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AB S TRACT

Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as

core collapse, crust- and core-quakes or binary mergers, and could become detectable in

either gravitational waves or high-energy radiation. Here, we present a comprehensive study

of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars.

Initial stationary configurations are appropriately perturbed and are numerically evolved

using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-

independence of the gravitational field (Cowling approximation). The simulations are

performed using a high-resolution shock-capturing finite-difference scheme accurate enough

to maintain the initial rotation law for a large number of rotational periods, even for stars at

the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid

variables, we compute the frequencies of quasi-radial and non-radial modes with spherical

harmonic indices l ¼ 0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit

to the mass-shedding limit. The frequencies of the axisymmetric modes are affected

significantly by rotation only when the rotation rate exceeds about 50 per cent of the

maximum allowed. As expected, at large rotation rates, apparent mode crossings between

different modes appear. In addition to the above modes, several axisymmetric inertial modes

are also excited in our numerical evolutions.

Key words: hydrodynamics – relativity – methods: numerical – stars: neutron – stars:

oscillations – stars: rotation.

1 INTRODUCTION

The pulsations of rotating neutron stars are expected to be a source

of detectable gravitational waves. Additionally, their excitation

could become detectable by the emission of high-energy radiation.

In particular, axisymmetric oscillations can be excited in a number

of different astrophysical scenarios, namely: (i) after a core

collapse leading to a supernova explosion (see e.g. Mönchmeyer

et al. 1991; Zwerger & Müller 1997), (ii) during starquakes

induced by the secular spin-down of a pulsar, (iii) after a large

thermonuclear explosion in the crust of an accreting neutron star,

(iv) during a core-quake caused by a large phase transition to, for

example, strange quark matter (Cheng & Dai 1998) and (v) in the

delayed collapse of the merged object in a binary neutron star

merger (Ruffert, Janka & Schäfer 1996; Shibata & Uryu 2000).

The observational detection of such pulsations will yield valuable

information about the equation of state of relativistic stars (see

Kokkotas, Apostolatos & Andersson 2001; see also Kokkotas &

Schmidt 1999 for a recent review on oscillations of relativistic

stars).

Numerical simulations of some of these scenarios are available

and provide very detailed information of the dynamics of the

neutron star pulsations. In particular, the axisymmetric core-

collapse simulations of Mönchmeyer et al. (1991) and Zwerger &

Müller (1997) revealed that, after the collapse and bounce of an

iron core, the unshocked inner core (the proto-neutron star)

oscillates with varying volume (radial and quasi-radial) and surface

modes. The amplitude and frequency of these fluid modes (f and p

modes) was found to depend on the kinetic energy of the inner core

at bounce, the stiffness of the equation of state (EOS), and the

central and average densities of the inner core. These authors found

that the amplitude of the post-bounce oscillations is small for

spherical models, being strongly damped through the emission of

asymmetric pressure waves, in time-scales of the order of 1ms.

However, for rotating cores which bounce as a result of centrifugal
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forces at subnuclear densities, much larger amplitudes are achieved

(as large as 10 times the central density) and the damping time-

scale becomes comparable to the oscillation time-scale (@1ms).

Recently, Dimmelmeier, Font & Müller (2001) have developed a

code to study axisymmetric core collapse in general relativity using

the conformally flat metric approach (Wilson, Mathews &

Marronetti 1996). This code is currently being applied to collapse

some of the initial models of Zwerger & Müller (1997), to analyze

the gravitational waves emitted in the process. Excitation of

axisymmetric modes have already been observed in such

relativistic core-collapse simulations.

Of all axisymmetric modes, the quasi-radial modes of slowly-

rotating relativistic stars were first studied by Hartle & Friedman

(1975) and, more recently, by Datta et al. (1998). In rapid rotation,

quasi-radial modes of relativistic stars have been studied by

Yoshida & Eriguchi (2001) in the Cowling approximation

(McDermott, Van Horn & Scholl 1983), i.e. by neglecting the

perturbations in the gravitational field (see Stergioulas 1998 for a

recent review on the equilibrium structure and oscillations of

rapidly rotating stars in general relativity). For Newtonian stars,

axisymmetric modes have been extensively studied by Clement

(1981, 1984, 1986). From the studies mentioned above, it has

become apparent that rotation not only weakly modifies the

oscillation frequencies for low-order modes, but also introduces

apparent crossings between higher-order modes for rapidly rotating

models. In addition, in Clement (1981) it is claimed that the

axisymmetric quadrupole f mode lies on a continuous branch for

rapidly rotating Newtonian stars.

In this paper we compute all low-order l ¼ 0, 1, 2 and 3

axisymmetric modes for rapidly rotating stars in general relativity,

in the Cowling approximation. For this purpose, we use a 2D non-

linear hydrodynamics code, the accuracy of which has been

extensively tested in Font, Stergioulas & Kokkotas (2000)

(hereafter FSK; see also Stergioulas, Font & Kokkotas 2000).

This code is based on high-resolution shock-capturing (HRSC)

finite-difference schemes for the numerical integration of the

general relativistic hydrodynamic equations (see Font 2000 for a

recent review). We note in passing that the 3D version of the

numerical methods employed here has been applied recently by

Stergioulas & Font (2001) in the study of the large-amplitude, non-

linear evolutions of r modes in rotating relativistic stars. In our

present study of axisymmetric modes, we focus on a sequence of

equilibrium models with a polytropic ðN ¼ 1:0Þ EOS and uniform

rotation. For the excitation of the various oscillation modes, low-

amplitude perturbations (using appropriate trial eigenfunctions)

are added to the initial equilibrium models. The Cowling

approximation allows us to evolve relativistic matter for a much

longer time than the presently available coupled space–time plus

hydrodynamical evolution codes (Alcubierre et al. 2000; Font et al.

2000; Shibata, Baumgarte & Shapiro 2000; Shibata & Uryu 2000).

This is particularly evident when hydrodynamically evolving

rotating stars. Nevertheless, because pulsations of neutron stars are

a mainly hydrodynamical process, the approximation of a time-

independent gravitational field still allows for qualitative

conclusions to be drawn when studying the evolution of perturbed

rotating neutron stars. In addition, our present results will serve as

test-beds for 3D general-relativistic evolution codes.

The paper is organized as follows. In Section 2 we describe the

set-up of the problem by briefly presenting some details of the

initial equilibrium stellar configurations and the main features of

the hydrodynamical code. In Section 3 we explain the procedure by

which the initial equilibrium models are perturbed. Section 4

presents the main results of our simulations, including the

frequencies of all low-order axisymmetric modes for our sample of

initial models. The paper ends with Section 5, where a summary is

presented together with an outlook of possible future directions of

this investigation.

2 PROBLEM SET-UP

Our initial models are numerical solutions of the exact equations

that describe rapidly rotating relativistic stars that have uniform

angular velocity V. We assume a perfect fluid, zero-temperature

EOS, for which the energy density is a function of pressure only.

The following relativistic generalization of the Newtonian

polytropic EOS is chosen:

p ¼ Kr111/N
0 ; ð1Þ

e ¼ r0 1 Np; ð2Þ

where p is the pressure, e is the energy density, r0 is the rest-mass

density, K is the polytropic constant and N is the polytropic

exponent. The initial equilibrium models are computed using a

numerical code developed by Stergioulas & Friedman (1995). Our

representative neutron star models are characterized by N ¼ 1,

K ¼ 100 and central density rc ¼ 1:28 � 1023, in units of

c ¼ G ¼ M( ¼ 1. We compute 12 different initial models by

varying the polar to equatorial circumferential radius from 1 (non-

rotating star) to 0.65 (near the mass-shedding limit), as listed in

Table 1. The angular velocity at the mass-shedding limit is VK ¼

0:5363 � 104 s21 for this sequence of rotating relativistic stars of

same central density. In order to be able to study stellar pulsations,

the initial model is supplemented by a uniform, non-rotating

‘atmosphere’ of very low density, typically 1026 or less times the

central density of the star (see related discussion in FSK).

The initial data are subsequently evolved in time with a

hydrodynamics code. The (axisymmetric) hydrodynamic equations

are written as a first-order flux-conservative system that expresses

the conservation laws of mass, momentum and energy. The specific

form of the equations was presented in FSK and we will not repeat

it here. These equations are solved using a HRSC finite-difference

Table 1. Equilibrium properties of the initial
models, as described by a polytropic EOS,
p ¼ Kr111/N

0 , where N ¼ 1, K ¼ 100 and with
central rest-mass density rc ¼ 1:28 � 1023 (in
units with c ¼ G ¼ M( ¼ 1Þ. The entries in the
table are as follows: V is the angular velocity of
the star, M and M0 are the gravitational and rest
mass, T/W is the ratio of rotational to
gravitational binding energy and R is the
equatorial circumferential radius.

V M M0 T/W R

104 s21) (M() (M() (�1022) (km)

0.0 1.400 1.506 0.0 14.15
0.218 1.432 1.541 1.200 14.51
0.306 1.466 1.579 2.438 14.92
0.371 1.503 1.619 3.701 15.38
0.399 1.523 1.641 4.339 15.63
0.423 1.543 1.663 4.976 15.91
0.445 1.564 1.686 5.609 16.21
0.465 1.585 1.709 6.232 16.52
0.482 1.607 1.733 6.839 16.87
0.498 1.627 1.756 7.419 17.25
0.511 1.647 1.778 7.959 17.68
0.522 1.666 1.798 8.439 18.15
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scheme (Font 2000). A comprehensive description of the specific

numerical techniques that we employ was previously reported in

FSK. Therefore, we only mention here that the code makes use of

the third-order piecewise parabolic method (PPM; Colella &

Woodward 1984), for the cell-reconstruction procedure, together

with Marquina’s flux formula (Donat et al. 1998) to compute the

numerical fluxes. The PPM reconstruction scheme was shown to be

accurate enough for maintaining the initial rotation laws during

many rotational periods.

The hydrodynamic equations are implemented in the code using

the spherical polar coordinates (r, u,f ) and assuming axisym-

metry, i.e. all derivatives with respect to the f coordinate vanish.

The radial computational domain extends to 1.2 times the radius of

the star (the 20 per cent additional zones are used for the

atmosphere). In the polar direction, the selected domain depends

on the spherical harmonic index of the pulsation modes: for even l

modes the domain extends from u ¼ 0 (pole) to u ¼ p=2 (equator),

while for odd lmodes the domain extends to u ¼ p. The number of

grid points we employ is 200 � 80 for l being even and 160 � 120

for l being odd, in r and u respectively. The boundary conditions

are implemented in the same way as in FSK.

Our numerical evolution code was thoroughly tested in FSK, by

comparing evolutions of perturbed spherical stars with results from

perturbation theory obtained with an independent eigenvalue code.

Since then, the code has been upgraded to run efficiently on a NEC

SX-5/3C vector supercomputer. This modification was essential for

doing a large number of numerical evolutions for many rotational

periods and with a large number of grid-points.

3 PERTURBATION OF THE INIT IAL DATA

The accurate computation of mode frequencies in a rotating star

requires an appropriate excitation of the equilibrium initial data.

When doing so, it is possible to obtain the frequencies of the

excited modes with good accuracy, through a Fourier transform of

the time evolution of the hydrodynamical variables, provided that

the evolution time is much larger than the period of oscillations. As

in the hydrodynamical evolution, we are using the 311

formulation (Banyuls et al. 1997), the oscillation frequencies of

the various evolved variables are obtained with respect to the

coordinate time at a given location. This corresponds to the

frequency of oscillations in a reference frame attached to an inertial

observer at infinity. To increase accuracy in the computation of the

frequencies, we search for the zeros of the first derivative of the

Fourier transform (with respect to the frequency), using second-

order accurate central differences. These zeros correspond to

maxima in the Fourier transform, which (except for high-frequency

noise) correspond to the excited modes of oscillation. This

procedure is performed at several points inside the star and the

frequencies thus determined are found to be the same for each

mode, i.e. all the modes that we identify are global discrete modes.

For the resolution employed we estimate the accuracy of the

computed frequencies to be of the order of 1–2 per cent. The

different pulsation frequencies are identified with specific normal

modes by comparing frequencies of the non-rotating star to known

eigenfrequencies from perturbative normal-mode calculations.

As demonstrated in FSK, the small-amplitude pulsations in the

non-linear, fixed space–time evolutions correspond to linear

normal modes of pulsation in the relativistic Cowling approxi-

mation (McDermott et al. 1983), in which perturbations of the

space–time are ignored. The existence of a numerical viscosity,

inherent to the numerical scheme, damps the pulsations of the star.

Therefore, high-resolution grids are preferred to reduce the

damping, especially for the higher frequency modes, which are

damped faster. In addition, our numerical scheme requires the

presence of a tenuous, constant-density ‘atmosphere’ surrounding

the star, which is reset to its initial state after each time-step (in

such a way that the stellar surface is allowed to contract or expand).

This introduces an additional numerical damping of the pulsations,

as a result of finite-differencing at the surface of the star. In order to

minimize this effect, the density of the ‘atmosphere’ has to be

small enough to be dynamically unimportant. As already

mentioned, a typical value of 1026rc is appropriate for this

purpose.

We use analytic eigenfunctions to excite particular oscillation

modes. For the l ¼ 0 modes the initial equilibrium values of

density and pressure, r0 and p0, are perturbed to non-equilibrium

values, r ¼ r0 1 dr and p ¼ p0 1 dp by the eigenfunctions

dr ¼ Arc sin
pr

rsðuÞ

� �

; ð3Þ

dp ¼ Gpi
dr

ri
; ð4Þ

where rc is the central density, rs(u ) is the coordinate radius of the

surface of the star (which depends on the polar angle u ) and G is

the adiabatic index of the ideal gas EOS, p ¼ ðG2 1Þre, related to

the polytropic index by the equation G ¼ 11 1/N (for isentropic

stars). The amplitude of the excitation, A, is typically chosen to be

in the range of 0.001 to 0.005.

For the excitation of the l ¼ 1, 2 and 3 modes, we add a small

non-zero u-velocity component to perturb the initial vanishing

value. More precisely, for l ¼ 1 we have

vu ¼ A sin
pr

rsðuÞ

� �

sin u; ð5Þ

Figure 1. 2D grey-scale plot of the initial data used for mode-excitation:

density perturbation ðl ¼ 0Þ and vuðl – 0Þ. The darkest area corresponds to

the maximum of the perturbation, while the lightest area corresponds to its

minimum values. The thick solid line indicates the location of the surface of

the star. The depicted initial model is the fastest rotator of our sample in

Table 1.
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for l ¼ 2

vu ¼ A sin
pr

rsðuÞ

� �

sin u cos u; ð6Þ

and for l ¼ 3

vu ¼ A sin
pr

rsðuÞ

� �

sin uð12 5 cos2uÞ: ð7Þ

The particular radial dependence in the above eigenfunctions is

chosen so that the perturbations vanish at the surface of the rotating

star. We have found that this is necessary for our numerical scheme

to work. Fig. 1 displays a 2D grey-scale plot of the above

perturbations, for the model near the mass-shedding limit. The

darkest area corresponds to the maximum of the perturbation,

while the lightest area corresponds to its minimum values. We note

that all models have equatorial plane symmetry with respect to the

z ¼ 0 axis, even though we use a grid extending to u ¼ p for odd l

modes. The choice of these trial eigenfunctions allows us to

compute the four lowest frequencies quite accurately for all the

considered l modes, as we discuss next.

4 RESULTS

We turn now to presenting our numerical results concerning the

frequencies of axisymmetric pulsations of uniformly and rapidly

rotating neutron stars.

4.1 Quasi-radial modes

Fig. 2 shows the time evolution of the radial velocity component

for the most rapidly rotating model in our sequence. The initial

equilibrium model has been perturbed with an l ¼ 0 perturbation

according to equations (3) and (4). The final evolution time

corresponds to 10ms, and the oscillations are measured at half the

radius of the star and at an angle of u ¼ p=4. The oscillatory pattern

depicted in this figure is typical to all our simulations: it is mainly a

superposition of the lowest-order normal modes of the fluid. The

amplitude of the oscillations is damped as a result of the inherent

viscosity of the numerical scheme. The high-frequency normal

modes are usually damped faster and at the final time the star is

pulsating mostly in a few lowest frequency modes.

The frequencies of the axisymmetric modes are obtained by a

fast Fourier transform of the time evolution of selected

hydrodynamical variables (both the density and the components

of the velocity). Fig. 3 shows the Fourier transform of the radial

velocity evolution depicted in Fig. 2. The main mode which is

excited is the fundamental quasi-radial F mode. Its higher

harmonics (H1–H3) are also excited, as well as several other, non-

radial modes. The amount of excitation of each mode depends on

the correlation between the mode eigenfunction and the applied

perturbation.

As it is apparent in Fig. 3, a dense spectrum of modes appears

when one applies generic perturbations that do not correspond to

the eigenfunctions of a particular normal mode only. Thus, in order

to identify the peaks in the Fourier transform with specific normal

modes, we rely on the previously known frequencies in the non-

rotating limit (see FSK). As the rotation rate is increased, we

follow the change in the location of the various peaks, keeping in

mind that apparent crossings of frequencies occur at large rotation

rates. In such a case, the amplitude of the Fourier transform at

various points inside the star (which correlates with the mode

eigenfunction) is used as a guide in deciding about the correct

identification of the mode frequency. The specific values for the

frequencies of the fundamental F and higher harmonicsH1,H2, and

H3 quasi-radial modes for the sequence of rotating stars considered

here, are shown in Table 2.

As frequencies of quasi-radial modes have been computed

previously by Yoshida & Eriguchi (2001), as an eigenvalue

problem, we use those results to compare the values obtained with

our code for a soft polytrope with rc ¼ 8:1 � 1024, N ¼ 1:5 and

K ¼ 4:349. We have compared the models corresponding to

V ¼ 0, 7:1379 � 1023 and 1:4094 � 1022, which, in the notation of

Yoshida & Eriguchi correspond to f rot ¼ 0, 0.1415 and 0.2794,

respectively. The results of this comparison are presented in

Table 3. We note that the agreement is very good, especially for the

most rapidly rotating model; the differences always being below 2

per cent. As there may be some small differences in the

construction of the equilibrium model, the actual accuracy of our

code is better than the relative differences shown in Table 3.

Figure 2. Time evolution of the radial velocity of the most rapidly rotating

model of our sequence, V ¼ 0:522 � 104 s21. An l ¼ 0 perturbation has

been applied to the equilibrium data. The pulsations are mainly a

superposition of the normal modes of the star.

Figure 3. Logarithm of the amplitude (in arbitrary scale) resulting from the

Fourier transform of the radial velocity evolution shown in Fig. 2. It is

possible to identify in this plot the frequencies of the fundamental quasi-

radial mode as well as up to three harmonics. Additionally, f and overtones

of p modes can also be identified.
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4.2 Non-radial modes

In Figs (4)–(9) we plot the time evolutions of the polar velocity

component, along with the corresponding Fourier transforms for

non-radial l ¼ 1, 2 and 3 perturbations, for the fastest rotating

model in Table 1. The time evolutions shown are measured at half

the star radius and u ¼ 2p=3 for l ¼ 1 and 3, and u ¼ p=3 for l ¼ 2.

The above time evolutions show the same qualitative behaviour

already described for the l ¼ 0 modes. The lowest frequency (and

dominant) l ¼ 1 mode we excite in our time evolutions (labelled 1f)

has no nodes along the radial direction and behaves like a

fundamental mode. We point out that the l ¼ 1 fundamental mode

does not exist when one considers the full set of equations (i.e.

including the perturbation of the metric), as a result of momentum

conservation (it would correspond to a displacement of the centre

of mass). In the Cowling approximation, however, momentum is

not conserved, as the perturbation in the metric is neglected. In this

approximation, only the fluid oscillates in a fixed background

metric and an oscillation of the centre of mass is allowed, as the

fixed metric acts as a restoring force.

Table 3. Comparison of l ¼ 0 quasi-radial pulsa-
tion frequencies, obtained with the present non-
linear evolution code, to linear perturbation mode
frequencies in the relativistic Cowling approxi-
mation (Yoshida & Eriguchi 2001). The equi-
librium model is a N ¼ 1:5, K ¼ 4:349 relativistic
polytrope with rc ¼ 8:1 � 1024.

V Mode Y&E present Difference
(1023) (kHz) (kHz) (per cent)

0 F 1.674 1.678 0.3
H1 2.758 2.807 1.7
H2 3.793 3.841 1.3

7.1379 F 1.646 1.670 1.5
H1 2.696 2.735 1.4
H2 3.728 3.761 0.9

14.094 F 1.545 1.553 0.5
H1 2.572 2.595 0.9
H2 3.664 3.642 0.6

Figure 4. Time evolution of the polar velocity component for the fastest

rotator,V ¼ 0:522 � 104 s21. An l ¼ 1 perturbation has been applied to the

equilibrium data.

Table 2. Fundamental, first, second and third
overtones (F,H1,H2 andH3, respectively) of the
quasi-radial ðl ¼ 0Þ modes for a sequence of
rotating stars of same central density. The
angular velocity VK at the mass-shedding limit
is 0:5363 � 104 s21 for this sequence.

V F H1 H2 H3

(104 s21) (kHz) (kHz) (kHz) (kHz)

0.0 2.706 4.547 6.320 8.153
0.218 2.657 4.467 6.215 8.005
0.306 2.619 4.409 6.202 8.005
0.371 2.579 4.385 6.234 8.096
0.399 2.553 4.377 6.243 8.098
0.423 2.535 4.371 6.241 8.134
0.445 2.510 4.362 6.266 8.171
0.465 2.495 4.356 6.262 8.171
0.482 2.476 4.366 6.274 8.197
0.498 2.456 4.357 6.270 8.130
0.511 2.442 4.350 6.297 8.030
0.522 2.417 4.337 6.255 7.987

Figure 5. Fourier transform of the polar velocity evolution shown in Fig. 4.

The different axisymmetric, l ¼ 1 modes are conveniently labelled.

Figure 6. Same as Fig. 4 but showing the time evolution for the l ¼ 2

perturbation.
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For l ¼ 2, a larger number of modes is excited by the initial

perturbation. At late times, the evolution is mainly a superposition

of the fundamental 2f mode and the fundamental quasi-radial F

mode, as it is evident from the amplitudes of the various modes in

the corresponding Fourier transform.

For l ¼ 3, a large number of modes is also excited by the initial

perturbation, as in the l ¼ 2 case. At late times, the evolution is

mainly a superposition of the fundamental 3f and 1f modes and of

the fundamental quasi-radial F mode. The Fourier amplitude of the
1f mode is larger than the amplitude of the 3f mode, which shows

that the eigenfunction of the l ¼ 3 modes near the mass-shedding

limit is significantly modified by rotation, so that the l ¼ 3 part of

the 1f eigenfunction correlates better with the generic eigenfunc-

tion we used to excite l ¼ 3 modes than the 3f eigenfunction itself.

The frequencies of all identified l ¼ 1, 2 and 3 modes are

displayed in detail in Tables 4–6. The modes are labelled as lf for

the fundamental modes and lpn for the p modes of order n. A plot of

all mode frequencies as a function of the rotation rate is shown in

Fig. 10. At rotation rates below,50 per cent of the mass-shedding

limit, the frequencies of the lowest-order modes are not

significantly affected by rotation. This is consistent with previous

results in the slow-rotation approximation (Hartle & Friedman

1975) and in the Newtonian limit. For larger rotation rates,

however, the l ¼ 0 and l ¼ 1 overtones have a tendency to increase

in frequency with rotation rate, while the l ¼ 2 and l ¼ 3 overtones

have the opposite tendency. As a result, several apparent mode

crossings take place between different modes. This has been

observed before by Clement (1986) for Newtonian axisymmetric

modes and by Yoshida & Eriguchi (2001) for the relativistic quasi-

radial modes.

In the above studies, when one follows an eigenfrequency

continuously from the non-rotating limit to the large rotation rates,

then, at apparent mode crossings, the continuous lines correspond-

ing to different frequency sequences do not cross, which is

normally called ‘avoided crossing’. Such avoided crossings can

occur in two ways: the eigenfunction along a continuous frequency

sequence remains as that of the same mode (which is the usual type

of avoided crossing in non-rotating stars, see Unno et al. 1989) or a

different mode appears in the same continuous frequency sequence

after the avoided crossing. The latter case is encountered in rotating

stars, as in Fig. 10. To distinguish the two cases, we prefer to use

the term ‘apparent crossing’ for rotating stars (as was done in

Clement 1986), which refers to a mode-sequence, rather than a

frequency sequence.

Finally, we note that in Clement (1981) it is claimed that the

axisymmetric 2f mode lies on a continuous branch, near the mass-

shedding limit, for rapidly rotating Newtonian stars. In our

relativistic computation, no such behaviour was found for any of

the modes studied. Within the numerical resolution employed all

the identified modes were found to be discrete.

4.3 Inertial modes

Apart from the quasi-radial and f and p modes, a number of

axisymmetric inertial modes was also excited in our numerical

evolutions, which can be seen as low-frequency peaks in our

Fourier transforms (Figs 3–9). These modes exist in isentropic

stars (such as those considered here) as a mixture of axial r modes

and polar g modes (see Lockitch & Friedman 1999). Non-

axisymmetric inertial modes have been computed as an eigenvalue

problem for slowly rotating relativistic stars (Lockitch 1999;

Lockitch, Andersson & Friedman 2001), but frequencies for

Figure 7. Same as Fig. 5 but showing the frequencies of the l ¼ 2

axisymmetric modes.

Figure 8. Same as Fig. 4 but showing the time evolution for the l ¼ 3

perturbation.

Figure 9. Same as Fig. 5 but showing the frequencies of the l ¼ 3

axisymmetric modes.

1468 J. A. Font et al.

q 2001 RAS, MNRAS 325, 1463–1470



axisymmetric modes are not available yet. This makes their

identification difficult, as, in our simulations, many modes with

similar frequencies appear. Furthermore, the spacing between these

frequencies is of the same order as one would expect the difference

between the relativistic frequencies and the Newtonian frequencies

(computed in Lockitch & Friedman 1999) to be. Therefore, it

would be too venturous, at this point, to attempt an identification

with specific normal modes without prior knowledge of some of

these frequencies in relativity, at least for slow rotation.

5 SUMMARY AND OUTLOOK

We have presented a comprehensive study of all low-order

axisymmetric modes of uniformly and rapidly rotating relativistic

stars in the Cowling approximation. This investigation has been

carried out by numerically evolving initial perturbed equilibrium

configurations with an axisymmetric, non-linear, relativistic

hydrodynamics code. The simulations were performed using a

high-resolution shock-capturing finite-difference scheme accurate

enough to maintain the initial rotation law for a sufficient number

of rotational periods.

Through Fourier transforms of the time evolution of selected

fluid variables we computed the frequencies of non-radial,

axisymmetric modes (with angular momentum indices l ¼ 0, 1, 2

and 3) of rapidly rotating stars. Therefore, we have extended

previous results by Yoshida & Eriguchi (2001), which were mainly

restricted to quasi-radial modes. We have presented results for a

complete sequence of rotating stars, ranging from the non-rotating

case to rapid rotation near the mass-shedding limit. Apparent

crossings between different modes appear for rapidly rotating stars,

as a result of the different influence of rotation on quasi-radial and

l ¼ 1 modes than on modes with l $ 2. This different behaviour

may be related to the fact that the rotational deformation of the

equilibrium star appears first as an l ¼ 2 term. Several

axisymmetric inertial modes were also excited in our simulations.

However, a definitive identification of the observed frequency

peaks with specific modes will only be possible when mode

frequencies on the slow-rotation approximation be computed as an

eigenvalue problem. Alternatively, a determination of mode

Figure 10. Frequencies of the lowest three quasi-radial modes versus the

ratio of angular velocity of the star V to the angular velocity at the mass-

shedding limit VK, for the sequence of rotating relativistic stars in Table 1.

This figure appears in colour in Synergy, the online version of MNRAS.
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Table 4. The f mode and first three p modes
corresponding to l ¼ 1. Further details in Tables
1 and 2.

V 1f 1p1
1p2

1p3
(104 s21) (kHz) (kHz) (kHz) (kHz)

0.0 1.335 3.473 5.335 7.136
0.218 1.349 3.464 5.318 7.134
0.306 1.356 3.453 5.317 7.152
0.371 1.364 3.446 5.320 7.172
0.399 1.369 3.442 5.322 7.193
0.423 1.371 3.438 5.325 7.214
0.445 1.373 3.434 5.328 7.238
0.465 1.375 3.429 5.333 7.223
0.482 1.376 3.422 5.339 7.349
0.498 1.376 3.417 5.340 7.288
0.511 1.375 3.407 5.337 7.281
0.522 1.375 3.393 5.335 7.318

Table 5. The f mode and first three p modes
corresponding to l ¼ 2. Further details in Tables
1 and 2.

V 2f 2p1
2p2

2p3
(104 s21) (kHz) (kHz) (kHz) (kHz)

0.0 1.846 4.100 6.019 7.867
0.218 1.855 4.040 5.910 7.684
0.306 1.860 3.944 5.716 7.471
0.371 1.857 3.814 5.521 7.264
0.399 1.851 3.734 5.431 7.130
0.423 1.844 3.645 5.325 7.000
0.445 1.832 3.554 5.226 6.989
0.465 1.815 3.456 5.164 6.970
0.482 1.787 3.352 4.962 6.823
0.498 1.762 3.244 4.810 6.746
0.511 1.733 3.120 4.822 6.653
0.522 1.686 3.010 4.726 6.571

Table 6. The f mode and first three p modes
corresponding to l ¼ 3. Further details in Tables
1 and 2.

V 3f 3p1
3p2

3p3
(104 s21) (kHz) (kHz) (kHz) (kHz)

0.0 2.228 4.622 6.635 8.600
0.218 2.228 4.570 6.550 8.418
0.306 2.221 4.485 6.433 8.304
0.371 2.199 4.380 6.280 8.109
0.399 2.186 4.330 6.214 8.105
0.423 2.177 4.303 6.135 8.000
0.445 2.148 4.194 6.067 7.831
0.465 2.118 4.124 5.987 7.751
0.482 2.094 4.044 5.895 7.751
0.498 2.055 3.964 5.784 7.656
0.511 2.017 3.870 5.852 7.612
0.522 1.965 3.720 5.767 7.593
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eigenfunctions in our simulations (and a comparison to mode

eigenfunctions in the Newtonian limit) may also allow the

identification of such inertial modes.

In following work we plan to study axisymmetric modes of

differentially rotating stars with realistic equations of state.

Moreover, the implementation of the hydrodynamic equations and

numerical techniques employed in the present work has been

recently extended (Dimmelmeier et al. 2001) to allow for

gravitational field dynamics through the so-called conformally

flat metric approach (Wilson et al. 1996). Studies of fully coupled

evolutions with such a code, in the context of pulsations of rotating

relativistic stars, will be presented elsewhere.

ACKNOWLEDGMENTS

We thank John Friedman, Kostas Kokkotas, Shin Yoshida and

Ewald Müller for helpful discussions and comments on the

manuscript. All computations have been performed on a NEC SX-

5/3C Supercomputer at the Rechenzentrum Garching. AG thanks

the Max-Planck-Institut für Gravitationsphysik, Golm and the

Max-Planck-Institut für Astrophysik, Garching, for supporting a

visit during which this collaboration was initiated. This research

was supported in part by the European Union grant HPRN-CT-

2000-00137.

REFERENCES
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Donat R., Font J. A., Ibáñez J. M., Marquina A., 1998, J. Comput. Phys.,

146, 58

Font J. A., 2000, Living Rev. Relativ., 3, 2

Font J. A., Stergioulas N., Kokkotas K. D., 2000, MNRAS 313, 678 (FSK)

Font J. A., Miller M., Suen W.-M., Tobias M., 2000, Phys. Rev. D, 61,

044011

Hartle J. B., Friedman J. L., 1975, ApJ, 196, 653

Kokkotas K. D., Schmidt B. G., 1999, Living Rev. Relativ., 2, 2

Kokkotas K. D., Apostolatos Th., Andersson N., 2001, MNRAS, 320, 307

Lockitch K. H., 1999, PhD thesis, Univ. Wisconsin

Lockitch K. H., Friedman J. F., 1999, ApJ, 521, 764

Lockitch K. H., Andersson N., Friedman J. F., 2001, Phys. Rev. D, 63,

024019

McDermott P. N., Van Horn H. M., Scholl J. F., 1983, ApJ, 268, 837
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