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ABSTRACT

We reconsider here the computation of the long exposure AO PSF based on an ana-
lytical model of the spatial power spectrum of the residual phase (Rigaut et al. 1998).
While this approach is not as accurate as others, it is much less demanding in terms of
computations, and allows us to compute the AO PSF with a useful accuracy and within
a reasonable time. It allows to compute AO corrected PSFs of giant telescopes within
minutes, where other methods would take hours and days and would require parallel
computations. We present a bi-dimensional formulation of the method, as well as an
original interpretation of the wings of the AO PSF in term of the power spectrum of
the residual phase. This leads to a very powerful tool to assess the effect of the differ-
ent AO parameters on the different parts of the AO PSF. We present several examples
of use of this tool and show that for giant telescopes (larger than 20 meters), the rela-
tionship between the residual phase spectrum and the PSF wings is much more critical
than for a 4-10 meter class telescope, where these effects are hidden by the diffraction
patterns.

1. INTRODUCTION

Several simulations tools have been developed to simulate the performance of adaptive optics system for the current
telescopes. These methods rely on the computation of many instantaneous PSFs and/or the numerical computations of
models that do not have any analytical solutions. These methods usually allow the user to set many different parameters
and many different effects can be included, leading to very realistic simulations. The problem is that these methods require
huge amounts of computation times and can not be scaled to the next generation of giant telescopes (D > 20m) without
requiring state of the art parallel computers. This complexity is related to the size of the arrays involved in the simulation,
to represent the wave-front, the image, etc. Indeed, for the image, small pixels are required to get a good representation
of the diffraction limited core, but large field of view are also desirable to obtain a good representation of the PSF wings.
For example, the AO-PSF of a 30 m telescope in the V-band for a 0.5 asec seeing requires a pixel grid of size at least
2000x2000 in order to preserve the Nyquist sampling.

One simulation method that overcome this explosion in complexity for giant telescopes is the one initially proposed
by Rigaut et. al. It is based on a analytical expression of the power spectrum of the residual phase that includes all the first
order imperfections of the AO system such as fitting error, aliasing, WFS noise, time delay and anisoplanatism. Then the
main computational complexity lies in two fast Fourier transforms that are required to compute the long exposure PSF on
the desired pixel grid. This method have the same degree of reality than the other methods mentioned above. Still there
is clearly many applications where a slightly reduced accuracy is acceptable, especially in the early stages of a system
design, when the basic parameters need to be explored in order to dimension the systems, e.g. compute the Strehl ratio as
a function of number of actuators, magnitude of the guide source, etc. In that case, a simulation algorithm able to compute
the AO-PSF in minutes rather than hours, days or even weeks is invaluable.

In this paper, we revisit the method from Rigaut et al. It is summarized in section 2 and we also propose an improved
bi-dimensional formulation and we apply it to the case of giant telescope. Several examples are given in section 3. As
a very important by product of this method, we are able to derive in section 4 a very simple and intuitive relationship
between the wings of the AO PSF and the power spectrum of the residual phase: they are basically the same, except that
the latter is blurred by the diffraction pattern of the telescope aperture, an effect that is dramatically reduced in the case of
giant telescope. Several concluding remarks are presented in section 5.
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2. AN ANALYTICAL MODEL FOR THE PHASE POWER SPECTRUM
2.1. From the phase power spectrum to the AO-PSF

Suppose for the moment that the power spectrum W, of the corrected phase is known. We recall that the W, is defined
by the mean of the phase Fourier transform square norm W, (f,) = (|¢(f,)|?) where the mean is taken over an infinite
number of realizations of the corrected turbulent phase, and f,, is the spatial frequency vector in the pupil plane. From the
phase power spectrum, it is possible to calculate the phase structure function (Tatarski, 1961), defined as the mean square
difference of the phase between two points separated by a distance vector p

D) = ([tr + o) = o(r)]*) = [[[1 = costenty )] W, (5 2, 54)

The optical transfer function (OTF)!l of the system composed by the atmosphere, the telescope and the adaptive optics
bonette is given by the product of the telescopic OTF (noted T') and a function B,, which is defined as the adaptive optics
system OTF. Now, it is known (Conan, 1995) that B,, is given, with a good level of accuracy, by

Boo(fi) = exp [~ Dy, (Mfi) /2] (85)

where f; is now the image plane angular frequency vector, which must not be confused with f,, and X is the imaging
wavelength.

To conclude, the AO-PSF can be calculated taking the inverse Fourier transform of the product T'- B,,, where T will
depend only on the telescope design, and B, on the phase power spectrum, through the relations 84 and 85.

2.2. The phase power spectrum model

We shall give now the principal steps for the derivation of a model of the phase power spectrum. We start with the adaptive
optics fundamental equation

we(r,0,t) = p(r,0,t) — @(r,0,t) (86)

where (7,0, ) is the corrected phase at position 7 in the pupil at time ¢, looking in a direction @ relative to the optical
axis, and ¢(r, 0, t) is the estimated phase from an on-axis natural guide star (NGS), which can be written

1 +At/2
P(r,0,t) = ’R{M [— / o(r, 0,7+t —tg) dT] } + R{v(r,t)} (87)
At J_aes2

the integral is over the wave-front sensor (WFS) integration time At, t4 = At/2 + t,. is the mean time delay between
the phase measurement and the correction application, where ¢, is the time for reading the WFS and calculating the
correction. M is the WES operator which is assumed linear. For a curvature sensing (CS) WFS, M corresponds to the
measurement of the wave-front curvature, and for a Shack-Hartmann (SH) WES, it corresponds to the measurement of
the wave-front gradient, over the pupil. v(r,t) is the noise of the WFS measurement. Finally, R is the reconstructor
operator, which gives the estimated phase based on the WFS measurement. The last term of equation 87 is the WFS noise
contribution to the reconstructed phase.

In the following, we shall restrict our analysis to the SH-WFS case. The lenslet array is supposedly composed of
square lenslets with side length A, which correspond also to the actuator pitch on the deformable mirror (DM) as seen in
the entrance pupil plane. The DM is considered as a perfect low-pass filter, able to corrected for any perturbation of the
phase below the cutting frequency f. = 1/2A. Each lenslet has its associated 4-quadrant detector, consisting of 4 pixels
groups on a CCD array. The operators M and R are two-dimensional operators, each component being associated with
one component of the phase gradient. The measure is written as a convolution of the phase gradient with the rectangular
function, associated with the mean of the phase slope over each lenslet, times the sampling function, associated with the
sampling of the later quantity over the lenslet array

Mlp(r,t)] = [Vo(r,t) *I(r/A)] - LL(r/A) (88)

The reconstructor is simply given by the inverse of M, but without the sampling term III.

Now, let us define B as any infinite orthogonal basis of continuous, integrable functions defined in the pupil, and let
us write £ as the vectorial space associated with this basis. Afterwards, let us define &) as the sub-space of £ associated

Il which is defined by the bi-dimensional Fourier transform of the system PSF
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with the eigen functions of the DM, and £, with its orthogonal space. As we consider the DM as a perfect spatial filter
below the frequency f., £ is associated with all the functions containing spatial frequencies below f., and £, with all
the other functions. Now, we split the incoming phase in the pupil over this two sub-spaces :

30(7',0,1') = QO”(T,B, t) +Q0L(r7 07 t) (89)

therefore, (), is associated with the components of the phase that can be corrected by the DM, or low frequency component,
and ¢ with the component that the DM cannot correct, or high frequency component. Note that we shall suppose
thereafter that the DM is able to correct the phase independently of the direction. As a consequence, the low frequency
component will be limited to the circular domain |f,| < f..

At this point, we have everything in hand to construct the phase spatial power spectrum. Nevertheless, we shall not
give the detailed calculation here, first because it is partly given in Rigaut et al., and secondly because space is restricted.
Rather, we shall explain the approach and give the final result.

Using equations 86, 87 and 89 allows us to decompose the compensated phase into the five classical terms,

(pC(T707 t) = (PL("', 07t) + [SOH(T’ 07 t) - QO”(T,O, t)} aniso
1 +At/2
+ |:(p”(’l',0,t) —R{M [E/ <P|\("'70a7'+t—td) dT] }]
—At/2 servo-lag
1 +AL/2
- R{M [E / ‘P.\_("UO,T +t-— td) dT] } - R{V(T’t)}noise (90)
—AL/2 alias

@1 is the high frequency component; the anisoplanatism component comes from the fact that the system tries to correct
the phase in the direction 6 based on a phase measurement on axis; the servo-lag component is related to the temporal
averaging of the phase during the measurement, plus the unavoidable delay between the later and the application of the
correction; the aliasing component is simply related to the fact that the phase fluctuations at spatial frequencies higher
than f. are seen, by the WFS, as fluctuations in the O to f, domain; finally, the noise component is related to the WFS
noise (photon and read noise). Note that while the first term is obviously defined in the high frequency domain, the others
are defined only for the low frequency domain f, < f..

Taking the Fourier Transform of equation 90, and making the assumption that the different terms are not correlated,
we can write the compensated phase power spectrum as the sum of the five terms power spectrums

We(fp,0) = Wi (f,) + W™ (£, 0) + Wil(Fy) + Wil (fp) + W5° () ©On
the expressions of each we are going to give below.

Model of the turbulent atmosphere

We shall suppose that the turbulent atmosphere is composed of N independent thin turbulent layers at altitudes h;, each
with its proper r§ value, and that each of these layers is blowed across the optical beam at a velocity v;. We shall also

suppose that the turbulent regime is Kolmogorov fully developed, i.e. without any outer or inner scale. Then, the power

spectrum of the uncorrected phase is given by W3 (f,) = 0.0229 5/3 fr 173,

High frequency spectrum

This term is simply given by the turbulent phase power spectrum above the cutting frequency f., i.e.

ng (fp) = W;tm(fp) for |fp| > fc, O otherwise 92)

Anisoplanatism spectrum

Writing the tota}vphase in the pupil as the sum of the phase delay in each layers
o(r,0,t) = >, ¢i(r + h;0,0,t), we found for the contribution of the anisoplanatism term

N
W™ (f,) = 0.0458 f,,—“/32r0j§’/3 [1 - cos (27hif,-0)] for |f,| < e (93)

=1
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Servo-lag spectrum

Using firstly the fact that in each layer p;(r,7 +t — t4) = pi(r — (7 — tq)vi,t), secondly the fact that we suppose
the operators M and R linear so as they can commute with the sum over the integration time, and thirdly that the
reconstructor is perfectly able to reconstruct the low frequency phase component based on a perfect measurement, i.e.
writing R{M([p|]} = ¢, we found, where sinc(z) = sin(nz)/mz,

N
W;l(f,,) = 0.0229 fp_‘“/3 Z ’"()_,?/3 [1—2cos (2mtafp-vi) sinc(Atf,-v;) + sinCZ(Atf,,-v,-)] for |fpl < fe (94)

i=1

Aliasing spectrum

At this point of our work, we have momentary decided to made a crude approximation for the aliased spectrum. First, we
have ignored the contribution of the integration time, and second, we have made the assumption that the bi-dimensional
spectrum can be approximated at each direction in the frequency plane by the value of the mono-dimensional case, which
is given in the paper of Rigaut et al. We found then

N oo
W (fp) = 00220 3" rg PP [(fy + 2nf) T2 + (fy — 2nf) T1V3)] for |fy| < fe (95)

i=1 n=1

it is clear that this expression will not give accurate results when used with long integration time, but the effect of the later
is of second order relative to the effect of the aliasing of the high frequency component of the phase spectrum into the low
frequency domain. We hope to give a more complete expression in a future version of this work.

Noise spectrum

The power spectrum of the noise is simply given by the product of the reconstructor Fourier transform square norm and
. : . 5127~
the power spectrum of the noise on the angle of arrival measurement over each lenslet, i.e. W7° = |’R| (7[2). It can be
) 52 .
shown based on Rigaut et al. paper that ”R| writes

}ﬁ|2 = [fj sinc? (Afpe) sinc? (Afpy)] -t (96)

<|17|2) is supposed to be a white spectrum inside the low frequency space, then is related to the variance of the measurement
by (|7|2) = 7 f202,,, where 02, is the square of the Noise Equivalent Angle, which can be found, for a 4-quadrant

detector, in Tyler and Fried (1982), for example, and is dependent on the full width at half maximum of the lenslet image
and of the total signal on noise ratio of the total photon fluxes in the detector. We shall not give these relations here.

3. SOME TEST RESULTS OF THE SIMULATED AO-PSF

To test the behavior of the simulated AO-PSF, we have choosen to study the evolution of the Strehl ratio versus some of
the main parameters of an usual AO system, for a moderate size telescope.

The parameters of the simulated AO-system are : telescope diameter 3.6 m, wavelength 1.6 um, seeing 0.5", Mauna
Kea turbulence vertical profiles, SH-WFS with 5 e/px read noise, magnitude 14 GO type NGS on axis, actuator pitch equal
to the 7o at 1.6 um, WFS integration time equal to the characteristic time life of the speckles at 1.6 pm, pure delay 0.1
ms.

3.1. Strehl ratio and number of actuators

With all the others parameters fixed, we have calculated the AO-PSF for various values of the number of actuators over the
telescope diameter. We find, as expected, that there exists an optimum number of actuators for a given NGS magnitude
(figure 1, left). Indeed, starting from few actuators, it is clear that increasing their number will increase the quality of the
correction. But after the Strehl reaches an optimum value, it starts to decrease, due to the decrease of the number photon
per lenslet (flux dilution), whose size is defined by the actuator pitch. Here, it is interesting to see that this optimal value
is close to the ratio D /ro(A), a rule-of-thumb value to get a good correction of the phase.

204

© ESO ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2002ESOC...58..201J

=h

e

SaCr 2. b8

wh
o
[

L

N

0.40 T L A e T 0.60 T i T
[ ,e/\\ j A ]
i / T ]

Strehl ratio

Strehl ratio
o
N
o
L e e e
—o
L
I NENEEE NS PN S al

i |

/ ~
1 —— ]
0001 | TR c.00L 1 I B |

Nact/Diem sep ongle osec

Figure 1. Left figure, Strehl ratio versus the number of actuators across the pupil diameter. The vertical line shows the
D/rq = 6.7 value for the simulation. Right figure, Strehl ratio and off-axis angle position of the NGS. Upper curve is for
a vertical profile of C% equal to the mean Mauna Kea profile, lower curve is for the same profile, but with the altitudes
associated with the layers increased by a factor of two. Vertical line shows the value of the isoplanatic angle, following
the equation given below.

3.2. Strehl ratio, anisoplanatism and layers mean altitude

Here, we have set the number of actuators to the D /rg value, and we have progressively moved the NGS away from the
optical axis, while imaging an on-axis point source. In a second experiment, we have done the same thing but increasing
the altitude of the turbulence layers by a factor two (figure 1, right). We find a decrease of the Strehl with the NGS off-
axis position which is consistent with the value of the anisoplanatism angle defined by the usual expression 0.314 ro/(h)
where (h) is the mean altitude of the turbulent layers (Beckers, 1993). Beside, when we increase the altitude of all the
layers by a given factor, we see that the angle for the Strehl to reach a certain value is decrease by the same factor, here a
factor of two.

3.3. Strehl ratio and NGS magnitude

Here, with the NGS on-axis, we examine the effect of increasing the NGS magnitude, i.e. increasing the WFS noise. The
decrease of the Strehl show a classical behavior, i.e. an almost constant value below a certain limit, and a rapid decrease
to the non-AO Strehl above this limit, which is, in our simulation, somewhere around the 15th magnitude (figure 2, left).

3.4. Strehl ratio, integration time and WFS read noise

As a last example, we have choosen to examine the effect of the integration time, first without WFS read noise, then with
a read noise of 5 e/px (figure 2, right). We find, as expected, that there exists an optimum value of the integration time,
which results from the balancing of the effect of the servo-lag and the effect of the noise. Here, it is interesting to see
that the optimal value is near the typical time-life of the speckles, which is given by 0.314 ro/(V') where (V') is the mean
velocity of the turbulent layers (Beckers, 1993). Beside, we can see that increasing the WFS read noise has a strong effect
on the Strehl, but only for the shortest integration times where the WFES SNR is significantly degraded. At the lowest
value of At, the effect of the noise on the Strehl ratio is small. The main contributor then is the servo-lag error, which is
independent of the read noise.

4. THE CORRECTED PHASE POWER SPECTRUM AND THE AO-PSF WINGS

We present now the second part of our work, related to the interpretation of the effect of the phase correction on the
AO-PSE.
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Figure 2. Left figure, Strehl ratio versus NGS magnitude. The vertical line shows where the WFS SNR is less than 2.
Right figure, Strehl ratio and integration time. The vertical line shows the value of the speckles life time.

The point spread function S of any optical system is given by the square modulus of the Fourier transform of the
phasor U,(7) = exp[ip(r)] in the optical system pupil:

2
S(@) ~ |0, (fy) = ] [[ e et o7
P

The position z in the focal plane is related to the pupil spatial frequency f, by £ = F\f,, where F is the focal length.
In other terms, the PSF at an angular position & = x/F can be seen as the power spectrum of the phasor at the pupil
frequency f, = a/A. This interpretation is known as the angular spectrum interpretation (Goodman, 1996).

Now, let us make a useful approximation. Suppose the AO is effective enough so as the residual phase variance is
small, e.g. less than 17ad?. In this case, the phasor can be well approximated by exp (i) & 1 + i@ — 2 /2. Using this
approximation, it can be shown that the instantaneous PSF may be approximated by:

S~ P +21m{P- (Px3)} —Re{P- (Px3x9)} +|Pro[ 98)

where P is the Fourier transform of the pupil transmittance (1 in the pupil, O outside), and ¢ is the Fourier transform of
the instantaneous phase. Note that it is necessary to keep the second order term in the phasor approximation above to
take into account all the 4 order terms in the development of equation 98. Now, the long exposure PSF is defined by the
temporal mean of S. Taking into account that () = 0 and that the pupil transmittance is even for usual telescopes, we
have:

(S)~ |B[* = P- (PxRe{(@*3)}) +(|P*|") 99)

We consider now the case of an infinite telescope, in order to get the contribution of the corrugated phase only. The
pupil function is then replaced by a Dirac distribution §. As 6-Re{(@ * @)} has non zero values only at f, =0, we find that
this term is equal to § -af,, where o2 is the residual phase variance. Beside, the last term of equation 99 turns to (|3|?),
which is nothing else than the power spectrum of the residual phase W, that we have calculated in the first part on this
paper. Then, recalling the angular spectrum interpretation, we have:

(S5)(a) ~ [8*(a/A) — 6(ee/N)-02] .. + W0t/ A)wings (100)

core

where the AO-PSF is now separated into a Dirac’s core, and phase power spectrum wings. In other words, we assert here
that the wings of the AO-PSF for a (very) large telescope at an angular position ¢, is given, in a first approximation, by
the power spectrum of the residual phase at the pupil frequency f, = a/A.

In figure 3, we give an example of a phase power spectrum calculated from equations 91 to 96, compared to the
infinite telescope case and a finite (20 m) telescope case AO-PSF. The parameters for the simulation are : Mauna Kea
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like turbulence profiles, magnitude 0 NGS, A = 1.65 um, 1 actuator per r¢(1.65 um), i.e. 22 actuators over the 20 m
diameter.

Clearly, the approximation is very good for assessing the AO-PSF wings, even for the finite size telescope. Beside,
we see that the transition in the spectrum between the low to the high frequency domain, which is given by the cut-
off frequency of the DM f. = 1/2A, allows us to predict an angular transition from the diffraction limited core to the
atmospheric residual halo at a value a; = A f. =\/2A. We believe that such a strong transition has not be seen on existing
AO systems simply because it was buried in the diffraction pattern of the telescope aperture. Indeed, for this transition to
be seen, a; must be larger than the radius of the first diffraction rings, i.e. D/A 3> 5. This may be the case for the AO
systems on the new generation 10 m class telescopes AO systems, but probably not for the first generation AO systems
(PUEO, ADONIS, ...).

Thanks to this approach, we are now able to predict the effect of any kind of phase correction on the AO-PSF**. In
particular, since the anisoplanatism, noise and servo-lag contribute to the low frequency part of the spectrum, we can
predict that all that affect these components will affect the central part of the AO-PSF. In contrast, the WFES aliasing error
will affect more the external parts of the AO-PSF, but always inside the a < a; region.

5. CONCLUSIONS

We have revisited the method proposed by Rigaut et al. (1998) and implemented it with a more accurate bi-dimensional
formulation. The major advantage of this approach is to enable the computation of the AO corrected long exposure PSFE,
without requiring a huge amounts of computation and still preserving a good accuracy. This advantage becomes critical
for the next generation of giant telescopes, where the computation can be performed in a few minutes instead of hours or
days. We believe this tool is very useful for a first assessment of the performance of an AO system, as well as for the quick
generation of AO corrected PSF, e.g. for simulating science images. Tests show that the model has a consistent behavior.
Some improvements are nevertheless possible, the most important could be a more accurate treatment on the aliasing; it
should be possible to make a curvature sensing version of this model, too. Finally, it will be useful to include more than
one DM and WFS in the spectrum, making this model able to predict the MCAO AO-PSF as well.

We have also shown that for giant telescopes and a good level of AO correction, the shape of the PSF is given by the
power spectrum of the residual phase. This interpretation is a very powerful tool to understand and predict the effect of
the observing conditions and of the characteristics of the AO system in the image plane.
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Figure 3. Upper left, phase power spectrum. What we see is essentially the high frequency part (above fe), and a low
frequency part dominated by the aliasing. Upper right, AO-PSF for an infinite telescope, associated with the later phase
power spectrum. Lower left, same, but for a 20 m telescope. Lower right, super-imposition of the three figures.
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