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Abstract. In this paper a new mathematical approach for measuring
the main sequence spread based on the interval analysis is presented. This
new approach takes into account the error bars on the observations.

1. The Astrophysical problem

It has long been suggested that the analysis of the main sequence spread, in the
HR diagram, for low mass stars can give indications about the value of AY/AZ,
the relative helium to heavier elements enrichment.

Perrin et al. (1977) was the first to perform a quantitative determination of
AY/AZ based in the assumption that this spread is mainly due to the chemical
compositon variations. They found AY/AZ = 5 in the solar neighbourhood
and show that a single theoretical main sequence could fit the best observational
sample.

Twenty years later Fernandes et al. (1996), using the same method of
analysis of main sequence spread and a more accurate observational sample of
nearby Population I stars, showed that a single theoretical ZAMS could not
explain the observed spread. Nevertheless they used ground base parallaxes. So
it still remains a considerably large error on M,. This result was confirmed
later using HIPPARCOS data (Pagel & Portinary 1998).

The determination of AY/AZ are performed with the only preoccupation
to constraint the observational points between the two ZAMS or isochrones,
representing the extreme values on metallicity, [Fe/H]. No detailed discussion
is currently done about the error on the position of the ZAMS or isochrones
induced by observational error on Ty or M.

The aim of this paper is to present a new mathematical approach for mea-
suring the main sequence spread based on the interval analysis, which takes
into account the error bars on the observations. Attending to our main goal,
in section 2 we consider several concepts from the interval analysis and also the
interval Legendre polynomial introduced in Patricio et al. (2001). The numer-
ical results are presented in section 3 using data from Lebreton et al. (1999).
The diagrams are computed using the interval polynomials studied in Patricio
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et al. (2001) but also piecewise version of those polynomials. In order to ob-
tain a robust envelop of all data an extension of the mentioned polynomials is
introduced. Finally an analysis of the results is presented in section 4.

2. The Mathematical Solution

2.1. Basic definitions
Let us start by introducing some basic definitions.
Definition 1 A real interval polynomial with degree n is defined by Pp(z) =

=0 A,z with Ag =1, A, = [aé—l),agQ)] CR,j=1,...,n.

Definition 2 Let P,(x) be a real interval polynomial. The graph of P,(z) is
glven by
G(Pn) = {(:f',g) e R*: Elpn(l‘) € Pn(x)ag :pn(-%)}

The graph of an interval polynomial can be given using the following real
polynomials:

n n
q+(z) = Zqﬂajxnﬂy ri(z) = ZH,jﬁn_j, q-(z)
=0 3=0

n n
= Z g-, 2" r_(z) = Z r_ iz
=0 =0

. 2 1) .
withgio=rio=qg-po=r_o0=1,¢+;, = a§ ), Ty, = ag- ),] =1,...,n, and
q a§2), ifn—jis even agl), if n —jis even
. = T_ =
7 o, ifn—jis odd J o\?, ifn—jis odd.

Lemma 1 Let P,(z) be a interval polynomial. The graph of P, verifies

G(Py) ={(z,y) € R®: (r4(z) <y < gy (z)ifr > 0) or(r_(z) <y < g_(z) ifz < 0)}.

2.2. The interval Legendre polynomials

Let us recall the interval Legendre polynomials and their properties studied in
Patricio et al. (2001).

Definition 3 For k € IN, let IL,, x(z) for n € IN, be defined by

2n+1x (ac) n
n+1 Tk n+1

]Ln+1,lc(l') - ]Ln—l,k(m)

with ILg x(z) = [1 — %, 1+ %] and ILy (z) =1 - %3 1+ %]x We call Iy, () the
interval Legendre polynomual.
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In the next result we establish some properties of the introduced interval
polynomials.

Theorem 1 1. The interval Legendre polynomial Iy, k() ts equal to the in-
terval polynomial obtained from the Legendre polynomial £,(x) considering
their coefficients multiplied by [1 — %, 1+ %]

2. The interval Legendre polynomials 1L, x(x),n € IN, satisfy:
(a) If n is even then

B —1) o 3 +1
0@ = Y a0+ EX) 1yt g (@) = a0+ T e,
7=0 7=0
= T), T_(x) = z), a; = (n+2).
and T+($)'“'q+( )v —( ) Q—( )’ 7 2n(2j)( +_])(% ])p
(b) If n is odd then
0210 = 22 a1+ S )T
ro(@) = 2,2 a5(1+ CP) (<1)* 0224 and r_(2) = g,.(2), - (2) =
ro(z), a; = (n+1+25)!
+ y g — !

2725 — DIEFE + O =)

2.3. The minimum square approximations

Let us consider the discrete set of data {(z;,Y;),s = 1,...,n} where z; € R,
i=1,...,n, is increasing and Y; = [y (1),%(2)] i=1,...,n, are compact real in-
tervals. In the sequel we introduced an interval minimum square approximation
of the last set.

We start by introducing a new set of discrete data {(Z;,7i),t = 1,...,2n}

defined by .’i‘gj = zf:g] 1 =%j, U2j = Yoj—1 =Y, for j =1,...,n.
Let E Z aj£;(z) be computed with the solution a}, j = 0,...,m, of the
minimization problem
n , & ,
(P) . I?JEERZ:I(% —Uzj))" = j;(yj — (z;))* with £(z Za] z), that
is, #(z) is the minimum square approximation for the set {(Z, yz),  =1,...,2n}.
Definition 4 Let 1L, x(z) be defined by o o ( Za L k(7)) with af,j =

0,...,m, the solution of the minimization problem (P) We call En,k(m) the
minimum square interval Legendre approzimation of degree n for the discrete
set {(z,Y;),1=1,...,n}.
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1 1 1 1 )
If in IL,, 4 (z) we replace [1 — 7 1+ E] by (1 — P 1+ ?] then a new inter-
1 2
val Legendre polynomial is obtained which we denote by IL, k, £, (z). This new
family of interval polynomials allow us to introduce En,kl,kz (z) as in definition
4.

Let us assume now that the nature of the set {(z;,Y;),i = 1,...,n} in-
duces a division of the initial set into several subsets and for each subset the
minimum square interval Legendre polynomial is computed. Collecting all the
minimum square interval Legendre polynomials, a piecewise version of the min-
imum square interval Legendre polynomial is obtained. We remark that the
piecewise minimum square interval Legendre polynomial can be discontinuous
and a continuous approximation for the initial set can be computed using for
instance interpolation.

3. Numerical Results

3.1. Observational sample

Following the sample I of Lebreton et al. (1999) we consider stars with metal-
licity ranging from -0.97 to 0.10, where individual values were based on detailed
spectra analysis with a typical error of 0.1 dex. The T.5 is from Alonso et al.
(1996) and the parallaxe is from HIPPARCOS. According to these criteria we
have 33 stars, certainly one of the best accurate sample ever plotted in a HR
diagram.

3.2. Results

The figures represents the observational HR Diagram plotted not using the clas-
sical astrophysics representation but the mathematical one: horizontal axis, in-
creasing from left to right; vertical axis, increasing from bottom to top.

In Figure la is plotted the minimum square interval Legendre polynomial
with degree 1 and k = 2 x 102, that is the graph of E1’2X102 (z). The graph
of the minimum square interval Legendre polynomial of degree two with k; =
4.5 x 103, ko = 10*, that is the graph of E1,4_5X103,104(m) is plotted in Figure
1b. In Figure 2a is plotted the graphs of the piecewise linear minimum square
interval Legendre polynomial computed with & = 4.5 x 10% (for the first branch)
k = 1.6 x 10?(for the second branch), ¥ = 1.7 x 10? (for the third branch).
Finally the piecewise linear minimum square interval Legendre polynomial with
ki = 5x 103, ky = 6.5 x 10%(for the first branch), k; = 6 x 102, ky = 8.5 x 10?(for
the second branch), k; = 1.7 x 10%, ky = 4.5 x 10%(for the third branch) is plotted .
in Figure 2b.

4. Discussion
The astrophysical interpretation of the results is non trivial. The higher part
of the diagram (My, higher than 6.2) shows quite a narrow band because the

sample includes only 4 stars in this region. On the other hand for the hot
region of the diagram (M, lower than 5.2), clearly other effects than chemical
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Figure 1.  (a) Left: Degree 1 (see text). (b) Right: Degree 2 (see text)
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Figure 2.  (a) Left: Degree 1 (see text). (b) Right: Degree 2 (see text)

composition as the evolution are already present. So the measurement of the
main sequence spread can only be done in the middle part of the diagram.

The best measurement is obtained between blue and superior red line in
Figure 6. For a fixed value of T,¢; we have at least AM;,, ~ 0.40. This is
typically 0.15 higher than the value found by the simply adjustment of the
observational sample using ZAMS or isochrones (see Lebreton et al. 1999).

A finer analysis must be performed and take into account important effects
in the hottest part of the HR diagram (evolution, rotation, overshooting, ...) in
order to obtain a correct value of the spread for most of the part of the diagram.
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