 6, </>) coordinates, the Kerr line 
element, ds2 = gAtydv^dx1', reads 

ds2 = - 
A - a2 sin20 

-dt — 2a 
2Mrsin20 t ( Q2 , i 
 ^ did^ + ^-dr2 

p2 A 

+ g2 dd2 H—r-sin20d</>2, (33) 
e2 

with the definitions 

\ = r2 - 2Mr + a2, (34) 

^2 = r2 + a2 cos20, (35) 

2 = (r2 + a2)2 - a2Asin2ö, (36) 

where M is the mass of the black hole and a is the black hole 
angular momentum per unit mass (JM). Notice that the geometrical 
factor £ has not to be confused with the rest-mass density of the 
fluid, p. The above metric, equation (33), describes the space-time 
exterior to a rotating and non-charged black hole. The metric has a 
coordinate singularity at the roots of the equation A = 0, which 
correspond to the horizons of a rotating black hole, 
r = r± = M ± (M2 — a2)m. The ‘distance to the rotation axis’ 
introduced in the previous Section is given by rcr2 = g2^ — 
gngH = Asin20. 

The 3 + 1 decomposition (see e.g. Misner, Thorne & Wheeler 
(1973)) of this form of the metric leads to a spatial 3-metric y¿j 
with non-zero elements given by yrr = p2/A, = ¿?2, y^ = 
S/p2 sin20. In addition, the azimuthal shift vectoris given 
by 

2aMr sin2 6 
ß*=- ^2 ’ (37) 

and the lapse function is given by 

(38) 

The equations of general relativistic hydrodynamics are obtained 
from the local conservation laws of density current J ^ and stress- 
energy T^v: 

V" = °> (39) 
= 0, (40) 

with 

J^ = pu^y (41) 

T»v = phuW +pg»\ (42) 

for a general EoS of the form p = p(p, s), s being the specific 
internal energy. The specific enthalpy is defined as h = 
1 + 8 + P/p. Furthermore, is the covariant derivative associated 

with the four-dimensional metric g^ and w ^ is the fluid 4-velocity. 
The above expression of the stress-energy tensor corresponds to 
that of a perfect fluid. 

Following the general approach laid out in Banyuls et al. (1997), 
after the choice of an appropriate vector of conserved quantities, 
the general relativistic hydrodynamic equations can be written as a 
first-order flux-conservative hyperbolic system. In axisymmetry 
(3^ = 0) and with respect to the Kerr metric such a system adopts 
the form 

3i7(w9 3[a:Pr(tv)] 
dt ^ dr 

dlaFV)] 
dÖ = SW- (43) 

In this equation the vector of (physical) primitive variables is 
defined as 

w = (p, vr, ve, Vÿ, s), (44) 

where v¡(i = r,d,(j)) is the fluid 3-velocity, defined as 
vl = u'/au1 + ßl/a, with Vj = yjjvf On the other hand, the state 
vector (evolved quantities) in equation (43) is 

U(w) = (D,Sr,So,S(f„ r). (45) 

The explicit relations between the two sets of variables, U and w, 
are 

D = pF, 

Sj = phT2Vj (j = r, 0, </>), (46) 

r = phT2 — p — D, 

with F being the Forentz factor, F = au1 = (1 — ^2 ) ~172, with 
v2 = yijVlvf The specific form of the fluxes, Fl, and the source 
terms, S, read 

Fr{w) = (Dvr,Srv
r +p,S6v

r, 5^,(7+ p)vr), (47) 

F V) = (Dv e, Srv d, Sev 9 + p, ö, (r + p)v 6), (48) 

S{w) = {Sl,S2,S3,SA,S5), (49) 

with 

Si = -ADvr - BDv9, 

Si = —A(Srv
r +p) — BSrv

9 + aC, 

53 = —ASovr — B(Sqv 9 + p) + cxD, 

54 = ~AS(pvr — BS^v9 + a£, 

55 = ~A{t + p)vr - B(t + p)v 9 + aT, 

with the definitions 

. r lSrA-SAr 

-4 = a|
v^

+2 ’ AS ' 

^ Cl2 . n r, «2A . ^ B = a\ cot 0 sm dcos 6 — —— sm26 
Q 2A 

C = Trrgrr, + Tregrr,e - grÁT'X, + TrrVrr + T™Cm 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

+ + 2T'X0 + 2TrXr„), t(p 

V = Tr9gee,r + T0egee,e ~ geeiCT9 + TrrTe
rr + TeeTl 

(57) 

+ T4,4,Te^ + 2Tl4>Te<t> + 2Trere
r0), (58) 
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£ = T,rgi4>,r + r'V» + 

- 2g,^T‘Xr + T'X, + TrX* + 

- 2g^(T'T,f + T,erfe + T'X* + (59) 

T = T,rar + T,0a0 - 2a(T'Xr + T'X<> + tX* + 
(60) 

The 7 in the above expressions denotes partial differentiation and 
the stand for the Christoffel symbols (only the non-vanishing 
ones are displayed) which are obtained from the metric according 
to the usual definition 

pet _ }_ aX ÍdffAï/ ^§X/x _ 
^~28 \dx^ dx" bxx)’ 

(61) 

4 NUMERICAL METHOD 

4.1 The hydrodynamics code 

The hydrodynamics code used in our computations was originally 
developed for studies of relativistic wind accretion on to black 
holes (Font & Ibáñez 1998a,b; Font, Ibáñez & Papadopoulos 1998; 
Font, Ibáñez & Papadopoulos 1999). This code performs the 
numerical integration of system (43) using a so-called Godunov- 
type scheme. Such schemes are specifically designed to solve non- 
linear hyperbolic systems of conservation laws (see e.g. Toro 1997 
for definitions). In a Godunov-type method the knowledge of the 
characteristic structure of the equations is essential to design a 
solution procedure based upon either exact or approximate 
Riemann solvers. These solvers compute, at every cell-interface of 
the numerical grid, the solution of local Riemann problems (i.e. the 
simplest initial value problems with discontinuous initial data). 
Therefore, they automatically guarantee the proper capturing of all 
discontinuities which may arise naturally in the solution space of a 
non-linear hyperbolic system. 

The time update of system (43) from tn to tn+l is performed 
according to the following conservative algorithm: 

i+mj k-iflj) ^^(7+1/2 Fij-m) 
(62) 

+ Ai Sij. 

Index n represents the time level and the time (space) discretization 
interval is indicated by Ai (Ar,A0). The numerical fluxes in the 
above equation, Fr, F 9 are computed by means of the HLLE 
Riemann solver (Harten, Lax & van Leer 1983; Einfeldt 1988). 
These fluxes are obtained independently for each direction and the 
time update of the state-vector U is done simultaneously using a 
method of lines in combination with a second-order (in time) 
conservative Runge-Kutta scheme. Moreover, in order to set up a 
family of local Riemann problems at every cell-interface we use a 
piecewise linear reconstruction procedure (van Leer 1979) which 
provides second-order accuracy in space. 

4.2 Grid and boundary conditions 

We use a computational grid of 300 X 100 zones in the radial and 
angular direction, respectively. The grid is logarithmically spaced 
in the radial direction. The innermost radius is located at 
rmin = 2.1. The location of the maximum radius rmax depends on 
the particular model under study. Lor the stationary models 
presented in Section 5, we have rmax = 35. Correspondingly, for 
the simulations of the runaway instability, the radial grid extends to 
a sufficiently large distance in order to ensure that the whole disc is 
included within the computational domain. The particular values of 
rmax are displayed in Table 3 below. The typical width of the 
innermost cell, where we have the highest resolution, is 
Ar — 1.9 X10“2. 

In the angular direction we use a finer grid within the torus and a 
much coarser grid outside. The angular zones are distributed 
according to the following law: 

-I = 
IT 

1.2 — 
M 

- Í OT + 2.„ M 

-0.2+ 1.2 
M 

1 . M 1 

;-l\ M 1M 
7T+1 

y - 1 1M 
—- + 1 ^ M + 1. 

(63) 

Although the flows we are simulating have equatorial plane 
symmetry we extend the computational domain in the angular 
direction from 0 to tt. This allows us to measure the ability of the 
code in keeping a symmetric evolution. 

Table 3. Initial models. The following parameters are listed: mass of the black hole MBH, disc-to-hole mass ratio Md/MBh, 
specific angular momentum in the disc /, potential barrier at the inner edge AlTin, mass flux in the stationary regime msLal, minimum 
and maximum radii of the grid, rmin and rmax, radius of the cusp rcusp, radius of the centre rcenlre (all radii are in units of the 
gravitational radius rg), and orbital period at the centre of the disc torb. The last column lists the time-scale associated with the 
runaway instability as defined in Section 6.4. In all cases, the EoS parameters are k = 4.76 X 1014 cgs and y = 4/3. 

Model 4/Bjj Mq/A'/bh ^ 
(M0) 

AA7 
(MG s-1) 

k>rb 
(geo/ms) 

m It orb 

la 
2a 
3a 
4a 

2.5 
2.5 
2.5 
2.5 

3.9325 
3.9085 
3.8564 
3.7255 

0.005 
0.01 
0.02 
0.04 

0.090 
0.28 
2.1 

34. 

2.1 
2.1 
2.1 
2.1 

85.* 
85.* 
85.* 
85.* 

4.1492 
4.2105 
4.3639 
5.0104 

9.7930 
9.5455 
8.9919 
7.3644 

193. / 2.37 
185. / 2.28 
169. / 2.09 
126. / 1.55 

97. / 95.f 
38. / 36.f 
10. / 9.2f 
3.8/3.31 

lb 
2b 
3b 

2.5 
2.5 
2.5 

0.1 
0.1 
0.1 

3.8749 0.005 
3.8459 0.01 
3.7798 0.02 

0.032 
0.17 
1.9 

2.1 
2.1 
2.1 

37. 
37. 
37. 

4.3058 
4.3990 
4.6698 

9.1915 
8.8768 
8.1077 

175. / 2.16 140. 
166. / 2.05 64. 
145. / 1.79 12. 

1c 2.5 0.05 3.8798 0.001 0.21 2.1 32. 4.2911 9.2438 177. / 2.17 110. 

* In models la to 4a the grid consists of a first grid from r = 2.1 to r = 28 and a second grid from r = 28 to r = 85 to avoid Ar at 
the inner radius becoming too large. 
f The second estimate of rmn given for models la to 4a corresponds to simulations where the mass of the black hole starts to 
increase only once the stationary regime has been reached (see Section 6.4). 
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392 J. A. Font and F. Daigne 

For the second-order numerical scheme we use we need to 
impose boundary conditions in two additional zones at each end of 
the domain. The boundary conditions are applied to p, vr, ve and 
and they are as follows: at the inner boundary rmin all velocities are 
linearly extrapolated to the boundary zones from the innermost 
zones in the physical grid. The density is however assumed to have 
zero gradient across the inner boundary. The rest of thermo- 
dynamical quantities are computed using the polytropic EoS. At the 
outer radial boundary rmax all variables keep the constant initial 
values given by the choice of the particular disc solution. Reflection 
boundary conditions are used at both poles (0 = 0 and it), i.e. all 
variables are symmetric, except for ve which changes sign. 

4.3 Additional aspects 

Since we are considering adiabatic evolutions, we only solve for 
the first four equations of system (43). The internal energy 
(proportional to the rest-mass density) is obtained algebraically 
using a polytropic EoS, p = Kpy, i.e. s = [K/(y — l)]i > p7_1. 

After the time update of the conserved quantities, the primitive 
variables are recomputed. As the relation between the two sets of 
variables is not in closed algebraic form, the primitive variables are 
computed using the following procedure. The evolved quantities D 
and Si being known, we eliminate p and h from the definition of Si 
given by equation (47) to express the norm S2 = (ph)2T2v2 of Si as 
a function of the Lorentz factor F only: 

S2(T) = D2 1 + y- 1 
(64) 

We solve this equation by an iterative Newton-Raphson 
algorithm. Once the Lorentz factor F is found, the other primitive 
variables are easily derived using the relations p = DIT, h = 
1 + [y/(y — l)]Kpr 1 and Vi = Sil{phT2). 

Finally, it is worth pointing out that in order to evolve the 
‘vacuum’ zones which lie outside the disc using a hydrodynamics 
code, we adopt the following simple yet effective procedure. 
Before constructing the initial torus we build up a background 
spherical accretion solution of a sufficiently low density so that its 
presence does not affect the dynamics of the disc. This stationary 
solution is given by the relativistic extension of the spherical Bondi 
accretion solution derived by Michel (1972). This solution depends 
on the location of the critical point rc and of the density at this point 
pc, together with the adiabatic exponent and polytropic constant of 
the EoS, which we chose the same as inside the torus. In our 
approach we chose the values of rc and pc (which is computed from 
rc with the condition that the flow is regular at the critical point) in 
order to impose that the maximum density in the background 
spherical solution is 5.0 X 10-6 times the maximum density at the 
centre of the disc. By doing this we have checked that the rest-mass 
present in our background solution is always negligible compared 
to the mass of the disc and that the associated mass flux 
corresponding to this spherical accretion is also negligible 
compared to the mass flux from the disc. We note that in the 
outermost part the values of the background density can be as low 
as 10 8 times the maximum density at the centre of the disc. 

5 SIMULATIONS OF STATIONARY MODELS 

As mentioned in the previous section our hydrodynamics code has 
been used previously in a number of relativistic wind accretion 
simulations. However, in order to test the ability of the code when 

0 2 4 6 8 10 
x / rg 

0 2 4 6 8 10 
x / rg 

Figure 3. Morphology of the inner part of the disc with parameters / = 
3.9136 and AWin = 0.16. Top: initial state; bottom: final state at t — 53?0rb- 
The arrows are proportional to the components (Srl^fg^.,Sel^fgëê) of the 
momentum and are plotted only in the region where p ^ 0.05p^ax. The 
black hole is represented by the black circle and the exterior circle around it 
marks the location of the inner boundary of the grid. 

dealing with accretion discs we have first considered time- 
dependent simulations of stationary models. The aim of these 
simulations has been to find out whether the code is capable of 
keeping those models in equilibrium during a sufficiently long 
period of time (much larger than the rotation period of the disc). In 
order to do so we have considered the same stationary models that 
Igumenshchev & Beloborodov (1997) analysed, in the limit of no 
black hole rotation. These four models are characterized by 
/ = 3.9136, a value in between the marginally stable and 
marginally bound orbits, and an increasingly large value of the 
energy gap at the cusp, AWin = 0.02, 0.04, 0.08 and 0.16. 
Similarly, the polytropic EoS has been chosen with an adiabatic 
index y = 4/3 and a polytropic constant k = 1.5 X 1020 cgs. 
Furthermore, the mass of the black hole is kept constant throughout 
these test evolutions. 

As a representative example Fig. 3 shows the morphology of the 
model with AWin = 0.16. The cusp is located at rcusp = 4.197 and 
the centre at rcentre = 9.598. The grid extends to rmax = 35. The top 
panel shows a grey-scale plot of the logarithm of the density for the 
initial model at i = 0, together with the corresponding velocity 
field. The bottom panel shows the same morphology at the final 
time t = 104. This corresponds to about 53 dynamical time-scales, 
choosing as a dynamical time-scale the orbital period tQ± = 2tt/í1 
at r = rCentre» which for this model is t0rb = 184.9. The code was 
stopped after roughly 2 X 105 iterations with no signs of numerical 
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t / u 
Figure 4. Time evolution of the mass flux for a stationary model with 
/ — 3.9136 and AtT — 0.02, 0.04, 0.08 and 0.16. The time is given in units 
of the orbital period at the centre (see text), which here is f0rb — 187rg/c. 
The mass flux is normalized with the Eddington limit computed with 
MBh = 1 Mq . For a different choice of polytropic constant k and black hole 
mass MBh, the mass flux scales as k _3MBh for 7 = 4/3. The initial value of 
the mass flux is fixed by the spherical mass accretion rate associated with 
the Bondi flow imposed in the low density regions outside the torus. Notice 
that after a transition phase lasting for —0.1 torh the mass accretion rate 
rapidly tends, asymptotically, to the stationary values. 

instabilities present. One can clearly see in Fig. 3 that an accretion 
flow from the disc to the black hole appears in the inner region of 
the grid. This flow, however, becomes rapidly stationary (see 
below). In addition, for our particular choice of model parameters, 
the corresponding mass flux is very low. Therefore, except in the 
innermost region where the accretion flow develops, the morphol- 
ogy of the disc remains essentially unchanged during the whole 
evolution from / = 0 to / = 53/orb. 

There are some additional noteworthy issues concerning this 
figure: first, it clearly shows the ability of the code to keep the 
equatorial plane symmetry of the torus, even though the angular 
domain extends from 0 to rr. Secondly, the smoothness of the initial 
disc distribution in the grid is maintained during the whole 
evolution even close to the black hole horizon. Finally, contrary to 
previous work (Hawley et al. 1984b; Igumenshchev & Belo- 
borodov 1997) there are no hints of vortices developing in the flow. 
In Hawley et al. (1984b) such vortices are associated to small 
poloidal velocities and are not as noticeable as in the results of 
Igumenshchev & Beloborodov (1997). The latter claim, however, 
that such vortex motions are likely to be related to the choice of 
initial conditions, developing from initial perturbations close to the 
cusp and propagating outwards undamped. 

A more quantitative proof of the ability of the code in keeping 
the stationarity of this solution is provided in Fig. 4. This figure 
shows the evolution of the mass accretion rate (normalized to the 
Eddington value), m/mEdd, as a function of ///0rb- The mass flux is 
computed at the innermost radial point as 

PIT 
m = 2rr A/

=gZ)î;rd0, (65) 
Jo 

where the volume element for the Schwarzschild metric is given by 
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to2 

•Ë 10 
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Figure 5. Mass flux m as a function of the energy gap AWin between the 
inner edge of the disc and the cusp. The dots indicate the asymptotic values 
we get in our simulations (see Fig. 4). The dashed line shows the slope 
which is expected from the theoretical prediction given by equation (32), 
which for y — 4/3 is 4. The plot corresponds to simulations with MBh — 
1 Mq and k= 1.5 X 1020 cgs. 

^J=g = r2sm0. The Eddington mass flux riiEdd = LEdd/c2— 
1.4 X 1017 (Mbh/Mq) g s-1 is computed for MBH = 1 Mq. Rescal- 
ing of m for different polytropic constant k and black hole mass 
MBh is given by 

(m/mEdd)i _ ÍKy 
(m/mEdd)2 \k2 

where y = 4/3 was assumed. After a transient initial phase the 
mass accretion rate is seen to rapidly tend, asymptotically, to a 
constant value. The offset observed during the initial phase 
corresponds to the spherical accretion mass flux associated with the 
particular background solution we use outside the torus. 

Next, in Fig. 5 we plot the mass flux as a function of the energy 
gap ATFin for the four stationary models we have considered. The 
values selected for the mass flux in each model are the asymptotic 
ones, obtained after the simulations have been evolved up to a final 
time t = 104, roughly 54 orbital periods. This plot allows us to 
check if the code is able to reproduce the analytic dependence 
given by equation (32). For a y = 4/3 polytrope the expected slope 
is 4 (dashed line). As the figure shows, our results are in good 
agreement with this analytic prediction as well as with the 
numerical results obtained by Igumenshchev & Beloborodov 
(1997) for the same models. 

47bh (66) 

AWin / c2 

6 SIMULATIONS OF THE RUNAWAY 
INSTABILITY 

6.1 The physical origin of the instability 

The physical mechanism leading to the runaway instability has 
been explained by Abramowicz et al. (1983) and Nishida et al. 
(1996). The mass transfer from the disc to the black hole starts once 
the disc fills its Roche lobe (see Fig. 6a). From this moment any 
small perturbation allows the gas to flow through the cusp located 
at the inner edge of the disc. As a result the mass of the black hole 
increases, the equipotential surfaces move, and the radial location 
of the cusp changes. The disc has to find a new equilibrium 
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x / rg 

Figure 6. The physical origin of the runaway instability: the initial disc fills 
its Roche lobe (panel a). Mass transfer from the disc to the black hole occurs 
through the cusp, which is located at the Lagrange point L^. The mass of the 
black hole increases and the disc has to find a new equilibrium configuration 
with the new gravitational potential. There exist two possibilities: (i) the 
disc overflows its Roche lobe (panel b). This process speeds up the mass 
transfer and the disc becomes unstable, (ii) The disc contracts inside its 
Roche lobe (panel c), which forces the mass transfer to slow down, resulting 
on a stable disc. 

configuration: one possibility is that the disc overflows its Roche 
lobe as is depicted in Fig. 6(b). In this case the mass transfer speeds 
up, which leads to the runaway instability. Alternatively, the disc 
may contract inside its Roche lobe (see Fig. 6c). In this case the 

0 0.02 0.04 0.06 0.08 0.1 
Mass transfered AMD / MD 

Figure 7. The physical origin of the runaway instability: the evolution of 
models with different mass is plotted against the mass transferred from the 
disc to the black hole. The initial disc is filling its Roche lobe (indicated by 
the big dot symbol). Initially MBH = 2.44 M© and MD = 0.36 M©. Upper 
panel: mass MBH of the black hole. Lower panel: mass MD of the disc and 
mass MB

ax contained inside the Roche lobe (dashed line). As MD ^ Mgax, 
the disc overflows its Roche lobe which speeds up the mass transfer and 
leads to the runaway instability. 

mass transfer slows down. The mass flux is self-regulated by this 
process and the accretion is stable. 

However, for a Schwarzschild black hole and a constant angular 
momentum distribution in the disc, most discs are unstable 
(Abramowicz et al. 1983) (see also Table 1). This is illustrated in 
Fig. 7 for the particular case where the black hole mass is 
MBh = 2.44 Mq, the disc mass is MD = 0.36M©, the adiabatic 
index is y = 4/3 and the polytropic constant is k = 4.76 X 1014 cgs 
(which corresponds to degenerate relativistic electrons with Fe = 
0.5 electrons per nucleon). In this figure the evolution of models 
with different mass is plotted against the mass transferred from the 
disc to the black hole. The initial disc is filling its Roche lobe. The 
location of both the initial disc mass and black hole mass is 
indicated by a large dot symbol in each panel. The upper panel 
shows the evolution of the mass of the black hole whereas the lower 
one shows the corresponding evolution of the disc and of Mgax, 
which is the maximum disc mass contained inside the Roche lobe 
(dashed line). As Md ^ Mgax, the disc overflows its Roche lobe 
which speeds up the mass transfer and leads to the runaway 
instability. 

6.2 The sequence of stationary metrics approximation 

The increase of the mass of the black hole is the fundamental 
process triggering the runaway instability. In order to properly take 
into account the dynamical evolution of the underlying gravita- 
tional field, one should solve the coupled system of Einstein and 
hydrodynamic equations. However, such a task has not yet been 
accomplished in the context of the runaway instability and, to some 
extent, it may be still far from the capabilities of current codes in 
numerical relativity. Numerical stability considerations, coming 
from both the coordinate singularity existing at the rotation axis 
{9 = 0, rr), which spoils the long-term integration of the Einstein 
equations even in vacuum (Brandt & Seidel 1995), and from the 
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mathematical formulation of the field equations themselves, make 
such a task very challenging. Numerical relativity codes evolving 
black hole space-times with perfect fluid matter are only 
becoming available very recently, both in axisymmetry (Brandt 
et al. 2000) and in full 3D (Shibata & Uryil 2000; Shibata, 
Baumgarte & Shapiro 2000; Alcubierre et al. 2000; Font et al. 
2001). Nevertheless, the resolution and the integration times 
required to study the time evolution of the runaway instability may 
be still too demanding for such relativistic codes which incorporate 
self-gravity. 

For all these reasons and for the complete lack of time- 
dependent simulations of the runaway instability in relativity, we 
have adopted a simplified and pragmatic approach to the problem. 
In our procedure the space-time metric is approximated at each 
time step by a stationary exact black hole metric of varying mass 
(and angular momentum in the case of a rotating black hole). The 
mass M of the black hole necessary to compute the metric 
coefficients is increased at each time step ¡St according to 

Mn+l = Mn + Atm”, (67) 

where the mass flux at the inner radius of the grid is evaluated by 
the equation 

_ di)sin ö;öw4mW- (68) 

As the mass of the black hole increases during the simulations, the 
horizon moves outwards. To avoid the inner radius of the grid to 
become smaller than the radius of the growing horizon, we increase 
the index /min of the first radial zone when necessary, so that the 
condition r,min > 2M is always respected. We notice that the black 
hole mass increases very slowly during the evolution which implies 
that the metric coefficients at any time step differ very little from 
the final values which would correspond to an exact Schwarzschild 
black hole of bigger mass but with no matter around. 

6.3 Initial state 

A given initial state of the black hole plus disc system is 
determined by five parameters: the mass of the black hole MBH, the 
specific angular momentum in the disc /, the potential at the inner 
edge of the disc AWin, the polytropic constant k and the adiabatic 
index y. The computing time needed for one hydrodynamical 
simulation is too large to allow for a complete exploration of this 
parameter space. For this reason we focus on those models which 
are expected to be found in the central engine of GRBs. These 
systems are formed either after the coalescence of two compact 
objects or after the gravitational collapse of a massive star. 

63.1 Black hole mass and disc-to-hole mass ratio 

As has been shown by numerical simulations using Newtonian and 
post-Newtonian gravity, both the coalescence of two neutron stars 
(Ruffert & Janka 1999) and the merger of a black hole and a 
neutron star (Kluzniak & Lee 1998) lead to the formation of 
comparable systems, where the mass of the central black hole and 
the disc-to-hole mass ratio are respectively MBh ~ 2.5 M© 
and Md/Mbh ~ 0.04-0.08 for the first case, and MBH ~ 3M© 
and Md/MBh ~ 0.2 in the second case. More recently, the fully 
relativistic simulations of binary neutron star coalescence 
performed by Shibata & Uryü (2000) yield disc masses of 
~0.05-0.lM* for corotational binaries and <0.01M* for 
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irrotational binaries, where M* is the total rest-mass of the system 
(typically ~2M0). 

The case of collapsars is more complex since, in particular, the 
mass of the disc goes on increasing after the formation of the black 
hole, as matter from the outer parts of the star is still infalling. The 
simulations performed by MacFadyen & Woosley (1999) and Aloy 
et al. (2000) start from the 14 M0 helium core of a rotating 35 M© 
main sequence star which collapses to produce a central black hole 
surrounded by a disc. When this systems enters a quasi-steady 
state, the mass of the black hole is 2-3 M© and the disc-to-hole 
mass ratio is typically about 0.001-0.01. 

Taking into account these various results, we have decided to fix 
the mass of the black hole to MBH = 2.5 M© and to adjust the 
angular momentum / to get realistic disc-to-hole mass ratios. We 
have considered three possible ratios: 0.05, 0.1 and 1. Such values 
are very close to what is obtained in the simulations of binary 
coalescence and not too far from the results of the simulations of 
collapsars. 

63.2 Equation of state 

We fix the adiabatic index to y = 4/3 and the polytropic constant to 
k= 1.2 X 1015 Tg/3 with Fe = 0.5. This corresponds to an EoS 
dominated by the contribution of relativistic degenerate electrons 
(the typical density in the disc is ~ 1011 -1012 g/cm3). We note that 
such simplified EoS is nevertheless adequate to our purpose since 
the work of Nishida & Eriguchi (1996) showed that, for stationary 
models, the effects of realistic EoS on the stability of constant 
angular momentum discs is negligible, the discs being unstable in 
all cases. 

633 Mass flux 

Once Mbh, k and y have been specified, the only 
remaining parameter is the potential at the inner edge of the disc, 
AW[n- We choose its value so that the corresponding mass flux in 
the stationary regime (as described in Section 5) explores a realistic 
range. In the simulations of binary neutron star coalescence carried 
out by Ruffert & Janka (1999), the mass accretion rate of the black 
hole varies between 1 and 104 M© s_ 1. On the other hand, Kluzniak 
& Lee (1998) find comparable values in the case of a neutron star - 
black hole merger. In their simulations of collapsars, MacFadyen & 
Woosley (1999) find a typical mass flux of 0.6-0.8M© s-1. 

Such mass fluxes are many orders of magnitude larger than the 
Eddington limit, which is 1.2X10 16 M©s 1 for a Mbh = 
2.5 M©. However such very high mass fluxes are precisely what is 
required to explain the observed luminosity of GRBs, which 
is typically Ly = 1051 L51 erg s-1 in gamma-rays. If this radiation 
is caused by internal shocks propagating within an ultra-relativistic 
wind, the kinetic energy flux of this wind is Lkjn = Ly//r, where/7 

is the efficiency of the kinetic energy to radiation conversion. If one 
assumes that the production of the relativistic wind is accretion- 
powered with an efficiency/acc, then the mass flux is given by 

1 Gdn r, ~ m =   ^ = 0.2 
/acc C2 L51 M© s 1 (69) 

This estimate is of course no longer relevant if the main energy 
reservoir powering the burst is the rotational energy of the black 
hole, which can be extracted by the Blandford-Znajek effect 
(Blandford & Znajek 1977). 

Taking into such high-mass fluxes we have considered the 
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following values of AWin: 0.001, 0.005, 0.01, 0.02 and 0.04 so that 
the mass flux of our initial models in the stationary regime spans 
~0.03-30Mos ^ From all the above considerations we have 
prepared eight initial models which are summarized in Table 3. 

6.4 Results 

Each of our eight initial models is evolved twice: in the first series 
of runs we keep constant the mass of the black hole while in the 
second set of evolutions such mass is allowed to increase according 
to the law specified in the preceding section, equations (67) and 
(68). For the first type of runs the mass flux rapidly reaches a 
stationary regime (like in the models discussed in Section 5) which 
can be maintained for as long as desired. In practice the final time 
corresponds to many orbital periods of the disc. The mass flux at 
this stage has the value reported as mstat in Table 3. On the other 
hand, when the mass of the black hole increases (second series of 
runs), the time evolution of the system changes dramatically and 
the runaway instability appears. 

The dramatic differences between both series of simulations are 
depicted in Figs 8-11. Figs 8 and 9 show the time evolution of the 
mass accretion rate for models (la) to (4a) and (lb) to (3b) plus 
(1c), respectively. They include, both, the stationary and the 
unstable cases. The overall behaviour found in both figures is 
similar despite the existing different mass ratio between the black 
hole and the disc, 1 in all curves of Fig. 8 and 0.1 and 0.05 in those 
of Fig. 9. The different mass ratio only affects the mass flux and 
(weakly) the time in which the instability appears. So, in models 
labelled ‘b’ and ‘c’ the instability takes somewhat more time to 
appear than in the corresponding models ‘a’ with the same energy 
gap (see below). As a result, models labelled ‘b’ and ‘c’ need more 
computational time to be fully evolved. This fact sets important 
technical restrictions when trying to evolve models with smaller 
mass ratio for which neglecting the disc self-gravity would be more 
justified. Short-term evolutions of a model with a 0.01 disc-to-hole 
mass ratio show that the instability is indeed present but simply 
takes longer to grow. 

In Figs 8 and 9 we see that at early times the evolution of the 
mass flux for each pair of models is exactly the same, irrespective 
of the increase of the black hole mass being taken into account or 
not. However, whereas the models with a constant black hole mass 
reach a quasi-stationary regime with a constant mass flux, the 
corresponding mass accretion rate for those models with an 
increasing black hole mass goes on increasing after having reached 
the ‘stationary’ value. Furthermore, the time derivative of the mass 
flux also increases, which implies that the mass flux diverges 
rapidly. For all unstable models computed the mass flux is already 
several orders of magnitude larger than the stationary value when 
the calculation is stopped, [four orders of magnitude for Model 
la(!), see Fig. 8]. The divergence found in the mass accretion rate 
is a clear manifestation of the runaway instability at work, which 
leads ultimately to the complete destruction of the disc. 

In Figs 10 and 11 we plot the time-evolution of the black hole 
mass and the disc mass for the same set of models displayed in Figs 
8 and 9, respectively. The sudden loss of the mass of the disc at late 
times is reflected on the corresponding rapid increase of the mass 
of the black hole. As an example, for Model (2a), at t ~ 40 iorb the 
black hole has almost doubled its mass (MBh ~ 4.7 M©) and, 
correspondingly, the mass of the disc has decreased from 2.5 M0 to 
roughly 0.3 M0. Note that since models ‘b’ and ‘c’ have a much 
smaller disc mass than models ‘a’ the growth of the black hole 
mass in Fig. 11 is not as clearly visible as in Fig. 10. 

Figure 8. Time-evolution of the mass flux for models (la) to (4a) of Table 3. 
The solid lines correspond to evolutions in which the black hole mass 
increases with time according to the procedure explained in Section 6.2. For 
comparison, the mass flux in the stationary regime (when the mass of the 
black hole is kept constant) is also plotted using dashed lines. As expected, 
for a black hole of growing mass the accretion process becomes rapidly 
unstable. Notice how the mass flux diverges. 

t / krb 

Figure 9. Time evolution of the mass flux for models (lb) to (3b) and model 
(1c) of Table 3. As in Fig. 8, the solid lines correspond to evolutions in 
which the black hole mass increases with time according to the procedure 
explained in Section 6.2 and the dashed lines correspond to evolutions in 
which the mass of the black hole is kept constant. As expected, for a black 
hole of growing mass the accretion process becomes rapidly unstable. 
Notice how the mass flux diverges. 

The morphology changes that the unstable system undergoes are 
shown in Fig. 12 for a representative case (Model 3a). The 
evolution is qualitatively similar for all models. In this figure we 
show eight snapshots of the time-evolution from i = 0 to 
t= 11.8/orb• The variable plotted in the figure is the rest-mass 
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Figure 10. Time evolution of the mass of the black hole and of the mass of 
the disc for models (la) to (4a) listed in Table 3. The sudden appearance of 
the instability is noticeable. The increase of the black hole mass is directly 
associated with the corresponding decrease in the mass of the disc. 

density. The contour levels are linearly spaced with Ap = 0.1p[?, 
where p[? is the maximum value of the density at the centre of the 
initial disc. In Fig. 12 one can clearly follow the transition from a 
quasi-stationary accretion regime (panels 1 to 5) to the rapid 
development of the runaway instability (panels 6 to 8). At 
t = 11.80/orb? the disc has almost entirely disappeared inside the 
black hole whose size has noticeably grown. From the numerical 
point of view, and as already pointed out in Section 5 when 
describing stationary models, the flow solution remains consider- 
ably smooth even though the evolution is now dynamic. The 
equatorial plane symmetry is maintained during the whole 
evolution with no sign of numerical asymmetries as well as no 
vortices appearing inside the disc. 

Correspondingly, Fig. 13 shows the velocity field for model (3a) 
dX t = lO.VOiorb, associated with snapshot (7) in Fig. 12). This 
figure shows that the disc is falling radially on to the black hole 
with no signs of vortices and circulation patterns developing. 

An interesting information which our hydrodynamical simu- 
lations provide is the time-scale of the instability imn. We estimate 
this time-scale as the time it takes for half of the mass of the disc to 
fall into the hole. The values of £run obtained for our 8 models are 
given in the last column of Table 3. Such values span the interval 
~3.8-140iorb, which corresponds to very small durations (—6- 
300 ms). To check the quality of our definition of trnn we have 
performed the following test: for the four models of series ‘a’ we 
have carried out additional simulations in which the mass of the 
black hole starts to increase only once the stationary regime has 
been reached at time t — to. The corresponding evolution of the 
mass flux in case (4a), for which to — 1.9t0^, is plotted in Fig. 14. 
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Figure 11. Time evolution of the mass of the black hole and of the mass of 
the disc for models (lb) to (3b) and model (1c) of Table 3. Since the mass of 
the disc is now much smaller than in models labelled ‘a’ the growth of the 
black hole mass is not as clearly visible as in Fig. 10. The sudden decrease 
of the mass of the disc is noticeable, however. 

To compare more easily the time-scale associated with the runaway 
instability in the two cases, we have plotted in Fig. 15 the evolution 
of the mass flux as a function oî t — to. Again we see that in all 
cases the runaway instability appears immediately resulting in the 
rapid disappearance of the disc. However the precise comparison 
between our usual series of runs (where to = 0) and the modified 
ones leads to the conclusion that the time-scale of the runaway 
instability is a bit overestimated in the first case. The new values 
of the time-scale for series ‘a’ are reported in the last column of 
Table 3. 

In Fig. 16 we plot the time-scale tmn as a function of the mass 
flux in the stationary regime mstat. To be able to derive an empirical 
law for the time-scale of the instability one should consider a much 
larger sample of models. Nevertheless, two clear tendencies can 
already be extracted from this figure: (i) the time-scale depends 
weakly on the disc-to-hole mass ratio; (ii) the runaway instability 
occurs faster when the initial mass flux (stationary value) is larger, 
following approximatively frun oc m With the value of a = 0.9 
obtained for series ‘a’ (where we have used the result of the 
modified runs to get a more accurate estimate of irun), we can infer 
that, for all cases, the disc is destroyed in a duration never 
exceeding Is for a large range of accretion mass fluxes, 
mstat ^ 10“3MO S“1. 

7 CONCLUSIONS 

We have presented results from a numerical study of the runaway 
instability of thick discs around black holes. In this study we have 
carried out a comprehensive set of time-dependent simulations 
aimed at exploring the appearance of the instability. In order to do 
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Figure 12. Time evolution of the unstable model (3a): contour levels of the rest-mass density p plotted at irregular times from t = Oto t = 11.80iorb once the 
disc has almost been entirely destroyed. The density levels are linearly spaced with Ap = 0.1p¡?. The density p¡? takes the value at the centre of the initial disc 
(marked by a dot in panel (1). The most exterior contour corresponds to p = 0.1p^ax. The entire disc is filled in grey colour. From panels (1) to (3) the disc is 
very close to a stationary regime and it is almost not evolving. The runaway instability develops from panels (4) to (8), most noticeable in the last three panels 
from time t = 9.47torb tot = 11.80forb. The increase in the central density and the infall of the disc to the black hole are well visible, as well as the associated 
growth of the black hole. 

so we have used a fully relativistic, axisymmetric hydrodynamics 
code. The general relativistic hydrodynamic equations have been 
formulated as a first-order, flux-conservative hyperbolic system 
and solved using a suitable Godunov-type scheme. Among the 
simplifying conditions we have assumed a constant angular 
momentum disc around a Schwarzschild (nonrotating) black hole. 
The self-gravity of the disc has been neglected and the evolution of 
the central black hole has been assumed to be that of a sequence of 
exact Schwarzschild black holes of varying mass. 

We have found that by allowing the mass of the black hole to 
grow the runaway instability appears on a dynamical time-scale. 
The mass flux diverges and the disc entirely falls into the hole in a 
few orbital periods (1 —► 100). Therefore, the appearance of the 
runaway instability in constant angular momentum discs found in 
our simulations is in complete agreement with previous estimates 
from stationary models (Abramowicz et al. 1983; Nishida et al. 
1996). Our simulations provide the first estimation of the time- 
scale associated with the runaway instability. For a black hole of 
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Figure 13. Unstable model (3a): velocity field at f = 10.70?orb 
(corresponding to snapshot 7 in Fig. 12). The arrows are proportional to 
v1 and are plotted only in the region where p ^ O.lpj^. 

t / u 
Figure 14. Time evolution of the mass flux for model (4a) of Table 3. As in 
Fig. 8, the dashed line corresponds to the case where the mass of the black 
hole is kept constant whereas the thin solid line corresponds to the case 
where the mass of the black hole increases (from i = 0). In addition, the 
thick solid line corresponds to a third case in which the mass of the black 
hole starts to increase only at time t0 = 7.9t0rb (indicated by a vertical 
arrow), i.e. once the mass flux has reached its ‘stationary value’. In this case 
the instability shows up immediately. However, the time-scale is the same 
than in the previous run (thin solid line; notice the logarithmic scale for i)> 

2.5 Mq and disc-to-hole mass ratios between 1 and 0.05 this time- 
scale never exceeds 1 s for a large range of mass fluxes and it is 
typically about 50 ms. We have found that the dependence of the 
time-scale on the disc-to-hole mass ratio is weak and that the 
runaway instability occurs faster the larger the initial mass flux 
(stationary regime) from the disc to the black hole is. 

We note that our study has been restricted to a polytropic gas, 
with a particular choice of k and y corresponding to a gas of 
degenerate relativistic electrons. We are aware of the over- 
simplification of such an EoS. However, the work of Nishida & 
Eriguchi (1996) has shown that the conclusion of Nishida et al. 
(1996) (where stationary models were built in a fully relativistic 
computation including the self-gravity of the disc) is not modified 

Figure 15. Time-evolution of the mass flux as a function of f — ?o for 
models (la) to (4a) of Table 3, where i0 is the time at which the mass of the 
black hole starts to increase. As in Fig. 8, the dashed lines correspond to the 
case where the mass of the black hole is kept constant whereas the thin solid 
lines correspond to the case where the mass of the black hole increases 
(to = 0). The thick solid lines show the evolution when the mass of the 
black hole starts to increase only from time t0, equal to 1000, 200, 24 and 
7.9iorb for models (la) to (4a) respectively, i.e. once the mass flux has 
reached its ‘stationary value’. In such case, the runaway instability appears 
earlier, the effect being more important for models (la) and (2a). 

"W (Mb/s) 
Figure 16. The time-scale of the runaway instability t^n (as defined in 
Section 6.4) is plotted as a function of the mass flux mstat in the ‘stationary 
regime’ for each of the models listed in Table 3. For models (la) to (4a) 
(Md/MBh = 1-X we use the more accurate estimate of obtained when 
the mass of the black hole starts to increase once the stationary regime has 
been reached. The dashed line corresponds to the best-fitting tmn oc for 
this series. We find a = 0.9. 

when using a realistic EoS: constant angular momentum discs are 
unstable. Therefore, we believe that our results would not be 
strongly modified if we were using a more elaborate description of 
the matter. 
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To close our investigation we notice that there are four important 
limitations in our study: (i) it is difficult to check the validity of our 
simple-minded approach to incorporate the effect of the black hole 
mass increase; (ii) the self-gravity of the disc has not been 
included. Studies based on sequences of equilibrium configurations 
have shown that it favours the instability (Nishida et al. 1996; 
Masuda et al. 1998); (iii) the rotation of the black hole and the 
possible increase of its spin arising from the transfer of angular 
momentum (associated with the transfer of mass) is not yet 
included in our current model; (iv) the case of a more realistic 
distribution of angular momentum in the disc (i.e. increasing 
outwards) has also not been considered yet. 

The first two points in the above list cannot be improved without 
solving the coupled system of Einstein and hydrodynamic 
equations on black hole space-times. Despite important advances 
in the field of numerical relativity this task is still challenging. The 
other items, however, can be more easily improved and work in this 
direction will be presented in subsequent investigations. In 
particular, we will present in a forthcoming paper the effect of a 
non-constant angular momentum in the disc. Such a distribution of 
angular momentum is believed to suppress the runaway instability 
according to previous studies in a stationary framework (e.g. 
Daigne & Mochkovitch (1997)). This last point - and the very 
existence of the runaway instability itself - is very important in the 
context of the most discussed scenario for GRBs. In the standard 
model the central engine responsible for the highly energetic 
emission is a thick disc orbiting a stellar mass black hole, with a 
high accretion mass flux. The lifetime of this system must 
necessarily be larger than a few seconds to explain the observed 
durations of the bursts. Our results show that it would be absolutely 
excluded if the runaway instability occurs. 
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