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ABSTRACT

A universal initial mass function (IMF) is not intuitive, but so far no convincing evidence for
a variable IMF exists. The detection of systematic variations of the IMF with star-forming
conditions would be the Rosetta Stone for star formation.

In this contribution an average or Galactic-field IMF is defined, stressing that there is
evidence for a change in the power-law index at only two masses: near 0.5 M and near
0.08 M. Using this supposed universal IMF, the uncertainty inherent in any observational
estimate of the IMF is investigated by studying the scatter introduced by Poisson noise and
the dynamical evolution of star clusters. It is found that this apparent scatter reproduces quite
well the observed scatter in power-law index determinations, thus defining the fundamental
limit within which any true variation becomes undetectable. The absence of evidence for a
variable IMF means that any true variation of the IMF in well-studied populations must be
smaller than this scatter.

Determinations of the power-law indices « are subject to systematic errors arising mostly
from unresolved binaries. The systematic bias is quantified here, with the result that the
single-star IMFs for young star clusters are systematically steeper by Aa = 0.5 between 0.1
and 1 Mg than the Galactic-field IMF, which is populated by, on average, about 5-Gyr-old
stars. The MFs in globular clusters appear to be, on average, systematically flatter than the
Galactic-field IMF (Piotto & Zoccali; Paresce & De Marchi), and the recent detection of
ancient white-dwarf candidates in the Galactic halo and the absence of associated low-mass
stars (Ibata et al.; Méndez & Minniti) suggest a radically different IMF for this ancient
population. Star formation in higher metallicity environments thus appears to produce
relatively more low-mass stars. While still tentative, this is an interesting trend, being
consistent with a systematic variation of the IMF as expected from theoretical arguments.

Key words: binaries: general — stars: formation — stars: kinematics — stars: luminosity
function, mass function — globular clusters: general — open clusters and associations:
general.

lead to wvariations about the Galactic-field IMF. In particular, a

1 INTRODUCTION systematic difference ought to be evident between low-density

Fundamental arguments suggest that the initial mass function
(IMF) should vary with the pressure and temperature of the star-
forming cloud in such a way that higher temperature regions ought
to produce higher average stellar masses (Larson 1998). This is
particularly relevant to the formation of Population III stars,
because the absence of metals and the more intense ambient
radiation field imply higher temperatures.

The IMF inferred from Galactic-field star-counts can be
conveniently described by a three- or four-part power law
(equations 1 and 2 below). The Galactic field was populated by
many different star formation events. Given this well-mixed nature
of the solar neighbourhood, present-day star formation ought to
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environments (e.g., Taurus—Auriga and p Oph) and high-density
regions (e.g., Orion nebula cluster, hereafter ONC), because above
a certain critical density, star-forming clumps interact with each
other before their collapse completes (Allen & Bastien 1995; Price
& Podsiadlowski 1995; Murray & Lin 1996; Klessen & Burkert
2000). On considering the ratio between the fragment
collapse time and the collision time-scale, and applying the
analysis of Bastien (1981, his equation 8), it becomes apparent
that the IMF in clusters similar to p Oph cannot be shaped
predominantly through collisions between collapsing clumps. This
is supported through the finding by Motte, André & Neri (1998)
that the pre-stellar-clump MF in p Oph is similar to the observed
MF for pre-main-sequence stars in p Oph. It is somewhat steeper
than the Galactic-field IMF, especially if the binary systems that
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must be forming in the pre-stellar cores are taken into account.
Noteworthy is the fact that both the pre-stellar clump MF and the
Galactic-field IMF have a reduction of the power-law index below
about 0.5 M. In the core of the ONC, however, pre-stellar cores
probably did interact significantly (Bonnell, Bate & Zinnecker
1998; Klessen 2001). Furthermore, once the OB stars ignite in a
cluster such as the ONC, they have a seriously destructive effect
through the UV flux, strong winds and powerful outflows, and so
are likely to affect the formation of the least massive objects,
including planets. This can happen, for example, through
destruction of the accretion envelope, so that extreme environ-
ments like the Trapezium cluster may form a surplus of unfinished
stars (brown dwarfs, hereafter BDs) over Taurus—Auriga. Luhman
(2000) finds empirical evidence for this, but detailed dynamical
modelling is required to exclude the possibility raised here that
at least part of this difference may be due to the disruption of
BD-BD and star—BD binaries in a dynamically evolved
population such as the Trapezium cluster.

A conclusive difference has not been found between the IMF in
Taurus—Auriga (Kenyon & Hartmann 1995; Briceno et al. 1998)
and p Oph (Luhman & Rieke 1999) on the one hand, and the ONC
(Palla & Stahler 1999; Muench, Lada & Lada 2000; Hillenbrand
& Carpenter 2000) on the other. Similarly, Luhman & Rieke
(1998) point out that no significant IMF differences for pre-main-
sequence populations spanning two orders of magnitude in density
have been found. Such conclusions rely on pre-main-sequence
tracks that are unreliable for ages less than about 1 Myr (I. Baraffe,
private communication), because the density, temperature and
angular momentum distribution within the pre-main-sequence
star is likely to remember the accretion history (Wuchterl &
Tscharnuter 2000). Nevertheless, in support of the universal-IMF
notion, it is remarkable how similar the Galactic-field MF is to the
MF inferred for the Galactic bulge (Holtzman et al. 1998; Zoccali
et al. 2000), again with a flattening around 0.5 M. Presumably
star formation conditions during bulge formation were quite
different from the conditions witnessed in the Galactic disc, but
the bulge and disc metallicities are similar. Further related
discussions on this topic can be found in Gilmore & Howell
(1998).

The quest for detecting variations in the IMF has been
significantly pushed forward by Scalo (1998), who compiled
determinations of the logarithmic power-law index, I" (equation 3),
for many clusters and OB associations in the Milky Way (MW)
and the Large Magellanic Cloud (LMC), which has about 1/5 to 1/3
the metallicity of the MW (e.g. Holtzman et al. 1997). While no
systematic variation is detectable in a plot of I' against stellar
mass, m, between populations belonging to the two galaxies, a
large constant scatter in I" for stars more massive than 1 Mg is
evident instead. This raises the question of how large apparent
IMF wvariations are due to small-number statistics and other as yet
unexplored observational uncertainties, and whether this noise can
mask, or even render undetectable, any true variations of the IMF.

Elmegreen (1999) shows that statistical variations of I', that are
not dissimilar to the observed ones, result naturally from a model
in which the Salpeter IMF constructs from random sampling of
hierarchically structured clouds, if about N =100 stars are
observed. This model predicts that the scatter in I' must decrease
with increasing N.

In this contribution the reductionist philosophy is followed,
according to which all non-star formation sources of apparent
variations of the IMF must be understood before the spread of I'
can be interpreted as being due to the star formation process. To

achieve this, an invariant IMF is assumed to study three possible
contributions to the large scatter seen in the alpha-plot. (i) Poisson
scatter due to the finite number of stars in a sample. This is similar
to Elmegreen’s approach, except that no explicit link to the
distribution of gas clumps is made. (ii) Loss of stars of a preferred
mass-scale as their parent star clusters evolve dynamically. This
dynamical loss is not a simple function of stellar mass, because of
the complex stellar-dynamical events in a young cluster. For
example, while low-mass members preferably diffuse outwards as
a result of energy equipartition, massive stars sink inwards where
they meet and expel each other rather effectively. Finally, (iiia)
wrong mass estimates because most stars are born in binary
systems, and observers usually cannot resolve the systems. The
simplest approach, taken here, is to replace the two component
masses by the combined mass of the binary system, and to
measure the system MF.

Issues also contributing to the scatter but not dealt with here are
the following. (iiib) An observer infers the mass of a star from the
observed luminosity incorrectly if the star is an unresolved binary,
(ilic) wrong mass estimates from luminosities in the event of
higher order multiplicities, which is a major bias for massive stars
(e.g. Preibisch et al. 1999), (iva) stellar evolution and the
application of incorrect pre-main-sequence and main-sequence
evolutionary tracks, which corrupts the masses inferred from
observed quantities as the stars evolve to or along the main
sequence, and (ivb) incorrect estimates of stellar masses as a result
of rapidly rotating massive stars and the use of non-rotating stellar
evolution models. One issue to be stressed in this connection is
that stellar evolution theory retains significant uncertainties
(Kurucz 2000; Maeder & Meynet 2000; Heger & Langer 2000),
which can only be reduced through continued attention.

The present study thus probably underestimates the scatter by
focusing on points (i) to (iiia), but allows an assessment of the

fundamental limits within which apparent IMF variations swamp

true variations.

The alpha-plot and the form of the universal IMF adopted here
are introduced in Section 2, and statistical variations of the power-
law index are studied in Section 3. The star cluster models are
described in Section 4, and Section 5 contains the results on the
variation of the MF. In Section 6 the dichotomy in the alpha-plot
and available evidence for a truly variable IMF are discussed. The
conclusions are presented in Section 7.

2 THE ALPHA-PLOT AND THE
GALACTIC-FIELD IMF

Observational data in the alpha-plot are used to infer a universal
IMF.

2.1 The alpha-plot

Scalo (1998) combined available IMF estimates for star clusters
and associations by plotting the power-law index, I' (equation 3
below), against the mean log;om of the mass range over which the
index is measured (his fig. 5). Fig. 1 shows these same data by
plotting the power-law index o =1 —I' against log;om,,. The
alpha-plot clearly shows the flattening of the IMF for m =
0.5Mp. It also shows no systematic difference between MW and
LMC populations, as already shown by Massey, Johnson &
Degioia-Eastwood (1995b) for massive stars. This is also verified
for 0.6 = m =< 1.1 Mp by Holtzman et al. (1997), who use deep
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Figure 1. The alpha-plot. The data show the compilation by Scalo (1998)
of determinations of « over different mass ranges for Milky Way (MW)
and Large Magellanic Cloud (LMC) clusters and OB associations.
Unresolved multiple systems are not corrected for. The large open
triangles (Muench, Lada & Lada 2000 from Orion nebula cluster obser-
vations, binary corrections not applied) serve to illustrate the present
knowledge for m < 0.1 Mp. The horizontal long-dashed lines in the BD
regime are the Galactic-field IMF (equation 2) with associated approxi-
mate uncertainties. For 0.08 = m = 1.0 Mg the thick short-dashed lines
represent the KTG93 single-star IMF (Kroupa, Tout & Gilmore 1993),
which has a3 = 2.7 for m > 1 Mg from Scalo’s (1986) determination. The
long-dashed lines for m > 1 My show the approximate average a = 2.3,
which is adopted in the Galactic-field IMF (equation 2). The Miller &
Scalo (1979) log-normal IMF for a constant star formation rate and a
Galactic disc age of 12 Gyr is plotted as the diagonal long-dash-dotted line.
The long-dash-dotted horizontal lines labelled ‘SN’ are those o3 =
0.70(1.4) for which 50 per cent of the stellar (including BD) mass is in
stars with 8-50(8-120) M. The vertical dotted lines delineate the four
mass ranges (equation 2), and the shaded areas highlight those stellar mass
regions where the derivation of the IMF is additionally complicated due to
unknown ages, especially for Galactic field stars: for 0.08 < m < 0.15Mg
long-contraction times make the conversion from an empirical LF to an
IMF dependent on the precise knowledge of the age, and for 0.8 < m <
2.5Mp post-main sequence evolution makes derived masses uncertain in
the absence of precise age knowledge. A few of the MW data are labelled
by their star clusters, and Table 1 lists the m,, < 1 Mg data.

Table 1. The data from Scalo’s (1998) compilation with m,, < 1Mp.

log o May @ cluster ref.

-0.70 1.10 p Oph (Williams et al. 1995b)
—0.61 1.40 p Oph (Comeron, Rieke & Rieke 1996)
—0.61 1.20 NGC 2024 (Comeron, Rieke & Rieke 1996)
—0.46 1.30 Praesepe (Williams, Rieke & Stauffer 1995a)
—-0.35 1.10 Pleiades (Meusinger et al. 1996)
—0.10 2.46 ONC (Hillenbrand 1997)

—-0.04 2.20 Praesepe (Williams, Rieke & Stauffer 1995a)

HST photometry for LMC fields and apply Monte Carlo models
that include binary systems, various star formation histories (sfh)
and metallicities, as well as observational errors.

The models discussed in Section 5 show that unresolved binary
systems mostly affect the region m < 1 Mg, the data for which are
listed in Table 1. Perusal of the references shows that only
Meusinger, Schilbach & Souchay (1996) attempted a correction
for unresolved binary systems. However, they adopted an artificial
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model of Reid (1991; see discussion in Kroupa 1995a), in which
the binary proportion is only 40 per cent, half of which have
similar companion masses. This is an unrealistic model (Kihler
1999), and leads to essentially no difference between the system
and single-star luminosity functions (LFs) (fig. 7 in Meusinger
et al. 1996; compare with fig. 11 in Kroupa 1995d). Their binary
correction can thus be safely neglected.

211 m>3Mo

For m = 3 Mg the data suggest that the Salpeter power-law value,
a =23, is a reasonable fit over the whole range, as is also
stressed by Massey (1998). Massey & Hunter (1998), for example,
deduce that a = 2.3 for 2.8 < m < 120 Mg in the massive cluster
R136 in the LMC. This value is thus adopted throughout the rest
of this paper, although notable examples of exotic clusters exist.
The two massive, apparently young (2—4Myr) Arches and
Quintuplet clusters lying very close to the Galactic Centre
(projected distance 30 pc) have o = 1.65 (Figer et al. 1999), and
the Galactic starburst template cluster NGC 3603 is found to have
a = 1.7 (Eisenhauer et al. 1998). Further work is desired to
establish the exact nature of the central clusters, and clarify the
age discrepancy between the low-mass and massive stars noted for
NGC 3603, a problem possibly associated with pre-main-sequence
models.

It is important to keep in mind that @« may be systematically
steeper than o = 2.3 (or 1.7) due to unresolved binary systems,
which are not usually corrected for in IMF estimates. The
multiplicity proportion of massive stars is very high (Mason et al.
1998). For example, Preibisch et al. (1999) find that the OB stars
in the well-studied ONC have, on average, 1.5 companions. For
each primary, there is thus usually more than one secondary that
adds at lower masses, steepening the observed IMF when
corrected for. The effect depends on «, and Sagar & Richtler
(1991) calculate that Aa = +0.34 for « =2.5 and a binary
proportion f = 0.5 (equation 5 below). If f =1 (each massive
primary has 1.0 companions), they obtain Aa = +0.40. A« is
likely to be larger still, because each massive primary probably
has more than one companion, typically. Since the empirical data
in Fig. 1 implies an average a = 2.3 for m = 3Mp, the true
single-star IMF may in fact have o = 2.7 (= 2.3 + 0.4), or even
larger. A similar conclusion is reached by Scalo (1998, at the end
of his section 4). Such corrections will not be removed if
spectroscopic mass determinations are used instead of the inferior
mass-estimates using photometry (Massey et al. 1995a), since
unresolved systems will have similar effects on a spectroscopic
sample.

In this paper the approximate average o = 2.3 is adopted, with
the aim of studying the effect of unresolved binary systems on the
« inferred from the system MF, which an observer would deduce
from the mixture of single stars and binary systems in a population
resulting from star cluster evolution with initially f = 1. Because
the assumptions (Section 4.3) imply that massive stars have very
low-mass companions in this model, and because only binary
systems are searched for in the data reduction software, the
resulting model bias will be an underestimate. Further work is
necessary to address this particular issue, which is also discussed
further at the end of Section 3 and in Section 4.4.

The remarkable feature for m = 3 Mg in the alpha-plot is the
constant scatter, and that the various power-law indices are
distributed more or less randomly throughout the region o =
2.3 = 0.7, without a significant concentration towards some value.
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212 0.8<m<3Mgy

The region for 0.8 = m =< 3 Mg shows an unusually large scatter.
It is shaded because this particular mass range is problematical for
a number of reasons.

Analysis of Galactic-field star-counts run into the difficulty that
the age of the Galactic disc is comparable to the lifetime of these
stars, so that stellar evolution corrections become very significant,
but for this the sth must be known (Scalo 1986; Haywood, Robin
& Crézé 1997). That interesting constraints can be placed on the
MW IMF using independently derived sfhs is shown by Maciel &
Rocha-Pinto (1998), where the problems associated with the
estimation of the field IMF for massive stars are documented.

The large spread of the cluster values in the region 0.8 = m <
3Mge may be due to the fact that the observed clusters have ages
such that the stars in this mass range count to the most massive
remaining in the clusters. They are thus subject to advanced stellar
evolution and/or dynamical ejection from the cluster, because the
most massive stars usually interact in the vicinity of the cluster
core. Which of these is applicable is a sensitive function of the age
of the cluster and the number of stars in it (more on this in Section
5.2). Finally, stellar evolution is by no means a solved subject for
stars in this mass range (Dominguez et al. 1999) with remaining
significant uncertainties. This compromises the conversion of
stellar luminosity to mass. Ignoring the large scatter in this mass
range, it can be seen that a single power-law index becomes
applicable for m > 0.5 Mgp.

213 01<m<IMg

The Galactic-field single-star IMF fits the data shown in Fig. 1
exceedingly well for 0.1 < m < 1 Mg (that this agreement may
be fortuitous though is shown in Section 6.2). In particular, it is
remarkable that the data suggest a change in a near 0.5 Mg, as
was initially derived from solar-neighbourhood star-counts by
Kroupa, Tout & Gilmore (1991, hereafter KTG91), and later
confirmed by Kroupa, Tout & Gilmore (1993, hereafter KTG93)
and Kroupa (1995a) using a different mass—luminosity relation, a
much more detailed star-count analysis including main-sequence
and pre-main-sequence stellar evolution, and with different
statistical tests. Similar work by Gould, Bahcall & Flynn (1997)
using HST star-counts and Reid & Gizis (1997), who study a
proposed extension of the nearby stellar sample to somewhat
larger distances, also confirm these findings, as do Chabrier &
Baraffe (2000), who estimate « =~ 1.2 = 0.1 using the nearby
volume-limited LF.

Of special importance is the mass range 0.5-1 M. The local
sample of known stars is sufficiently large in this mass range that
the nearby volume-limited LF is very well defined (Kroupa
2001a). Also, unresolved binaries do not significantly affect the
LF in this mass range, because the stellar sample does not contain
stars with m > 1 Mg that can hide lower mass companions. The
mass—luminosity relation is also well understood for these stars,
so that the MF determination should be accurate and precise. It is
not surprising that the power-law slope has changed little over the
decades (Salpeter 1955: a = 2.35 for 0.4 <m < 10Mg). From
Fig. 1 an uncertainty of a = 2.3 £ 0.3 is adopted.

Unfortunately, the local sample of stars with m < 0.5Mg is
incomplete for distances larger than d = 5pc, in contradiction to
the belief by Reid & Gizis (1997), who use spectroscopic parallax
measurements to extend their proposed volume-limited sample
using previously known stars. Malmquist bias pollutes their

sample by multiple systems that are much further away. The
seriousness of the incompleteness of the nearby stellar census is
shown by Henry et al. (1997), and is also pointed out by Chabrier
& Baraffe (2000). This situation can only be improved with large-
scale and deep surveys that find candidate nearby M dwarfs with
subsequent trigonometric parallax measurements to affirm the
distance, such that a volume-limited sample can be constructed.
This will be possible through the upcoming astrometric space
missions DIVA (Roser 1999) and GAIA (Gilmore et al. 1998).
Being aware of this situation, the KTG studies combined the local
(d = 5.2 pc) volume-limited sample with flux-limited deep photo-
metric surveys, performing detailed Monte Carlo modelling of
both Galactic-field samples. This pedantic separation of the two
star-count samples is necessary, as completely different biases and
errors operate. The result is the conservative uncertainty range of
a =13 =% 0.5 for 0.08-0.5Mp (KTG93). That the Galactic-bulge
MF shows an indistinguishable behaviour to the Galactic-field MF
in this mass range was already pointed out in Section 1.

2.14 m<0.08Mo

For substellar masses the constraints have improved dramatically
in the past few years as a result of the significant observational
effort and instrumental advances. In the ONC, Muench et al.
(2000) and Hillenbrand & Carpenter (2000) find —1 < a < 1,
although the pre-main-sequence tracks are unreliable at these ages.
Similarly, in p Oph Luhman & Rieke (1999) estimate a = 0.5,
which is also found for IC 348 by Najita, Tiede & Carr (2000). In
the Pleiades Cluster, Martin et al. (2000) estimate « = 0.53, and
for the solar neighbourhood, Reid et al. (1999) quote 1 < a < 2,
whereas Herbst et al. (1999) estimate o < 0.8 with 90 per cent
confidence on the basis of no detections but accounting correctly
for Galactic structure. For the time being, «a =03 £ 0.7 is a
reasonable description of the IMF for BDs, and it will be shown in
Section 5.2 that the observed MF depends sensitively on the
dynamical age of the population.

The region 0.08-0.15Mg is shaded in Fig. 1 to emphasize the
uncertainties plaguing Galactic-field star-count interpretations as a
result of the long pre-main-sequence contraction times for these
stars. As with the 0.8-3 Mg region, the sth must be known. The
sth has most recently been constrained by Rocha-Pinto et al.
(2000).

2.2 The universal IMF

The available constraints can be conveniently summarized by the
multiple-part power-law IMF (see Kroupa 2001b for details),

&m) occm™ = m", ey
where

ap=+0.3x0.7, 0.0l =m/Mp <0.08,

a;=+13%0.5, 0.08 <m/Mp <0.50,

ap = +23%0.3, 0.50 <m/Mo < 1.00,

a3 =+23%0.7, 1.00 <m/Mp,

(€3

and &(m) dm is the number of single stars in the mass interval m to
m + dm. The uncertainties correspond approximately to 99 per
cent confidence intervals for m = 0.5 Mg (Fig. 1), and to a 95 per
cent confidence interval for 0.1-0.5 Mp (KTG93). Below 0.08 M
the confidence range is not well determined.
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Note that this form differs from Scalo’s (1998) recommenda-
tion, mostly because the correct structure in the luminosity
function below 1 Mg is accounted for here. There is evidence for
only two changes in the power-law index, namely near 0.5 Mo and
near 0.08 Me. The frequently used Miller & Scalo (1979) IMF
fails in the region 0.5-1 Mg, and especially for m = 5 Mo (Fig. 1;
see also Fig. 14 below). A useful representation of the IMF is
achieved via the logarithmic form,

&L.(m) = &m)In 10m, 3

where & dlog om oc m'i dlog;gm = m™ dlog;qm is the number
of stars in the logarithmic mass interval log;om to logyom +
d 10g10 m.

The adopted IMF (equation 2) has a mean stellar mass {(m) =
0.36 My for stars with 0.01 =m = 50Mp, and leads to the
following stellar population: 37 per cent BDs (0.01-0.08 Mp)
contributing 4.3 per cent to the stellar mass, 48 per cent M dwarfs
(0.08-0.5Mp) contributing 28 per cent mass, 8.9 per cent ‘K’
dwarfs (0.5-1.0Mg) contributing 17 per cent mass, 5.7 per cent
‘intermediate-mass (IM) stars’ (1.0-8.0Mg) contributing 34 per
cent mass, and 0.37 per cent ‘O’ stars (>8 M) contributing 17
per cent mass.

A remarkable property of equation (2) is that 50 per cent of the
mass is in stars with 0.01 = m = 1 Mg, and 50 per cent in stars
with 1-50 Mg. Also, if ay = 0.70 (m > 8 Mp), then 50 per cent
of the mass is in stars with 8 = m = 50 Mg, whereas ay = 1.4
implies 50 per cent mass in 8—120 Mg stars. These numbers are
useful for the evolution of star clusters, because supernovae (SN)
lead to rapid mass-loss which can unbind a cluster if too much
mass resides in the SN precursors. This is the case in clusters that
have a3 = 1.80 : stars with 8 < m = 120 M contain 53 per cent
of the mass in the stellar population! It is interesting that o = 1.8
for m = 1 Mp forms the lower bound on the empirical data in
Fig. 1. However, even ‘normal’ (a = 2.3) star clusters suffer
seriously through the evolution of their m > 1 Mg stars (de La
Fuente Marcos 1997).

3 PROCEDURE AND STATISTICAL
VARIATION

One contribution to the scatter seen in the alpha-plot (Fig. 1) is
Poisson noise. This can be studied by sampling N stars from the
adopted IMF (equation 2), and studying the variation of a with N.

In order to construct synthetic alpha-plots, the following pro-
cedure is adopted. N masses are obtained by randomly sampling
equation (2) with lower mass limit m; = 0.01 M and upper mass
limit m, = 50 Me. This upper mass limit is chosen for con-
sistency with the stellar-dynamical models (Section 4). The MF is
constructed by binning the masses, m, into 301log;om bins which
subdivide the range —2.1 =logjom = +2.1. Power laws are
fitted using weighted linear regression (e.g. Press et al. 1994) to
subranges that are defined as follows:

b1 6, logip(0.01) < lm = log;o(0.08),

b2 6, logip(0.08) < 1m = log;o(0.50),

b3 4, log0(0.40) < lm = log;o(1.20), @
b4, 4 log;p(1.00) < 1m = log;p(3.50),

b5 4, logio(3.00) < Im = log;(9.00),

b6 8, logip(5.00) <Im,
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where Im = logjom/Mo, and the numbers, nb, behind the mass
range number (e.g., bl) are the number of mass bins in the
histogram in that particular mass range (e.g., nb; = 6). This
subdivision ensures that the different mass regions in which «; is
known to be constant (equation 2) are not mixed up, but also
allows studying the fitted « at values of Im where, for example,
stellar evolution and/or dynamical effects are expected to be
important. The result is a(lm,,), where lm,, is the average of Im
over the nb; (j = 1,6) bins. In cases where the number of stars is
too small, or the highest mass star is less massive than 10%! Mo,
some of the highest mass bins remain empty, causing lm,, in mass
range b6 to vary between renditions.

The IMF is plotted together with two renditions using N = 103
stars in Fig. 2, to illustrate the procedure. The resulting alpha-plot
is shown in Fig. 3 for many more renditions and different N. The
input IMF is obtained essentially exactly for N = 10° and 10°,
verifying the procedure. The figure shows that deviations begin to

w
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Figure 2. The adopted logarithmic IMF (equations 2 and 3), &/ 10%, for
10° stars (solid histogram). Two random renditions of this IMF with 10°
stars are shown as the heavy and thin dotted histograms. The mass ranges
over which power-law functions are fitted are indicated by the arrowed six
regions (equation 4), while thin vertical dotted lines indicate the masses at
which «; changes.
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Figure 3. Purely statistical variation of « in the six mass ranges (equation
4) for different N as indicated in the key. Large outer squares indicate those
a fits obtained with nb =2 and 3 mass bins. The open circles, open
triangles, vertical and horizontal lines are as in Fig. 1.
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occur for N = 10* in the two highest mass ranges (b5 and b6),
because these contain only a few per cent of N, i.e., a few hundred
stars, spread over about 10 mass bins. For smaller N the scatter of
a(lm,,) becomes larger, with the average reproducing the IMF
except when the MF is undersampled at large masses.

Fig. 2 illustrates this sampling bias. The undersampling of the
histogram in the highest mass bins, when N is too small, leads to
an apparent flattening of the MF in the most massive bins
accessible to the stellar population, as is evident in Fig. 3. It is also
evident in fig. 2 of Elmegreen (1999), and in typical star-count
data, such as used by Massey et al. (1995b, their fig. 5) to infer the
power-law index. Such samples contain typically a few dozen
stars only (their table 5). This is interesting, possibly implying that
the correct single-star IMF may be steepening, i.e., have an
increasing «, with Im at the largest masses, since the uncorrected
data suggest a constant « for m = 1 Mg. This issue, together with
the bias through the high multiplicity fraction, will require more
explicit modelling of the biases affecting the observed IMF for
massive stars.

In conclusion, Fig. 3 demonstrates that the observed scatter is
arrived at approximately for populations that contain 10> < N <
10° stars, which is quite typical for the type of samples available.

4 STAR CLUSTER MODELS

In Section 3, apparent variations of the IMF that result purely from
statistical fluctuations are discussed. Additional sources of
uncertainty are listed in the Introduction. Section 5 concentrates
on quantifying the apparent variations that arise from stellar-
dynamical effects and unresolved binary systems. To achieve this,
a range of star cluster models are constructed. This approach is
relevant to populations in young clusters, OB associations and
even the Galactic field, because most stars form in embedded
clusters (Lada & Lada 1991; Kroupa 1995b).

4.1 Codes

The dynamical evolution of the clusters studied here is calculated
using NBODY6 (Aarseth 1999), which includes state-of-the-art
stellar evolution (Hurley, Pols & Tout 2000), a standard Galactic
tidal field (Terlevich 1987), and additional routines for initiating
the binary-rich population (Kroupa 1995c). The N-body data are
analysed with a large data-reduction program that calculates,
among many quantities, the binary proportion and MFs.

4.2 The clusters

The cluster models are set up to have the same central density,
pc = 10*8 starspc™3, as observed in the Trapezium cluster
(McCaughrean & Stauffer 1994), giving a half-mass diameter
crossing time f¢ross = 0.24 Myr. The centre of masses of the binary
systems follow a Plummer density distribution (Aarseth, Hénon &
Wielen 1974) with half-mass radius Ry 5. The average stellar mass
is independent of the radial distance, R, from the cluster centre,
and the clusters are in virial equilibrium. Their parameters are
listed in Table 2. Cluster evolution is followed for 150 Myr.

4.3 The stellar population

Stellar masses are distributed according to the IMF (equation 2)

Table 2. Cluster models: N and N, are the initial number of stars and
binaries in each model (not taking into account mergers), Ry s is the half-
mass radius, and (m) is the average stellar mass. The three-dimensional
velocity dispersion is o3p, and the median relaxation time is 7. Its range
results from assuming f = 1 and f = 0, respectively, since f evolves. The
number of calculations per model is N,,. Model B1E4d has a3 =2.7
(m > 1Mgp; equation 2), whereas the other (default) models have a3 =
a, = 2.3. It took about 4 months to assemble these data on standard desk-
top computers.

model N Nbin Ros (m) 03D frel Neun
[pc]  [Mol  [kms™ '] [Myr]

B800 800 400 0.19 0.4 1.6 0.8-1.4 5

B3000 3000 1500 0.30 04 2.5 24-4.4 5

B1E4 10* 5000 0.45 04 3.7 6.8—-12.5 2

B1E4d 10* 5000 0.45 0.3 3.2 7.9-14.5 2

with m; = 0.01 Me and m, = 50 M. This upper mass limit is
half as large as the upper limit on the mass range used to evaluate
the MF (equation 4), to take into account stellar mergers. Merging
can occur during pre-main-sequence eigenevolution, as detailed
below. The default models assume a3 = a;, but one model is also
constructed with the possibly more realistic value az = 2.7 (this
model has oy = 0.5 for historical reasons).

Binaries are created by pairing the stars randomly. The binary
proportion is

Nbin

f=g——,
Nsing +Nbin

(&)

where Ngn, and Ny, are the number of single-star and binary
systems, respectively. A birth binary proportion f = 1 is assumed.
The initial mean system mass is 2(m), with (m) being the average
stellar mass. This results in an approximately flat mass-ratio
distribution (fig. 12 in Kroupa 1995c). Note, however, that
encounters in clusters lead to the preferred disruption of binaries
with low-mass companions. The initially ‘random’ mass-ratio
distribution evolves rapidly towards a distribution in which low-
mass companions are less frequent, but still preferred (Kroupa
1995¢). This is consistent with observations in that G-dwarf
primaries (Duquennoy & Mayor 1991), Cepheids (4—9 M; Evans
1995) and possibly OB stars (Mason et al. 1998; Preibisch et al.
1999) prefer low-mass companions.

Periods and eccentricities are distributed following Kroupa
(1995¢). The periods range from about 1 to 10°d, and pre-main-
sequence eigenevolution changes the periods, mass ratios and
eccentricities such that they are consistent with observational
constraints for late-type main-sequence stars with short periods.
Eigenevolution is the collective name for system-internal
processes that evolve the orbital parameters, such as tidal
circularization, mass transfer, and interactions with circumstellar
and circumbinary discs. One feature of the pre-main-sequence
eigenevolution model is that secondary companions gain mass
during accretion if the periastron distance is smaller than a critical
value. This affects the IMF by slightly reducing the number of
low-mass stars, and slightly increasing the number of massive
stars. Also, in some rare cases the binary companions merge
giving Ngjng > 0, so that the true initial binary proportion is less
than unity. Since only short-period binaries are affected by
eigenevolution, the overall changes to the IMF are not significant.

The resulting single-star and system MFs are shown in Fig. 4.
This figure demonstrates that the IMF that results from the eigen-
evolution model has a slightly smaller «, especially for m < 0.5 Mg
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Figure 4. Mass functions for single stars (solid histograms) and systems
(dot-dashed histograms) at ¢ = 0 in models B1E4 (thick histograms) and
B1E4d (thin histograms). Note the smaller number of massive stars in
model B1E4d, which has a steeper IMF for m > 1 Mg with a3 = 2.7
(Table 2). The solid dots are the IMF for N = 10° stars (Fig. 2) scaled to
N = 10*, and the vertical dotted lines and arrowed regions are as in Fig. 2.

(thick solid histogram). This effect is larger for the default case
(a3 = 2.3), because the larger number of massive stars implies
more systems in which the secondary gains mass as a result of
eigenevolution. The effect on « is too small, however, to make a
significant difference in the alpha-plot (e.g. Fig. 9 below). Fig. 4
also displays the large difference between the system MF and the
single-star MF at low masses. The IMF has a maximum near
0.1 M, whereas the systtem MF has one near 0.4Mg, and
underestimates the number of ‘stars’ by an order of magnitude
near m = 0.01 M, and by a factor of 3 near m = 0.08 Mp.

4.4 Nota bene

The cluster models constructed here are extremes, in that they
have a very high central density equal to that observed in the
ONC. This assumption leads to a rapid depletion of the binary
population, as shown below (Fig. 6; see also de La Fuente Marcos
1997). Disruption of binaries occurs on a crossing-time scale
(Kroupa 2000a) in any cluster, so that it takes much longer in real
time for the binary population to decrease in a Pleiades-type
cluster, for which Kihler (1999) shows that f = 0.7 is possible.
Likewise, the pre-main-sequence cluster IC 348, which has a
density of about 500 stars pc >, has a binary proportion similar to
that in the Galactic field (Duchene, Bouvier & Simon 1999). As
shown by KTG91, such a binary proportion requires significant
correction to the observed system LF to infer the IMF. The
problem with unresolved binaries may still be even worse for
lower density clusters, such as those studied by Testi, Palla &
Natta (1999), because the binary population evolves on much
longer time-scales, and is thus likely to be less evolved than in the
clusters studied here. The problem will never be smaller in such
clusters, unless they consist of a stellar population that had an
unusually small initial binary proportion (f < 0.3), i.e., smaller
than even in the evolved extreme models here. Such a population
has never been observed in any Galactic cluster or association to
this date (e.g. Ghez et al. 1997; Duchene 1999).

Any real population is thus likely to have a larger binary
proportion than in the models considered here after about three
crossing times (=0.8 Myr). In addition, the present results will be
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an underestimate of the bias, because only binary systems are
considered. Real populations contain something like 20 per cent or
more triple and quadruple systems, which, when not resolved,
increase the systematic error made in the observational estimate
of a. What is inferred in this paper is thus the minimum correction
to o.

This is particularly true for m = 1 Mg, because the observed
mass-ratio distribution for massive stars (e.g. Preibisch et al. 1999)
has secondaries that are typically more massive than 1Mep,
whereas in the models here, massive primaries typically have very
low-mass companions owing to the random sampling hypothesis.
This is very important when considering the system MFs below. It
will be evident that the models lead to essentially no bias for
massive stars, but this is more likely to be a shortcoming of the
present assumptions, rather than proving that the IMF for massive
systems is not subject to a significant bias, as discussed in Section
2.1.1. Clearly, this is a fundamentally important topic requiring
much more work to construct a more realistic initial mass-ratio
distribution for massive stars. In addition, a systematically differ-
ent IMF between the LMC and the MW for massive stars may
become evident, if the binary properties differ systematically
between the two galaxies, because then the correction for syste-
matic bias would be different for the two samples. At present no
such difference is known, and so the empirical LMC and MW data
plotted in Fig. 1 can, at present, be taken only to mean that the
IMF for massive stars may be the same in the two populations.

5 RESULTS

The results obtained from the stellar-dynamical calculations are
used to study temporal and spatial apparent variations of the
single-star and system MFs.

5.1 Cluster evolution

As an impression of the evolution of the star clusters, Fig. 5
displays the scaled number of systems and single stars with R =
3.2pc. Ngys(t) = Nging(f) + Npin(?) increases for 7= 2.5Myr,
because the disruption of binary systems liberates secondaries.
That is, the observer would find that the number of ‘stars’
increases with time. After # = 2.5 Myr, Ny decreases with a rate
depending on N, because the clusters expand owing to binary-star
heating, relaxation and mass-loss from evolving stars.

The binary proportion (Fig. 5) decreases within a few initial
crossing times. The decay occurs on exactly the same time-scale
for the different clusters, demonstrating that it is not the velocity
dispersion in the cluster alone which dictates the disruptions, but
the density as well. Owing to the ejection from the cluster of
preferably single stars and because of mass segregation, f is
larger for systems with R =< 3.2 pc, and at times t = 2.5 Myr, than
for systems at larger distances from the clusters. The least massive
clusters (N = 800) have expanded appreciably by this time, so
that the remaining binary population in the cluster is hard, and no
further significant disruption of binaries occurs (f = 0.55 and
increasing for t = 2.5 Myr). The more massive clusters, however,
remain more concentrated for a longer time (top panel of Fig. 5),
and consequently the binary-star hard/soft boundary remains at a
higher binary binding energy for a longer time. At any time ¢ =
3teross = 0.7 Myr, the binary proportion is higher in the clusters
with smaller N, which is particularly evident in Fig. 6 below. This
is a nice example of the caveat raised in Section 4.4. Further



0.8

0.6

Nm/ N

0.4

0.2

v b by b by by

0.8

« 0.6 -

0.4

log,o(t) [Myr]

Figure 5. Examples of the evolution of individual clusters. Top panel: The
number of systems (thick curves) and all individual stars and BDs (thin
curves) within the innermost 3.2 pc. The short-dashed lines are for N =
800, the solid lines are for N = 3000, and the dot-dashed lines are for
N = 10*. Bottom panel: The binary proportion for R < 3.2pc (thick
curves), and all R (thin curves) for the same cases as in top panel. In both
panels, the horizontal dotted lines indicate the times (3 and 70 Myr) at
which the mass functions are observed.

details on these processes are available in Kroupa (2000b), and in
the seminal paper by Heggie (1975).

The evolution of the binary proportion for primaries with
different masses is illustrated in Fig. 6. The binary proportion of
BDs falls rapidly, and stabilizes near fgp = 0.20 in all models. M
dwarfs retain a much higher binary proportion by t = 150 Myr,
fm = 0.4-0.5, depending on N, and more massive primaries retain
a slightly higher binary proportion still. The overall binary
proportion of O primaries (m = 8Mgp) shows a complex
behaviour. Initially, most O primaries have low-mass companions.
These are, however, exchanged for more massive companions near
the cluster core. When the primaries explode, these companions
are left or are ejected as single stars. In addition, violent
dynamical encounters in the cluster core eject single massive
stars. Overall, fo decays, but higher order multiplicities that form
in three-body encounters are not accounted for.

5.2 The alpha-plot for cluster populations

Having briefly discussed the evolution of the clusters and of the
binary population, the following question can now be posed. What
MFs would an observer deduce if an ensemble of such clusters
were observed at different times, under the extreme assumption
that the mass of each star or system can be measured exactly?
Figs 7 to 9 show the results for each N. The upper panels
assume that the observer sees all stars with R = 3.2 pc, whereas in
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Figure 6. The proportion of binaries with primary masses >8 Mo, fo
(thick long-dash-dotted curve), 1-8 Mo, fim (thin short-dash-dotted curve),
and 0.5-1Mp, fk (solid curve). M dwarf primaries (0.08-0.5 M) have a
binary proportion, fy (thin dashed line), whereas brown dwarfs
(0.01-0.08 Mp), fep, are shown as the thin dotted line. Each curve is an
ensemble mean.

the lower panel it is assumed that only the system masses can be
measured exactly for systems with R=3.2pc. The MFs are
constructed at times # = 0, 3 and 70 Myr. For the single-star MFs,
the results at + = 0 are the same as for pure statistical noise
(Fig. 3).

At t = 0, the single-star IMF is well reproduced. The system
MF, on the other hand, underestimates « significantly for mgy, <
1 Mg, with ap = —0.8 (instead of +0.3) for m < 0.08 Mg, a; =
+0.7 (instead of +1.3) for 0.08 =< m < 0.5Mp, and a; = +1.5
(instead of +2.3) for 0.5 =m < 1 Mp.

At t =3 and 70Myr, most of the BD systems have been
disrupted (Fig. 6), with typically fgp = 0.2, and most star—BD
systems have also ceased to exist, so that a is only slightly
underestimated for the system MF. Work is in progress to study if
the resulting mass-ratio distribution becomes consistent with the
observed ‘BD-companion desert’ for nearby stars (M. Mayor
2000, private communication). In mass ranges b2 and b3, the
power-law index is still underestimated significantly, because the
surviving binary proportion is typically f > 0.4 for m > 0.08 Me.
For b2 the lower panels in Figs 7 to 9 read ) = +0.8, and for 53,
ap = +1.7. The bias in measuring « , for the system MF rather
than the single-star MF is thus not significantly reduced at later
times.

This bias will operate for even older clusters, because further
binary disruption is essentially halted in the expanded clusters,
and f begins to increase with time as energy equipartition retains
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Figure 7. The a-plot for five B800 models at t = 0, 3 Myr (left panels) and 70 Myr (right panels). The single-star (upper panels) and system (lower panels)
MFs are constructed for stars with R = 3.2 pc. The open circles, open triangles, vertical and horizontal lines are as in Fig. 3.

the heavier binaries in the cluster at the expense of single stars
(fig. 3 in Kroupa 1995d). However, with time the bias will
decrease for a, as the turn-off mass becomes smaller, i.e., as the
number of primaries with m = 1 Mp decreases. As an extreme
example, globular clusters retain a significant proportion of their
low-mass stars (Vesperini & Heggie 1997), but stars with m =
0.8 M have ceased to exist, so that no m < 0.8 M companions
are ‘hidden’ by brighter primaries.

For N = 800 (Fig. 7) the scatter in range b5 is very large, and
rather similar to what is seen in the observational data in the
shaded area (0.8-3Mp; Fig. 1). This is interesting, because in
these models it is the stars in the mass range 3-9 M that are the
most massive and abundant enough to eject each other from the
core after meeting there through mass segregation, causing large
fluctuations in the measured MF. The same holds true for the
cluster data in the shaded range in Fig. 1. For example, p Oph
contains not more than a few hundred systems, so that the most
massive stars populate roughly the shaded range. The Pleiades is
100 Myr old, so that stars with m = 10 M have evolved off the
main sequence, and the stars just below this mass interact in the
cluster core.

In summary, comparison of the three figures shows that the
scatter in o decreases as N increases, but that the scatter is larger
than pure Poisson noise (compare the ¢ > (0 data in the upper panel
of Fig. 9 with the N = 10* model in Fig. 3). The most important
result, though, is that «; , is underestimated by A« = 0.5 for the
system MF in the mass range 0.1-1Mg. Also, an observer
deduces fewer BDs in an unevolved population (r = 0; Fig. 4)
such as in Taurus—Auriga, than in a population that is older than a
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few crossing times, such as the Trapezium and the Pleiades
clusters (see also Kroupa, Aarseth & Hurley 2001). The figures
also show that for a single-age population the scatter is always
smaller for m < 1 Mg. For m = 1 Mg, the scatter for the clusters
with N = 3000 and N = 10* stars is comparable to the observed
scatter. Even when N = 10*, models with a3 = 2.3 cannot be
differentiated from models with a3 = 2.7 in mass ranges b5
and b6.

5.3 The alpha-plot for cluster halo populations

The MF ‘in’ young rich clusters can often be determined only by
avoiding the crowded central regions. This can cause systematic
uncertainties, because stellar encounters lead to preferentially
lower mass stars and preferentially single stars populating an
extended halo, or being ejected from the cluster.

The clusters with N =3000 and N = 10* stars are used to
investigate the MF for systems lying at a distance R > 3.2 pc from
the cluster centre. The results are shown in Fig. 10, assuming that
the observer can only determine the masses of systems.

The scatter is larger than within the clusters (R = 3.2pc;
Section 5.2), and the bias for m < (0.5Mg that leads to an
underestimate of ¢ in binary-rich populations is reduced signifi-
cantly. This results because the halo population is depleted in
binary stars (Fig. 5).

Two extreme examples are marked with double symbols. The
corresponding MFs are plotted in Fig. 11. One example is the
system MF for a halo population at an age of 3 Myr. Its particu-
larly flat MF for m > 10 Mg (a = 0.97) comes about because the
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Figure 8. As in Fig. 7, but for five B3000 models.

cluster core just expelled a few massive stars to the outer regions.
The steep MF for a 70-Myr-old population with o =4.85 at
Im,y = 0.9 (double square in the lower panel) arises because
stellar evolution has removed stars with m = 10 Mp, and because
the stars with a mass just below the turn-off mass are located
preferably near the cluster core. The fitted power-law indices are
listed in Table 3.

5.4 A synthetic alpha-plot

The results from all cluster models at different times and for the
inner and outer cluster regions can be combined to form a
synthetic ensemble of populations. The result is shown in Fig. 12
for the case that the observer is able to measure the mass of each
star exactly. Fig. 13 shows the results assuming that the observer
can measure the system masses exactly.

The model « values obtained by fitting power laws to the model
system MFs are consistent with o =~ 2.3 for m = 1 Mg, thus
rederiving the input IMF despite unresolved binary systems. This
result will be revisited in future work for the reasons stressed in
Sections 2.1.1 and 4.4.

For m < 1 Mg, the average system «as are too small, except in
the BD regime, where approximately the input value (g = +0.3)
is arrived at because of the small surviving binary proportion.
Fig. 13 thus demonstrates that the observational data (open circles
and triangles) underestimate the single-star power-law index in
mass ranges b2 and b3 (equation 4) by about A« = 0.5, because
binary systems are not resolved. This is a reliable result, because
of the reasoning in Section 4.4, i.e., because the cluster library

used here has an extreme initial density. Any Galactic embedded
cluster with a lower density may lead to a larger bias, because in
lower density clusters the binary population is eroded at a slower
rate, allowing a higher binary proportion to survive for longer
times. The binary proportion is certainly not lower in such
clusters, which is also confirmed by detailed analysis of obser-
vations (e.g. Kéhler 1999 for the Pleiades; Kroupa & Tout 1992
for Praesepe).

Again it is stressed that the above corrections to « are minimum
values, especially for BDs. The binary proportion of these may be
larger in clusters with lower density, because it takes longer for
fep to decrease in lower density clusters. The maximum
corrections to be applied to the observed, i.e., system MFs, are
derived from the models at t =0 (e.g. Fig. 9): Aa= +1.3 for
BDs, and Aa = +0.8 for 0.08 = m < 1 Mg. Such large correc-
tions are, however, unlikely, because f < 1 usually (except in
Taurus—Auriga; cf. Luhman 2000).

The observational data in Fig. 1 therefore imply a single-star
IMF that is steeper than equation (2) for 0.08 = m < 1 Mp by
Aa = 0.5 at least. Thus, for these data the corrected IMF has
a; = 1.8 for 0.08-0.5 Mg, and o, = 2.7 for 0.5-1 M, probably
with unchanged «¢ and a3. The implications of this are discussed
in Sections 6.2 and 6.3.

Figs 12 and 13 show that the model scatter in « is similar to that
seen in the observational sample. Despite starting in each case
with the same IMF, an observer deduces power-law indices that
have a scatter of about o, = 0.5 for m =< 1 Mg and o, =1 for
m = 1 Mg, even if each stellar mass is measured exactly. The
finding is thus that the IMF can never be determined more
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Figure 9. As Fig. 7, but for models with N = 10* stars. The crosses, four-pointed stars and squares are for the two B1E4 models, whereas the same symbols

but rotated by 45° are for the two B1E4d models.

accurately than this scatter, and that the scatter seen in the alpha-
plot (Fig. 1) can be explained with Poisson noise and stellar
dynamical effects.

6 DISCUSSION

A cautionary remark concerning the alpha-plot is made, namely
that in reality the left and right parts of it are disjoint. Also, some
tentative evidence for a systematically varying IMF is presented,
especially in view of the proposed revised IMF.

6.1 The dichotomy problem

When considering the alpha-plot (Fig. 1), it must be remembered
that the left m = 1 Mp) and right (m = 1 Mp) parts of it are
actually disjoint. That is, any nearby cluster that is older than a
few Myr, so as to allow the application of reasonably well
understood pre-main-sequence or main-sequence stellar models,
contains no O stars or is already too old for them to still exist. This
is very true for the Galactic-field IMF — there is only an indirect
handle on m = 1 Mg stars through stellar remnants, but this
requires an excellent understanding of stellar evolution, the sth
and Galactic-disc structure (e.g. Scalo 1986). Conversely, any
population of stars for which the MF is constrained through
observations for m > 1 Mg is usually so far away that the left part
of the alpha-plot is not accessible to the observer, and/or so young
that measuring the derivative («), i.e., the shape of the IMF for
m < 1Mgp becomes a lottery game because of the uncertain pre-
main-sequence tracks (Section 1).
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That low-mass stars do form in large numbers in any population
that also forms O stars is established. Examples are the ONC
(Hillenbrand 1997), R136 in the 30 Dor region of the LMC
(Siriani et al. 2000), and NGC 3603, the most massive visible H1t
region in the MW (Brandl et al. 1999). However, the ONC is so
young that mass estimates become unreliable, compromising
conclusions about the detailed shape of its IMF, and in the other
cases the census of low-mass stars is not complete. Thus the shape
of the IMF spanning logjgm = —2 to 2 is not known for any
population, and it remains an act of faith to assume that the IMF
can be approximated by the form of equation (2).

Globular clusters consist entirely of low-mass stars today, but
the existence of neutron stars demonstrates that massive stars
formed in them as well. Paresce & De Marchi (2000) suggest that
the MF for a sample of a dozen globular clusters can be fitted by a
log-normal MF with approximately one characteristic stellar mass
and standard deviation. A further analysis will show how the
differences compare with the spread in « seen in Fig. 1. More
interesting in the present context is the fact that Piotto & Zoccali
(1999), who use the same stellar models by Baraffe et al. (1997) as
Paresce & De Marchi, demonstrate that power-law MFs fit rather
well for a wide range of globular clusters, with a = 0.5-1.2 for
m =< 0.5-0.7 Mg, but the IMF is not measurable for stars with
m = 0.7Mop.

6.2 A revised IMF

In Section 5.4 the suggestion is made that the systematic bias
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Figure 10. Spatial variation of the MF: The MFs in models B3000 (five
renditions), B1E4 (two renditions) and B1E4d (two renditions) for systems
with R > 3.2 pc. Two particularly exotic examples are highlighted using
double symbols; the corresponding MFs are plotted in Fig. 11, and the MF
fits are listed in Table 3. Otherwise as Fig. 9. Note the changed a-scale.
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Figure 11. Spatial variation of the MF. The MFs for systems with R >
3.2pc for model BIE4 showing two cases: solid histogram, r = 3 Myr
(four-pointed double star in Fig. 10) and dot-dashed histogram, t = 70 Myr
(double square in Fig. 10). The open and filled circles represent the N =
10° star IMF from Fig. 2 after appropriate scaling. The arrowed mass
ranges are as in Fig. 2.

towards low «| and «, due to unresolved binaries implies that the
single-star IMF may be steeper than inferred from observations
that do not resolve binary systems. Correcting the ensemble of
observed « in Fig. 1 for this bias leads to the following revised

Table 3. The two examples highlighted in Fig.
10. The corresponding MFs are plotted in Fig.
11. The table lists the number of log-mass bins
used in the fit, nb, the average log-mass over
which the fit is obtained, log;m,,, the fitted
power-law index «, and the probable uncer-

tainty oyq.
nb log;0 May @ Otq
[Mo]
double star (r = 3 Myr) in Fig. 10
6 —1.540 —0.54 0.31
6 —0.700 +0.77 0.14
4 —0.140 +1.84 0.29
4 +0.280 +2.58 0.54
3 +0.630 +3.01 3.42
6 +1.237 +0.97 1.01
double square (+ = 70 Myr) in Fig. 10
6 —1.540 +0.08 0.07
6 —0.700 +1.05 0.05
4 —0.140 +1.70 0.10
4 +0.280 +3.29 0.23
4 +0.700 +2.05 0.69
3 +0.910 +4.85 3.27
All models, Stellar MF, t=3 and 70Myr
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Figure 12. All models B800 (five renditions), B3000 (five renditions) and
B1E4 (two renditions) for + =3 and 70 Myr for individual stars with
R =3.2pc and R > 3.2pc. Only power-law fits that are based on more
than nb = 3 log-mass bins are plotted. The horizontal and vertical lines, the
faint open circles and open triangles have the same meaning as in Fig. 3.

IMF,

ap=+03+0.7, 0.0l =m/Mp < 0.08,

ay=+18+05, 0.08=m/Mp < 0.50,

ay=+27+03, 0.50=m/Mp < 1.00, ©

az; = +23%0.7, 1.00= Wt/l\/[@7

where the uncertainties from equation (2) are carried over.

The revised IMF has, for stars with 0.01 =m = 50Mgp, an
average stellar mass (m) = 0.20Mp and leads to the following
population: 50 per cent BDs (0.01-0.08 M) contributing 10 per
cent to the stellar mass, 44 per cent M dwarfs (0.08-0.5Mp)
contributing 39 per cent mass, 4.3 per cent ‘K’ dwarfs (0.5-1.0 M)
contributing 14 per cent mass, 2.3 per cent ‘intermediate-mass
(IM) stars’ (1.0-8.0 M) contributing 24 per cent mass, and 0.15
per cent ‘O’ stars (>8 M) contributing 12 per cent mass. O and
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Figure 13. As Fig. 12, but assuming the observer cannot resolve systerms.

IM stars thus contribute together 36 per cent of the total mass. If
ag = 1.15 (m > 8 Mp), then 50 per cent of the mass is in stars
with 8 = m = 120 Mp.

This revised IMF can be viewed as the present-day star
formation IMF, and is in good agreement with the pre-stellar
clump MF measured by Motte et al. (1998) and Johnstone et al.
(2000) for p Oph: a; = 1.5 and a, = 2.5, especially so since each
clump is likely to form a multiple star.

6.3 Possible evidence for a variable IMF

A short account is made of the most promising evidence for a
systematically varying IMF. The discussion in Sections 6.3.1 to
6.3.2 is visualized in Fig. 14, in which the various IMFs are
compared.

6.3.1 Globular clusters versus Galactic field

The suggestion in Section 6.2 that the alpha-plot (Fig. 1) may
imply a present-day star formation (pdsf) IMF (equation 6) that is
steeper than the Galactic-field IMF (equation 2) is interesting
when compared to the MFs estimated for globular clusters
(Section 6.1). These are very ancient and metal-poor systems, so
that a systematically different IMF (Larson 1998) ought to be
manifest in the data. The difference should be in the sense that
globular clusters ought to contain a characteristic stellar mass that
is larger than that in more metal-rich populations. The system-
atically flatter MF in globular clusters compared to the Galactic-
field IMF (equation 2), and especially to the pdsf IMF (equation
6), may thus be due to a real difference in the star formation
conditions.

However, unfortunately the evidence is not conclusive, because
globular clusters have lost preferentially low-mass stars, leading to
a systematic flattening of the MF with time, unless the clusters are
at large Galactocentric distances (Vesperini & Heggie 1997). The
binary proportion in globular clusters is typically smaller (f <
0.3) than in the Galactic field (f =~ 0.6), but probably not
negligible (Hut et al. 1992; Meylan & Heggie 1997), and
correction for their effects may also steepen the measured ME.
Approximate corrections that increase the measured « are A < 1
for dynamical evolution (fig. 6 in Vesperini & Heggie 1997) and
A« = 0.2 for unresolved binary systems, but a case-by-case study
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A systematically varying IMF ?
—r Tt rrrr I

0OF — — — — pdsf -
Gal. field

Figure 14. Evidence for a systematically changing IMF. The present-day
star formation (pdsf) IMF (equation 6) is shown as the thick dashed line.
The Galactic-field IMF (equation 2) is the thick solid line. It is truncated at
m = 1Mgp to express our ignorance about the IMF for m > 1 Mg for this
population that has an average age of about 5Gyr (the ‘dichotomy
problem’; Section 6.1). In both cases the shaded areas represent the
approximate 95-99 per cent confidence region. For comparison, the Miller
& Scalo (1979) log-normal IMF for a constant star formation rate and a
Galactic disc age of 12 Gyr is plotted as the thin long-dash-dotted curve
(its derivative is shown in Fig. 1). Seven globular clusters give «; = 0.89,
with upper and lower values of 1.22 and 0.53, and a, = 2.3 for 0.6 <
m < 0.8 Mg (Piotto & Zoccali 1999) as indicated by the short-dashed lines
and the heavily shaded area. Three possible IMFs for Galactic-halo WD-
progenitors are suggested by the thick long-dash-dotted and short-dash-
dotted lines (Chabrier, Segretain & Méra 1996, CSM96), and the thick
dotted line (Adams & Laughlin 1996, AL96). The MFs have been scaled
such that they agree near 0.5 M, except for the ancient IMFs, which are
scaled to fit the Galactic-field IMF near 2 Mc.

is required for detailed estimates. In their sample, Piotto & Zoccali
(1999) find evidence for flatter MFs at smaller Galactocentric
distances, suggesting loss of low-mass stars as being an important
bias. However, there is also evidence for a correlation such that
more metal-rich clusters have larger .

The Galactic-field IMF (equation 2) is valid for stars that are,
on average, about 5 Gyr old, and which were formed at a different
epoch of Galactic evolution than the stars in the clusters featuring
in Fig. 1. This, then, suggests a possible systematic shift of star
formation towards producing relatively more low-mass stars as
star formation moves towards conditions that may favour lower
fragmentation masses through higher metallicities and lower cloud
temperatures. The fact that the pre-stellar core MF in p Oph is
somewhat steeper than the Galactic-field IMF (equation 2), while
being consistent with a fragmentation origin (Motte et al. 1998),
supports this notion.
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6.3.2 Galactic-halo white dwarfs

Another possible empirical hint for a variable IMF may be
provided if part of the dark halo of the Galaxy were in the form of
ancient white dwarfs. This is becoming a distinct possibility, given
that several candidate ancient halo white dwarfs have been
discovered (Elson, Santiago & Gilmore 1996; Ibata et al. 1999,
2000; Méndez & Minniti 2000).

From equation (2) one obtains per WD progenitor (1-8 Mp; e.g.
Weidemann 1990) about eight dwarfs with m = 0.1-0.7 M. No
such halo dwarfs that might belong to the same population as the
putative WDs have been found, requiring a radically different IMF
for their progenitor stars than that seen today in the Galactic disc.
Also, for consistency with chemical enrichment data, such an IMF
cannot have many stars with m = 5 Mp (Adams & Laughlin 1996;
Chabrier et al. 1996; Larson 1998; Chabrier 1999).

6.3.3 Radial variation in a very young cluster

Hillenbrand (1997) demonstrates that the ONC has pronounced
mass segregation, and this may be interpreted as an IMF which
has a radial variation, if dynamical mass segregation is not fast
enough to produce such mass segregation within the age of the
cluster. The age of the ONC is estimated to be less than 1 Myr for
most ONC stars (Hillenbrand 1997; Palla & Stahler 1999), and
Bonnell & Davies (1998) suggest, by using a softened N-body
code, that mass segregation takes too long to produce the observed
effect. However, stellar-dynamical computations with a direct
N-body code that correctly treats the many close encounters must
be applied to this problem (Kroupa, in preparation). If the mass-
segregation time-scale is too long to produce the observed effect,
then we would have a well-documented case of a variable IMF
most likely through interactions of pre-stellar cores, as suggested
by Bonnell et al. (1998) and Klessen (2001).

7 CONCLUSIONS
The following three main points are covered in this paper.

I. The Galactic-field IMF. The form of the average IMF
consistent with constraints from local star-count data and Scalo’s
(1998) compilation of MF power-law indices for young clusters
and OB associations is inferred. The IMF is given by equation (2).
This form may be taken as the universally valid IMF.

II. The alpha-plot: scatter and systematics. Assuming the
universal IMF (equation 2), how large are the apparent variations
produced by Poisson noise, the dynamical evolution of star
clusters and unresolved binary systems?

This is studied by making use of the alpha-plot, in which IMF
power-law indices inferred for N-body model populations are
plotted as a function of stellar mass. The extreme assumption is
made that the observer can measure each stellar or binary-system
mass exactly. The resultant apparent variation of the IMF thus
defines the fundamental limit for detecting true variations. Any
true variation of the IMF that is smaller than this fundamental
limit cannot be detected. This is the reason why no robust
evidence for a variable IMF has surfaced to date. The available
population samples are too small (e.g., one ONC versus one
p Oph).

The model clusters have an initial binary proportion of unity
and contain N = 800, 3000 and 10" stars with a central density as
in the ONC. Clusters with a smaller initial density evolve on a

longer time-scale. The binary-star problem is thus potentially
worse in less dense clusters, because binary systems survive for
longer.

The observed spread of power-law indices is arrived at
approximately. For the ensemble of model clusters studied here
it is o, = 0.7 for BDs, o, = 0.5 for stars in the mass range
0.1-1 Mg, and o, = 1 for stars with m = 1 Mg (Fig. 13).

For stars with m = 1 Mg, the system MF has, on average, the
same power-law index as the underlying single-star IMF. That is,
the present models do not lead to any systematic bias in this mass
range (but see caveat in Section 2.1.1). Similarly, for BDs the
input « is arrived at in the mean, but only if the population is at
least a few crossing times old, because by then most BD binaries
and star—BD binaries have been disrupted. For a dynamically
younger population, o (and the number of BDs) will be under-
estimated depending on the binary proportion.

To correct for unresolved binaries, the measured power-law
index has to be increased by 0 < Aey < 1.3 for BDs and 0.5 =<
Aa;, = 0.8 for 0.08 =m = 1Mo, the upper and lower limits
applying for clusters that are unevolved (¢t = 0) and a few crossing
times old, respectively, assuming f =1 when #r=0. For a
population in a cluster that is a few crossing times old, the
corrections reduce to Aay = 0 and Aa; , = 0.5. These corrections
have to be applied to any young population to infer the single-star
IMF.

Finally, as a cautionary remark, the left and right parts of the
alpha-plot are observationally disjoint. It is an act of faith to
assume that «a(m) has the smooth dependence given by
equation (2).

. IMF wvariations. Applying the above corrections to the
ensemble of observed young clusters, a revised (or present-day
star formation) IMF is arrived at (equation 6). It is steeper for
m = 1 Mg than the Galactic-field IMF (equation 2), which is a
mixture of star formation events with an average age of about
5 Gyr. The pre-stellar clump mass-spectrum in the present-day
star-forming cloud p Oph (Motte et al. 1998; Johnstone et al.
2000) also indicates a steeper single-star MF than the Galactic-
field MF. Intriguingly, the ancient MFs in globular clusters have
a = 0, but closer to zero than the Galactic-field IMF. The recent
detection of candidate white dwarfs in the Galactic halo suggests
that the IMF of the progenitor population must have been radically
different by producing few, if any, low-mass and massive stars
(a<<0form=<05Mg and a > 0 for m = 2Mp).

Furthermore, the well-developed mass segregation in the very
young (=2 Myr) ONC may exemplify a locally radially-varying
IMF, if dynamical mass segregation is too slow. If N-body
calculations confirm this to be the case (work is in progress), then
the ONC will be definite proof that the local conditions determine
the average stellar mass, rather than it merely being the result of
statistical fluctuations.

The tentative suggestion is thus that some systematic variation
may have been detected, with star formation possibly producing
relatively more low-mass stars at later Galactic epochs. Such a
variation would be expected in the mass range (=1 M) in which
turbulent fragmentation, which depends on the cooling rate and
thus metal abundance, dominates. Future observations of LMC
populations might verify if the IMF has systematically smaller «
for m=1Me than the Galactic-field or present-day star
formation IMF. Unfortunately, though, even if there is a trend
with metallicity, it will be very arduous to uncover a systematic
difference in a between the MW and LMC at low masses, because
the metallicity difference is not very large while the a-scatter is. A
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lack of systematic differences in a for m = 10 Mp between MW
and LMC populations may be a result of one physical mechanism,
such as coalescence, dominating in the assembly of massive stars
(Larson 1999).
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