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Abstract. The present paper reviews the evolution of our understanding of the
effect of resonances on the distribution of asteroids in the asteroid belt. The
history of this problem goes back to the Kirkwood’s discovery (1867) of the
Kirkwood gaps located at resonances with Jupiter. We started to understand
the mechanism of their origin only in last decades. It seems that only gravita-
tional effects are sufficient for the depletion. It is now clear that the overlap of
secular resonances inside the orbital resonance is the most effective mechanism
leading to large chaos and variation of orbital elements. This results in the final
removal of asteroids from the gaps by collisions with the inner planets. Chaos,
however, does not always mean fast removal of the body. The question of the
so called stable chaos will be discussed together with the offered explanations
(the high order resonances and the so called three-body resonances). Recently
it was shown that chaotic diffusion can play an important role for the 2/1 res-
onance where the aforementioned explanation for other gaps faiis. Basic facts
will be reviewed but we will not go into this problem as the importance of
chaotic diffusion in dynamics of asteroids (and comets) will be the subject of
invited lecture at this conference given by Morbidelli and Nesvorny.
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1. Introduction

The first demonstration of the effect of resonances on the structure of the as-
teroid belt was found by Kirkwood (1867) when he discovered the Kirkwood
gaps. Fig. 1 shows the semimajor axis—eccentricity diagram of 7541 numbered
asteroids. In 1867 only 95 asteroids were known. The position of gaps is clearly
associated to the 3/1, 5/2, 7/3, 2/1 resonances but the mechanism of their ori-
gin was not understood for a long time. The substantial progress was made in
last decades when it became clear that the Kirkwood gaps can be explained
just by gravitational interaction. The first mathematical formulation and im-
portant result were obtained by Poincaré (1902) and Andoyer (1903). Schubart
(1964) generalized the Poincaré approach and, using averaging techniques on
computer, presented nice graphs giving the behaviour of an asteroid in the re-
stricted, resonant, circular, averaged, and planar problem of three bodies (the
Sun-asteroid—-Jupiter). The important requirement is that each theory should
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explain not only the origin of the gaps but also the existence of the Hilda group at
the 3/2 resonance (Fig. 1). When the simpler models failed, more sophisticated
models were constructed. Qualitatively new features of the system appeared
with each new model. We will present the arguments where each model failed
and the new features that appeared with new models. The next section will
introduce the basic formalism and variables in the three-body problem.
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Figure 1. The Kirkwood gaps as seen in a—e diagram made for 7541 numbered aste-
roids

2. Basic formalism of the resonant three-body problem

The Hamiltonian of the restricted three-body problem (3D elliptic) is

, 1l—p 1 rr’/

H=1L 2a <|'r—r’| r’3>’ (1)
where L' is conjugate to the mean longitude of Jupiter X', r is the vector from
the Sun to asteroid, r’ is the vector from the Sun to Jupiter, a is the semimajor
axis of asteroid, u is the mass of Jupiter (the gravitational constant G=1, sum
of Jupiter and the Sun masses=1, the semimajor axis of Jupiter orbit a'=1). In
the non-resonant case there is a very useful set of the variables — the Delaunay
canonical variables: L = /(1 — p)a, G = L1 —e?, H = Gcos I, | is the mean
anomaly, g is the argument of pericenter, h is the longitude of the ascending
node, e is the eccentricity and I is the inclination of the asteroid. In the resonant
case when the critical argument (p+q)\ —pA varies very slowly, we can introduce
the following set of canonical variables:

- PHay Py &5 s=L-g,
q q
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o, = X9y _Py_q s, =G-H,
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P

The elliptic 3D three-body problem has four degrees of freedom.
The fast variable A’ may be removed by averaging the disturbing function

1 rr’
(%)

_ 1 27Tp

R(o,0,,v,S5,S,,N) = 5-; R(o,0,,v,X,S,S,,N)d\, (4)
™™ Jo

keeping all remaining canonical variables constant. After removal of short-period
terms we reach at 3 degrees of freedom autonomous Hamiltonian.

In the planar, averaged problem o, is not defined but R is independent of
o,. It follows that S, = 0 is constant (as G = H). After averaging we have 2
degrees of freedom

_ 1 271’1)
R(o,v,S,N) = — R(o,v,\',S,N)d\ (5)
2mp Jo
and, e.g. the Poincaré surface of section method is available.
In the planar, circular, averaged problem R is independent of v. After aver-
aging we have 1 degree of freedom problem

B 1 27p
R(o,S,N) = — R(o,v,\,S,N)d\, (6)
27p Jo
as R is independent of v. Hence
N=PTl _g (7)
p

is an integral of motion yielding the relation between a and e:

Vva (%ﬁ —V1- 62> = const. (8)
and the averaged Hamiltonian

. Pty (1 - p)® .
=AN-—(N-8)- >~ —puR(c,S,N 9
is integrable having 1 degree of freedom. For each constant parameter N the
motion of o and S takes place along the curves of constant R. Such curves were

in principle first drawn by Schubart (1964) for various resonances in z,y plane,

where x = v/2S coso, y = v/2S sino.
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3. Schubart method

The Schubart results for restricted, resonant, circular three-body problem were
improvement of the Andoyer’s (1902) work without restriction to small eccen-
tricities. Schubart applied his averaging to 17 members of the Hilda group (the
3/2 resonance) and found them all on trajectories well protected from close ap-
proaches to Jupiter. The observed small amplitude libration of ¢ about 0 means
that conjunction is never far from the asteroid perihelion. This protecting mech-
anism is very important for the stability of the Hilda group. On the other hand,
similar £ — y graphs were obtained for the 2/1 resonance indicating that similar
protected asteroids should exist there. The circular model failed to explain the
2/1 gap.

Schubart (1968) generalized his approach to the elliptic case. He constructed
integrator solving the resulting averaged equations (at least 2 degrees of freedom
problem — in the planar case). The averaging made the integration much faster
allowing for larger integration step. Giffen (1973) used this integrator and found
the first interesting differences between the 2/1 and 3/2 cases, applying the
sort of surface of section method. In e,o plane he plotted points for which
@ = 0 (and a is at maximum). For initial eccentricity ey € (0.1 — 0.3), ag €
(3.920 — 4.115) he found only regular trajectories in the 3/2 resonance. For the
2/1 resonance he found for eg € (0.1 — 0.34) chaotic trajectories. This was also
the first demonstration of chaos in the asteroid belt. Froeschlé and Scholl (1976,
1981) confirmed the existence of chaotic trajectories for small eccentricities and
showed that the chaotic region is confined to low eccentricities. It means that
the elliptic three-body problem cannot explain the 2/1 Kirkwood gap. This
conclusion was not changed by using 3D elliptic problem. The origin of Giffen’s
chaotic region was explained (Lemaitre and Henrard, 1990) by overlap of the
secondary resonances (between o and w).

On the other hand the 3/1 Kirkwood gap could be explained by elliptic
problem, even if still more effective mechanism was found later. The first indi-
cation was found by Scholl and Froeschlé (1974) who observed peculiar orbits
starting in chaotic region located at small eccentricity for which eccentricity
could increase to 0.3. The interval of integration was about 50000 years so it
could not be clear that these eccentricity jumps take place for much wider set
of trajectories (sometimes as long as 1Myr of small eccentricity mode).

4. Wisdom mapping

Wisdom (1982) used a mapping, which is actually a first order symplectic inte-
grator. It made possible to integrate the equations for truncated elliptic prob-
lem very fast. Wisdom (1987) claims the mapping to be several hundred times
faster than the Schubart’s averaging program. Wisdom could calculate the evo-
lution of a hypothetical asteroid located at the 3/1 resonance (for planar-elliptic
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problem) for more than 1 Myr very fast and he could prove the existence of a
large region where initially small eccentricity goes sooner or later to the Mars
crossing values. Wisdom (1985) explained this behaviour by existence of a large
chaotic zone extending to large eccentricities. Adiabatic approximation was used
to separate ¢ and w oscillations, yielding the so called guiding trajectories. The
existence of chaotic region was related to the critical curve where this approxi-
mation failed. The Wisdom results gave the first satisfactory explanation of one
of the gaps purely on the basis of gravitational forces (no cosmogonical or sta-
tistical hypothesis were used). The Wisdom mapping was generalized to the 2/1
and 3/2 resonance by Murray (1986), to the 5/2 by Sidlichovsky and Melendo
(1986), and general approach to all resonances was presented by Sidlichovsky
(1992). The failure of the truncation of the Hamiltonian at low powers of ec-
centricities used in formulating the mapping was studied in many papers (e.g.
Henrard and Lemaitre, 1987 or Sidlichovsk)’r, 1993). This failure lead Ferraz-
Mello and Sato (1989) to very high eccentricity expansion of the disturbing
function near resonances. Using this expansion Ferraz-Mello and Klafke (1991)
calculated the surfaces of section for the planar, elliptic, three body problem
valid to large eccentricities. Hadjidemetriou (1992) introduced a heuristic cor-
rection term of the sixth degree in e to the Hamiltonian, to obtain fixed points
corresponding to the 3/1 resonant families of periodic orbits in elliptic prob-
lem. Many other interesting papers in the frames of restricted, elliptic, resonant
three-body problem were published. However, we will not go into these results
because it was finally shown that for the origin of the Kirkwood gaps the secular
resonances are important.

5. Secular resonances inside the mean motion resonance

While the elliptic three-body problem seemed to be a promising model for the
3/1resonance, it certainly failed to explain the 2/1 resonance. It was necessary to
construct more complicated models. Morbidelli and Moons (1993) took into ac-
count the secular variations of Jupiter’s orbit due to perturbations from Saturn.
The inclusion of Saturn’s indirect effects introduces three new frequencies: main
frequencies of the Jupiter’s and Saturn’s perihelion g5, g¢ and main frequency
of Saturn’s node sg into the problem. These three frequencies appear in the
decomposition of the Jupiter’s elements. The three corresponding secular reso-
nances are: vs with w = wy, vg with w = wg, v with Q = Qg. The subscripts
S and J stand for Saturn and Jupiter, respectively. The position of these reso-
nances inside the 2/1 and 3/2 resonances was studied by Morbidelli and Moons
(1993). They found large overlap (Fig. 2) for the planar case of the vs and vg
resonances. The chaotic zone for e < 0.15 corresponds to the overlap of secular
resonances. These two chaotic zones are separated by “white zone” which is for
the 2/1 practically depleted while for the 3/2 this is the region where the Hilda
asteroids are concentrated (points in Fig. 2). The corresponding chaotic zone
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Figure 2. The overlap of the secular resonances vs and v in the planar 2/1 resonance
(left) and 3/2 resonance (right) Moons (1996). The chaotic zone resulting from this
overlap extends to very high eccentricities and is separated from the chaotic zone of

overlapping secondary resonances with “white zone” where Hildas can stay in the 3/2
resonance (points).

extends to very large eccentricities. For the 4/1, 3/1, 5/2 and 7/3 resonances
(Moons and Morbidelli, 1995) the chaotic zone extends over nearly all the res-
onant region. The eccentricity of asteroids in this region increases very rapidly
to values 0.8 and in time period 1 Myr they become not only Mars crossers
but even Earth crossers. Thus the mechanism for fast depletion of these gaps is
provided. It is much faster than for models without secular resonances. There is
still one problem with this mechanism. The central region of the “white zone”
for the 2/1 resonance does not contain asteroids at variance with similar zone in
the 3/2 resonance. The study of changes of the main frequency in w variations
with time (which quantify the chaotic diffusion as in regular cases the frequency
would be constant) was performed by Ferraz-Mello et al. (1999) and showed
that the diffusion in the “white zone” of the 2/1 resonance is ten times faster
than in the 3/2 resonance. Moreover, the diffusion in the 2/1 resonance is sensi-
tive to the value of the Jupiter’s Great Inequality (GI). Small change in initial
conditions of Jupiter can lead to reduction of GI-period from 880 days to about
450 yrs. Ferraz-Mello et al. (1999) showed that the diffusion is then much faster.
Similarly, the numerical calculations of maximum Lyapunov exponent (MLCE)
showed that they are larger in the 2/1 “white zone”. These results prove that
the solution of the remaining problem, namely depletion of the “white zone” in
the 2/1 resonance, is the faster diffusion than in the corresponding zone in the
3/2 resonance.
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6. The higher order resonances in the outer asteroid belt

The importance of the higher order resonances was first indicated by Milani and
Nobili (1992) in their study of asteroid 522 Helga. This asteroid has a very short
Lyapunov time T, therefore, its trajectory is quite chaotic. On the other hand
it shows no significant long-term evolution and no macroscopic instability over
a time period longer than 1000 T},. For such behavior Milani and Nobili (1992)
introduced label stable chaos. They showed that the strongest chaotic effects
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Figure 3. Left: Lyapunov time as a function of the semimajor axis in the elliptic
restricted three-body problem. Right: Removal time as a function of semimajor axis.
Solid points are numerical measurements, open points analytical estimates and the
solid triangles in the 12/7 resonance were obtained by integration including the effects
of four giant planets. (From Murray and Holman (1997).)

on Helga are caused by the interaction of the intermediate order resonance
12/7 with Jupiter. Morbidelli and Froeschlé (1996) investigated the relation
between the Lyapunov time and macroscopic instability time, as the observed
stable chaos seemed to contradict the power low suggested by some results
(obtained for much enhanced Jupiter’s mass). They explained this contradiction
by existence of two possible regimes. In the so called Nekhoroshev regime the
macroscopic diffusion time is exponentially long with respect to Lyapunov times.
There is an interesting question: Is there an analogy to the Kirkwood gaps at
the higher order resonances? The Helga example suggests that it is not the
case, at least not for the 12/7 resonance. For the outer belt outside 3.4 AU this
problem was studied by Holman and Murray (1996). They studied the variation
of Lyapunov time as a function of the initial semimajor axis throughout the outer
belt taking into account the giant planets perturbers. They observed dips in the
a—1T7, diagrams corresponding to resonances and verified that the resonant angle
makes transitions between circulation in one sense to circulation in other sense,
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interspaced with brief periods of libration. The width of these dips increased with
the initial eccentricity. The relation of the higher degree of chaos to resonances
was clearly established. Holman and Murray (1996) concluded that although
most of the outer belt asteroids have chaotic trajectories, they lie outside of the
chaotic zones with the shortest Lyapunov time (i.e. outside resonances). The
observed gaps were at the 11/6, 9/5, 7/4, 5/3 and 8/5 Jupiter mean motion
resonances.

Murray and Holman (1997) succeeded in making analytical estimates of the
Lyapunov time for various outer resonances (Fig. 3a) and even in the estimates
of removal time Tg necessary for removal of the asteroid from resonance. Though
these estimates were made in the frames of three-body problem they confirm the
theoretical expectation of the observed gaps. The bodies in the 12/7, 13/8, and
possibly 11/7 resonances, respectively, appear to have removal times greater or
comparable to the lifetime of the solar system.
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Figure 4. Log of the MLCE as a function of semimajor axis (MLCE is in yr~h).
The effect of the outer planets is included. The position of the Jupiter mean motion
resonances and the three-body resonances Jupiter—Saturn-asteroid are indicated. The
three-body resonance is characterized by mj+ms-+m. (From Nesvorny and Morbidelli,
1999a.)

7. Resonances in the inner asteroid belt, three-body
resonances

Morbidelli and Nesvorny (1998a) calculated MLCE for 5700 test particles set
on a regular grid in semimajor axis that ranges from 2.1 to 3.24 AU. The initial
eccentricity was 0.5 and outer planets were taken into account. Fig. 4 shows a
part of their a — log MLE diagram. In the outer belt the chaos is correlated
with the position of the Jupiter mean motion resonances, but there are many
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Table 1. The twenty most chaotic asteroids (Tr > 32000 yr) of the first one hundred
numbered asteroids. Integrations are performed with 7 (column 3) and 4 planets (col-
umn 4). Column 5 shows the resonance with the strongest chaotic effect. The three
body resonances are schematically written as my + m + ms.

No. Name Lr[10® yr] L7[10® yr] Resonance
7 planets 4 planets

2 Pallas 10 23  18:7 with Jupiter

7 Iris 17 >1000 25:49 with Mars

8 Flora 30 >1038 19:33 with Mars
10 Hygiea 16 15 8-3-4 Jupiter—asteroid—Saturn
12 Victoria 33 >994  29:55 with Mars
15 Eunomia 25 >980 7:16 with Mars
23  Thalia 25 >1233
33 Polyhymnia 10 14 22:9 with Jupiter
35 Leukothea 20 17
36  Atlante 4 5 4-2-3 Jupiter—asteroid—Saturn
41 Daphne 14 >360 9:22 with Mars
46 Hestia 30 >1039
50  Virginia 10 12 11:4 with Jupiter
53 Kalypso 19 14  6-2-1 Jupiter-asteroid—Saturn
60 Echo 27 >1159
70  Panopea 24 36  2-1-2 Jupiter—asteroid—Saturn
75 Eurydike 16 >932
78 Diana 13 149
79 Eurynome 32 497
86 Semele 6 6 13:6 with Jupiter

other peaks which were identified with three-body mean motion resonances.
These resonances correspond to the relation between mean motions of Jupiter,
asteroid and Saturn:

mj)'\'] +m;\+m5;\5 ~ 0, (10)

where m, m; and mg are integers and subscripts J and S denote Jupiter and
Saturn.

The analytical model of the three-body resonances was presented by Ne-
svorny and Morbidelli (1999b). The effect of Mars was studied by Nesvorny and
Morbidelli (1999a). They observed many new peaks in a — log M LCE diagram
corresponding to resonances with Mars and even to the three-body resonances
Mars—Jupiter—asteroid. All observed peaks become wider with the increasing
initial eccentricity.
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8. The most chaotic asteroids

Froeschlé et al. (1999) calculated the so-called Fast Lyapunov Indicators for
5400 asteroids without the inner planets. Sidlichovsky and Nesvorny (1999)
calculated MLCE for the first one hundred of the numbered asteroid with the
effect of inner planets. By comparing our results with the list of 848 most chaotic
asteroids (Froeschlé et al., 1999) we found (Sidlichovsky, 1999) that we have
more chaotic asteroids with the inner planets included. Tab. 1 shows the twenty
most chaotic asteroids of the studied sample. Column 3 shows the Lyapunov
time with the inner planets, column 4 without them. Fig. 5a shows the filtered
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Figure 5. a) The filtered semimajor axis of Iris b) The Iris and Mars distance

(low-pass digital filter is used for removing the periods shorter than 82 years)
semimajor axis a of asteroid 7 Iris. The abrupt variation of a takes place exactly
when close approach to Mars is possible. This is a typical behaviour for aster-
oids where chaos is caused by inner planets (in our sample it is always Mars).
From the value of a the responsible resonance may be found. In the case of Iris
we found that it is the Mars mean motion 25/49. Fig. 6 shows the behaviour
of filtered a and the corresponding critical argument o. Such behaviour is the
evidence that this very high order resonance is really responsible for abrupt
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variations of filtered a. Usually more subresonances are librating which indi-
cates their overlap. Sidlichovsky (1999) could determine by this method many
resonances responsible for the chaos of the studied set of asteroids. These reso-
nances are shown in column 5 of Tab. 1.
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Figure 6. a) The filtered semimajor axis of Iris b) The critical argument of Iris:
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9. Diffusion

Morbidelli and Nesvorny in their lecture at this conference demonstrated in
more detail and also on videos how the eccentricity of asteroids in certain diffu-
sion tracks can slowly diffuse to Mars crossing values on the time scales of 100
Myr (see also Migliorini et al., 1998). As the median dynamical lifetime of Mars
crossers is about 25 Myr, this is also a way from the main belt to the NEA’s.
The main diffusion traces are again related to resonances such as the 7/2 with
Jupiter, 5/9 with Mars etc (Nesvorny and Morbidelli, 1999a). Thus the reso-
nances are the very important force leading to the evolution of the structure of
the asteroid belt.
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