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AB S TRACT

In our programme of studying numerically the so-called Bondi±Hoyle accretion in the fully

relativistic regime, we present here the ®rst results concerning the evolution of matter

accreting supersonically on to a rotating (Kerr) black hole. These computations generalize

previous results where the non-rotating (Schwarzschild) case was extensively considered. We

parametrize our initial data by the asymptotic conditions for the ¯uid and explore the

dependence of the solution on the angular momentum of the black hole. Towards quantifying

the robustness of our numerical results, we use two different geometrical foliations of the

black hole space±time, the standard form of the Kerr metric in Boyer±Lindquist coordinates

as well as its Kerr±Schild form, which is free of coordinate singularities at the black hole

horizon. We demonstrate some important advantages of using such horizon-adapted coordi-

nate systems.

Our numerical study indicates that regardless of the value of the black hole spin the ®nal

accretion pattern is always stable, leading to constant accretion rates of mass and momentum.

The ¯ow is characterized by a strong tail shock, which, unlike the Schwarzschild case, is

increasingly wrapped around the central black hole as the hole angular momentum increases.

The rotation-induced asymmetry in the pressure ®eld implies that, besides the well-known

drag, the black hole will experience also a lift normal to the ¯ow direction. This situation

exhibits some analogies with the Magnus effect of classical ¯uid dynamics.

Key words: accretion, accretion discs ± black hole physics ± hydrodynamics ± relativity ±

shock waves ± methods: numerical.

1 INTRODUCTION

In previous work we have extensively studied, numerically, the

relativistic extension of the so-called Bondi±Hoyle accretion

(Hoyle & Lyttleton 1939; Bondi & Hoyle 1944) on to a Schwarzs-

child black hole (Font & IbaÂnÄez 1998a,b, hereafter, FI98a,b). This

type of accretion, also known as wind or hydrodynamic accretion,

appears when a homogeneous ¯ow of matter at in®nity moves non-

radially towards a compact object (the accretor). The matter ¯ow

inside the accretion radius, after being decelerated by a conical

shock ± if, asymptotically, ¯owing supersonically ± is ultimately

captured by the central black hole. Most of the material is dragged

towards the hole at its rear part.

The standard astrophysical scenario motivating such studies

involves mass transfer and accretion in a close binary system that

characterizes compact X-ray sources. In particular, and closely

related to the wind accretion process, one may consider the case in

which the primary star, typically a blue supergiant, lies inside its

Roche lobe and loses mass via a stellar wind. This wind impacts on

the orbiting compact star and a bow-shaped shock front forms

around it by the action of its gravitational ®eld.

Analytic studies of wind accretion started with the pioneering

investigations of Hoyle & Lyttleton (1939) and Bondi & Hoyle

(1944). Three decades later the problem was ®rst numerically

investigated by Hunt (1971). Since then, the contributions of a

large number of authors (see, e.g., Ruffert 1994; Benensohn,

Lamb & Taam 1997; and the references therein) have extended

the simpli®ed (but still globally correct) analytic models. This

helped to develop a thorough understanding of the hydrodynamic

accretion scenario, in its fully three-dimensional character.

These investigations revealed the formation of accretion discs

and the appearance of non-trivial phenomena such as shock

waves or ¯ip-¯op instabilities. Clearly, important progress in

the ®eld was only possible through detailed and reliable

numerical work.
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Most of the existing numerical work has focused on non-

relativistic accretors, i.e., non-compact stars. In those cases it

suf®ces to perform a numerical integration of the equations of

Newtonian hydrodynamics. If, however, the accretor is a neutron

star or a black hole it is clear that relativistic effects become

increasingly more important and, hence, must be included in the

physical model and in the corresponding numerical scheme. New-

tonian hydrodynamics is a valid approximation far from the

compact star but it no longer holds when studying the ¯ow evolution

close to the inner boundary of the domain (the surface of the star). In

the case of a black hole, this boundary is ultimately placed at the

event horizon. Near that region the problem is intrinsically relati-

vistic or even ultrarelativistic according to the velocities involved

(approaching the speed of light), and the gravitational accelerations

signi®cantly deviate from the Newtonian values.

An accurate numerical modelling of the aforementioned scenar-

ios requires a general relativistic hydrodynamical description,

which at the same time is capable of handling extremely relativistic

¯ows. The utility of such methodology would extend to further

interesting astrophysical situations, like stellar collapse or coal-

escing compact binaries. Recently, Banyuls et al. (1997) have

proposed a new framework in which the general relativistic hydro-

dynamic equations are written in conservation form to exploit,

numerically, their hyperbolic character. Taking advantage of the

hyperbolicity of the equations has proven to lead to an accurate

description of relativistic ¯ows, in particular ultrarelativistic ¯ows

with large bulk Lorentz factors.

The detailed description of accretion ¯ows in the near-horizon

region, in particular for rotating black holes, depends crucially on

the coordinate language with respect to which quantities are

expressed. Coordinates adapted to observers at in®nity lead to

metric expressions with singular appearance at the horizon. In

those coordinates one is forced to locate the inner boundary outside

the horizon, which introduces the extraneous question of what

constitutes a sound choice. More importantly, singular systems

introduce, unwarranted, extreme dynamical behaviour. A simple

example is the behaviour of the coordinate ¯uid velocity near the

horizon of a Schwarzschild black hole. In Schwarzschild coordi-

nates it approaches the speed of light, causing the Lorentz factor to

diverge and, ultimately, the numerical code to terminate. Papado-

poulos & Font (1998, hereafter PF98) have recently shown that

coordinates adapted to the horizon region, and hence regular there,

can greatly simplify the integration of the general relativistic

hydrodynamic equations near black holes. With those coordinates

the innermost radial boundary can be placed inside the horizon,

allowing for a clean treatment of the entire physical domain. The

application of this concept to rotating black holes was brie¯y

outlined in Font, IbaÂnÄez & Papadopoulos (1998a, hereafter

FIP98), where we focused on the important advantages of this

new approach to the numerical study of accretion ¯ows.

For our study of relativistic hydrodynamic accretion we integrate

the equations in the ®xed background of the Kerr space±time. We

neglect the self-gravity of the ¯uid as well as non-adiabatic

processes such as viscosity or radiative transfer. Our different initial

models are parametrized according to the value of the Kerr angular

momentum per unit mass. The asymptotic conditions of the ¯ow at

in®nity (in practice a suf®ciently far distance from the black hole

location) need only to be imposed on the ¯uid velocity and sound

speed (or Mach number, indistinctly). We start ®xing these

quantities as well as the adiabatic exponent of the perfect ¯uid

equation of state, focusing on the implications of the rotation of

the hole in the ®nal accretion pattern. Additionally, we also analyse

the in¯uence of varying the adiabatic index of the ¯uid on the

¯ow morphology and accretion rates for a rapidly rotating black

hole.

As an important simplifying assumption, our numerical study is

restricted to the equatorial plane of the black hole. Hence, we adopt

the `in®nitesimally thin' accretion disc setup. This is onlymotivated

by simplicity considerations, before attempting three-dimensional

studies. Existing Newtonian simulations of wind accretion in

cylindrical and Cartesian coordinates using the same setup can be

found in Matsuda et al. (1991) or Benensohn et al. (1997). Within

this assumption we are using a restricted set of equations, where the

vertical structure of the ¯ow is assumed not to depend on the polar

coordinate. This requires that in the immediate neighbourhood of

the equator, vertical (polar) pressure gradients, velocities and

gravity (tidal) terms vanish. Those conditions are, however, strictly

correct at the equator for ¯ows that are re¯ection symmetric there.

In particular, our dimensional simpli®cation still captures the most

demanding aspect of the Kerr background, which is encoded in the

large azimuthal shift vector near the horizon.

The present investigation extends our previous studies (FI98a,b)

of Bondi±Hoyle accretion ¯ows to account for rotating black holes

with arbitrary spins. We perform computations using both the

standard Boyer±Lindquist (BL) form of the metric as well as the

Kerr±Schild (KS) form. We develop the procedure for comparing

the two computations once a stationary ¯ow pattern has been

achieved. The computations reported here constitute the ®rst

simulations of non-axisymmetric relativistic Bondi±Hoyle accre-

tion ¯ows on to rotating black holes.

Related work in the literature has explored the potential ¯ow

approximation (Abrahams & Shapiro 1990). Within this formula-

tion, in which the hydrodynamic equations transform into a scalar

second-order differential equation for a potential, Abrahams &

Shapiro (1990) computed a number of stationary and axisymmetric

¯ows past a hard sphere moving through an asymptotically homo-

geneous medium. For a general polytropic equation of state the

potential equation is non-linear and elliptic but for the particular

case p � r (p being the pressure and r the density) the equation is

linear. In this case they could solve it, analytically, for steady-state

¯ows around hard spheres in Kerr (and Schwarzschild) geome-

tries. Additionally, recent numerical studies of hydrodynamical

¯ows in the Kerr space±time, in the context of accretion discs, can

be found in Yokosawa (1993) or Igumensshchev & Beloborodov

(1997).

The organization of the paper is as follows: in Section 2 we

present the system of equations of general relativistic hydro-

dynamics written as a hyperbolic system of conservation laws.

They are specialized for the equatorial plane of the Kerr metric. We

write down the line element and the hydrodynamic equations in

both the standard BL coordinates and the proposed KS system.

Transformations of the ¯uid quantities between the two systems are

shown here. Pertinent technical details are moved to the Appendix.

In addition, all numerical issues related to the code, boundary

conditions and initial setup are also described in Section 2. The

results of the simulations are presented and analysed in Section 3.

Those include the description of the ¯ow morphology and

dynamics, the computation of the accretion rates of mass, linear

momentum and angular momentum, and the comparison of differ-

ent hydrodynamic quantities in the two coordinate systems we use.

Additionally, we brie¯y describe in Section 3 the analogy between

hydrodynamical ¯ows past a rotating black hole and the Magnus

effect of classical ¯uid dynamics. Finally, Section 4 summarizes the

main conclusions of this work and outlines future directions.
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2 EQUATIONS AND NUMERICAL ISSUES

2.1 The Kerr metric in various coordinate systems

In BL �t; r; v;f� coordinates, the Kerr line element, ds2 �

gmndx
m
dx

n
, reads

ds2 �ÿ
Dÿ a

2 sin2 v

%2
dt2 ÿ 2a

2Mr sin2 v

%2
dtdf

�
%
2

D
dr2 � %

2dv2 �
S

%2
sin2 v df2

; �1�

with the de®nitions:

D ; r
2
ÿ 2Mr � a

2
; �2�

%
2
; r

2
� a

2 cos2 v; �3�

S ; �r
2
� a

2
�
2
ÿ a

2D sin2 v; �4�

where M is the mass of the hole and a the black hole angular

momentum per unit mass (J=M). Throughout the paper we are using

geometrized units (G � c � 1). Greek (Latin) indices run from 0 to

3 (1 to 3).

This metric describes the space±time exterior to a rotating and

non-charged black hole. It is characterized by the presence of an

azimuthal shift term, bf ; gtf. Themetric (1) is singular at the roots

of the equation D � 0, which correspond to the horizons of a

rotating black hole,

r � r6 � M 6 �M
2
ÿ a

2
�
1=2
:

This is the well-known coordinate singularity of the black hole

metrics.

A coordinate transformation given by

d Äf � dfÿ
a

D
edr; �5�

dÄt � dt ÿ e
1� Y

1� Y ÿ Z
ÿ
1ÿ Z

k

1ÿ Z

" #

dr; �6�

where Y � a
2
sin

2
v=%

2
, Z � 2Mr=%

2
, k is a non-negative integer

and e � ÿ1 ��1�, regularizes the future (past) horizon of a rotating

black hole (PF98). With the above Ansatz, the metric (1) becomes,

in the new coordinates �Ät; r; v; Äf�,

ds
2
�ÿ �1ÿ Z�dÄt

2
� %

2
dv

2
� sin

2
v%

2
�1� Y�1� Z��d Äf

2

�
Z
2k
ÿ 1

Z ÿ 1
dr2 ÿ 2a sin2 v ZdÄtd Äfÿ 2eZkdÄtdr

� 2ae sin2 v
Z
k�1

ÿ 1

Z ÿ 1
d Äfdr: �7�

This form of the metric is now regular at the horizon for any choice

of k.

The f3� 1g decomposition (see, e.g., Misner, Thorne &

Wheeler 1973) of this form of the metric leads to a spatial three

metric with non-zero elements given by

grr �
Z
2k
ÿ 1

Z ÿ 1
; �8�

gr Äf � ae sin2 v
Z
k�1

ÿ 1

Z ÿ 1
; �9�

gvv � %
2

�10�

g Äf Äf � %
2 sin2 v �1� Y�1� Z��: �11�

The components of the shift vector are given by

bi � ÿeZk
; 0;ÿa sin2 v Z

ÿ �

; �12�

and the lapse function is given by

a2
�

Z ÿ 1

Z2k ÿ 1ÿ YZ2�Zkÿ1 ÿ 1�=�Z ÿ 1�
: �13�

The form of the f3� 1g quantities illustrates that, for coordinate

systems regular at the horizon, the 3-metric acquires a non-zero off-

diagonal term, whereas the shift vector acquires a radial component.

The case k � 1 corresponds to the so-called KS form of the Kerr

metric in which the line element reads

ds2 �ÿ 1ÿ
2Mr

%2

� �

dÄt2 ÿ
4Mar

%2
sin2 v dÄtd Äf�

4Mr

%2
dÄtdr

� 1�
2Mr

%2

� �

dr2 ÿ 2a 1�
2Mr

%2

� �

sin2 v drd Äf

� %
2dv2 � sin2 v %

2
� a

2 1�
2Mr

%2

� �

sin2 v

� �

d Äf2
; �14�

and the corresponding f3� 1g quantities, considerably simpler

than in the general case, read

grr � Z � 1; �15�

gr Äf � ae sin
2
v �Z � 1�; �16�

gvv � %
2
; �17�

g Äf Äf � %
2 sin2 v �1� Y�1� Z��d Äf2

; �18�

bi � �ÿeZ; 0;ÿa sin2 v Z�; �19�

a2
� 1=�Z � 1�: �20�

It has been argued in PF98 and FIP98 that numerical computa-

tions of matter ¯ows in black hole space±times bene®t from the use

of systems regular at the horizon. At the same time, the simplicity of

the BL metric element has led to a large body of intuition and the

development of tools based on that system (e.g., to describe the

appearance of accretion discs near the horizon). Hence, it appears

useful to establish the framework for connecting results and

simulations in the two different computational approaches. This

is in general possible with the appropriate use of the explicitly

known coordinate transformations (equations 5 and 6). A very

important special case occurs for hydrodynamic ¯ows that

become, eventually, stationary. The stationarity permits one to

map the solutions on to the same physical absolute space. Integrat-

ing the transformation (5) we obtain the angular coordinate of a

given physical point in the two coordinate systems,

f � Äfÿ
a

2
�����������������

M2 ÿ a2
p log

r ÿM ÿ
�����������������

M2 ÿ a2
p

r ÿM �
�����������������

M2 ÿ a2
p

 !

: �21�

In order to compare the velocity components between the two

systems we ®rst transform the components of the ¯uid four velocity,

u
m, according to

u
t
� u

Ät
ÿ

2Mr

D
u
Är
; �22�

u
f
� u

Äf
ÿ

a

D
u
Är
; �23�

u
r
� u

Är
; �24�

u
v
� u

Äv
: �25�
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Notice that, although the radial and polar components do not change

under the coordinate transformation, we are explicitly using a tilde

on r and v to indicate KS coordinates. The corresponding transfor-

mation of the Eulerian velocity components is given by

v
r
� W v

Är
ÿ

b
Är

aKS

� �

; �26�

v
v
� Wv

Äv
; �27�

v
f
� W v

Äf
ÿ

a

D
v
Är

� �

ÿW
b
Äf

aKS

ÿ
a

D

b
Är

aKS

 !

�
bf

aBL

; �28�

where v
r , vv and v

f are related to the proper velocity of the ¯uid

according to

v
i
�

u
i

aut
�
bi

a
; �29�

and W is the ratio between the Lorentz factors, at a given physical

point, in the two coordinate systems, given by

W;

WBL

WKS

�
aBL

aKS

ÿ
2Mr

D
aBL v

Är
ÿ

b
Är

aKS

� �

: �30�

The mapping between the two coordinate systems necessarily

breaks down at the horizon. Hence comparisons will be restricted

to some exterior domain. Similar expressions give the inverse

map.

2.2 Hydrodynamic equations

Following the general approach laid out in Banyuls et al. (1997), we

now restrict the domain of integration of the hydrodynamic equa-

tions to the equatorial plane of the Kerr space±time, v � p=2. In so

doing they adopt the balance law form

¶U�w�

¶t
�

¶�aFr
�w��

¶r
�

¶�aFf
�w��

¶f
� S�w�; �31�

where a is, again, the lapse function of the space±time, de®ned as

a2
;ÿ1=gtt. In equation (31) the vector of primitive variables is

de®ned as

w � �r; vr ; vf; «�; �32�

where r and « are, respectively, the rest-mass density (not to be

confused with the geometrical factor %) and the speci®c internal

energy, related to the pressure p via an equation of state which we

chose to be that of an ideal gas,

p � �gÿ 1�r«; �33�

with g being the constant adiabatic index.

On the other hand, the vector of unknowns (evolved quantities) in

equation (31) is

U�w� � �D; Sr ; Sf; t�: �34�

The explicit relations between the two sets of variables, U and w,

are

D � rW ;

Sj � rhW2
vj �j � r;f�; �35�

t � rhW2
ÿ pÿ D;

with W being the Lorentz factor, W ; au
t
� �1ÿ v

2
�
ÿ1=2

, with

v
2
� gijv

i
v
j. The speci®c form of the ¯uxes, Fi, and the source

terms, S, are given in the Appendix for the two different representa-

tions of the Kerr metric we use. Further details about the equations

can be found in Banyuls et al. (1997).

2.3 Numerical issues

We solve system (31) on a discrete numerical grid. To this end, we

take advantage of the explicit hyperbolicity of the system in order to

build up a linearized Riemann solver. Schemes using approximate

Riemann solvers are based on the characteristic information con-

tained in the system of equations. With this strategy, physical

discontinuities appearing in the solution, e.g., shock waves, are

treated consistently (shock-capturing property). An explicit formu-

lation of our numerical algorithm can be found in FI98a. Tests of the

code can be found in Font et al. (1994) and Banyuls et al. (1997).We

note that in the present work we are using the eigen®elds reported in

Font et al. (1998b), as they extend those presented in Banyuls et al.

(1997) to the case of non-diagonal spatial metrics (such as the KS

line element adopted here).

When using the BL coordinates we choose the inner radius of the

computational domain suf®ciently close to the horizon. In our

computations we have found that the code was very sensitive to

this location, not allowing in some cases proximity to r� without

numerical inaccuracies. The particular values we chose in our

simulations for the inner and outer radial boundaries are summar-

ized in Table 1.

Resolution requirements near the horizon motivate the use of a

logarithmic radial coordinate for the discretization. This is thewell-

known tortoise coordinate, r,, which is de®ned by

dr, � �r
2
� a

2
�dr=D;

where r is the radial BL coordinate. This choice permits one to use a

dense grid of points near the horizon and has been used extensively

in numerical computations (see, e.g., Petrich et al. 1989; Abrahams
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Table 1. Initial models. Here g is the adiabatic exponent of the ¯uid,M¥ is the asymptoticMach number, v¥ is the asymptotic ¯ow velocity, a is the Kerr

angular momentum parameter, r� indicates the location of the horizon, and rmin and rmax are the minimum and maximum radial values of the

computational domain. BL stands for Boyer±Lindquist and KS for Kerr±Schild. All distances are measured in units of the mass of the hole, which we

chose equal to 1. Note that model 5 represents a `naked' singularity �a > 1�.

Model g M¥ v¥ a r� rmin(BL) rmax(BL) rmin(KS) rmax(KS)

1 5/3 5.0 0.5 0 2 2.2 38.5 1.8 50.9

2 5/3 5.0 0.5 0.5 1.87 2.08 34.7 1.8 50.9

3 5/3 5.0 0.5 0.9 1.44 1.89 34.9 1.4 50.9

4 5/3 5.0 0.5 0.99 1.14 1.83 35.0 1.14 50.9

5 5/3 5.0 0.5 1.1 - - - 1.0 50.9

6 4/3 5.0 0.5 0.99 1.14 - - 1.0 50.9

7 2 5.0 0.5 0.99 1.14 - - 1.0 50.9



& Shapiro 1990; Krivan et al. 1997; FI98a,b). The coordinate

singularity of the metric has an immediate effect on the hydro-

dynamic quantities. The ¯ow speed approaches the speed of light

and, in consequence, the Lorentz factor tends to in®nity. As shown

by equation (35) this variable couples, in a non-linear way, the

system of equations of relativistic hydrodynamics. Instabilities

caused by extreme behaviour of this quantity lead to the ultimate

termination of the code.

We use a typical grid of 200 radial zones and 160 angular zones,

in both coordinate systems. The ®nal accretion pattern is found to be

in the convergence regime already with a coarser angular grid of

about 80 zones. However, we employ a ®ner angular grid in order to

obtain sharper shock pro®les. We only need to impose boundary

conditions along the radial direction. These are the same as those

used in FI98b. Namely, at the inner boundary we use out¯ow

conditions, where all variables are linearly extrapolated to the

boundary zones. At the outer boundary we use the asymptotic

initial values of all variables, for the upstream region, whereas a

linear extrapolation is performed at the downstream region.

3 S IMULATIONS

3.1 Initial setup

As usual in studies of wind accretion the initial models are

characterized by the asymptotic conditions upstream the accretor.

We choose as free parameters the asymptotic velocity v¥, the sound

speed cs¥ and the adiabatic index g. The ®rst two parameters ®x the

asymptotic Mach number M¥. Now, we have an additional para-

meter, which is the speci®c angular momentum of the black hole, a.

The initial models are listed in Table 1. The ®rst ®ve models in the

table describe the same thermodynamical ¯ow con®guration. We

use this subset of models to illustrate the dependence of the ¯ow

morphology and accretion rates on a. The black hole spin increases

from model 1 (no rotation) to model 5. Note that this last model

represents a naked singularity, as a > M. This model has been

evolved using only KS coordinates. The last two models in the table

together with model 4 allow us to study the dependence of our

accretion results on the adiabatic index of the ¯uid. In these three

cases, we consider a rapidly rotating black hole with a � 0:99M.

The parameter a is always chosen to be positive, which, in the

®gures presented below, indicates that the rotational sense of

the black hole is always counter-clockwise.

One of the main aims of the present work is to compare the

morphology of the accretion ¯ow in two different foliations of the

black hole space±time. In order to do this comparison properly we

choose the same initial (uniform) velocity distribution in both

coordinate systems. In BL coordinates the velocity ®eld is given by

v
r
�r;f� �

������

grr
p

v¥ cosf; �36�

v
f
�r;f� � ÿ

��������

gff
q

v¥ sinf; �37�

with g
ij
� g

ij
� b

i
b
j
=a

2
. Similarly, in KS coordinates, the initial

velocity ®eld, which looks algebraically more complicated because

of the off-diagonal gr Äf term, reads

v
r
�r; Äf� � F1�r�v¥ cos Äf� F2�r�v¥ sin Äf; �38�

v
Äf
�r; Äf� � ÿF3�r�v¥ sin Äf� F4�r�v¥ cos Äf; �39�

with

F1�r� �
1
������

grr
p ; �40�

F4�r� � ÿ
2gr Äf
������

grr
p

g Äf Äf

; �41�

F3�r� �
F1grr � F4gr Äf

�����������������������������������������������������������������������������������

�grrg Äf Äf ÿ g2
r Äf
��F2

1grr � F2
4g Äf Äf � 2F1F4gr Äf�

q ; �42�

F2�r� �
F3F4g Äf Äf � F1F3gr Äf

F1grr � F4gr Äf
: �43�

Both velocity ®elds guarantee initially v
2
� v

2
¥.

3.2 Flow morphology

In Fig. 1 we display the ¯ow pattern for the ®rst four models of

Table 1, which corresponds to a ®nal time of 500M. This is a

Cartesian plot where the x- and y-axes are, respectively, r cosf and

r sinf. We plot isocontours of the logarithm of the rest-mass

density, properly scaled by its asymptotic value. These results are

obtained employing BL coordinates. The outer domain of this

®gure corresponds to 20M. Similarly, in Fig. 2 we plot a close-up

view of that domain, up to a distance of 4M. The dotted innermost

line, in both ®gures, represents the location of the horizon r�.

All models are characterized by the presence of a well-de®ned

tail shock. As already shown in FI98b, in non-axisymmetric

relativistic Bondi±Hoyle accretion simulations, this shock appears

stable to tangential oscillations, in contrast to Newtonian simula-

tions with tiny accretors (see, e.g., Benensohn et al. 1997 and

references therein). By direct inspection of these ®gures, the effect

of the rotation of the black hole on the ¯ow morphology becomes

clear. The shock becomes wrapped around the central accretor as

the black hole angularmomentum a increases. The effect is, though,

localized to the central regions. In the a � 0:5 plot we see that the

morphology of the shock deviates from the pattern of the non-

rotating case inside approximately r � 4M. For a � 0:9, the region

of in¯uence extends slightly further out, to about r � 5M. At the

outer regions, as expected, the overall morphology is remarkably

similar for all values of a. This is not surprising, since the Kerr

metric rapidly approaches the Schwarzschild form for radii large

compared to r�. This fact, in turn, shows that possible telltale

signals of a rotating black hole, in an astrophysical context, demand

an accurate description of the innermost regions.

In Figs 3 and 4 we show the ®nal con®guration for the density for

the same initial setups as in Figs 1 and 2, but now for simulations

employing the KS coordinate system. We construct the plots using

the standard transformation between KS and Cartesian coordinates

x� iy � �r � ia� sin v e
i Äf

(Hawking & Ellis 1973) with v � p=2 .

Again, the dotted line in these plots indicates the position of r�.

Notice that in KS coordinates the computation extends inside the

horizon (this is more clearly seen in Fig. 4). The ¯ow morphology

shows smooth behaviour when crossing the horizon, all matter

®elds being regular there. We observe here the same con®nement of

rotational effects to the innermost regions around the black hole.

Notably though, the shock structure appears less deformed, espe-

cially the lower component. The reason is that in the BL description

of the black hole geometry, the dominant effects near the horizon

are purely kinematic (associated with coordinate system patholo-

gies) and disappear with the adoption of a regular system. Clearly,

the accurate description of near-horizon effects can be achieved

more easily when using horizon-adapted coordinate systems.

As in the non-rotating studies (FI98a,b), we also notice that the

most ef®cient region of the accretion process is the rear part of the

black hole. The material ¯owing inside some radius smaller than
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Figure 1. Flow morphology at a ®nal time t � 500M. We plot 20 isocontours of the logarithm of the

density (scaled to its asymptotic value) for the ®rst four models considered in Table 1 (a � 0; 0:5; 0:9 and

0:99, in units of the mass of the black hole). The presence of a well-de®ned tail shock is clearly noticeable

in all cases. The minimum value of log r for all models isÿ0:26 whereas the maximum, always found in

the rear (right) part of the black hole, increases with a: 1:65, 1:69, 1:75 and 1:77 for models 1 to 4,

respectively. The domain of the plot extends up to 20M. Asymptotically the ¯owmoves from left to right.

By the ®nal time of 500M the ¯ow pattern is already stationary. This ®gure corresponds to a simulation

performed with Boyer±Lindquist coordinates. The innermost dashed line indicates the position of the

black hole horizon.

Figure 2. A zoomed view of Fig. 1. Now the domain of the plot extends up to 4M. The effects of the

rotation of the black hole on the ¯ow morphology become increasingly evident in the regions closer to

the black hole horizon. Its location is indicated by the dashed line. Note that the inner radius of the

computational domain is, in BL coordinates, clearly separated from r�, specially for rapidly rotating

holes.



9
2
6

J.
A
.
F
o
n
t,
J.
M
.
Ib
a Ân Äe

z
a
n
d
P
.
P
a
p
a
d
o
p
o
u
lo
s

q
1
9
9
9
R
A
S
,
M
N
R
A
S
3
0
5
,
9
2
0
±
9
3
6

Figure 3. Flow morphology at t � 500M for a simulation using Kerr±Schild coordinates. As in Fig. 1

we plot 20 isocontours of the logarithm of the scaled rest-mass density for the ®rst four models of Table

1. The minimum value of log r for all models is now ÿ0:16. The maximum, again, increases with a:

1:96, 1:97, 2:13 and 2:27 for models 1 to 4, respectively. The domain of the plot extends up to 20M. The

horizon of the black hole is now included in the computational domain. The shock extends all theway to

the horizon, r�, which is indicated by the innermost dashed line.

Figure 4. A zoomed view of Fig. 3. Now the domain of the plot extends up to 4M. As in Fig. 2, the

effects of the angular momentum of the black hole on the accreting matter are more noticeable in the

close vicinity of the black hole. The horizon is again represented by the innermost dashed line. Contrary

to the BL evolutions, the inner radius of the domain now includes the black hole horizon. Notice that the

presence of the horizon is totally `transparent' to the matter ¯ow.



the characteristic impact parameter of the problem (say, the accretion

radius, see below), after changing its sense of motion as a result of

the strong gravitational ®eld, is accumulated behind the black hole

and is gradually accreted. We ®nd that this maximum density

always increases with a and its functional dependence is clearly

greater than linear. The speci®c values we obtain can be found in the

corresponding captions of Figs 1 to 4. Typical density enhance-

ments in the post-shock region (BL coordinates) with respect to the

asymptotic density range in between 1:65 (a � 0) and 1:77

(a � 0:99) (in logarithmic scale).

Now we turn to the description of the ¯ow morphology for

different values of g, the ¯uid adiabatic exponent. The accretion

patterns for models 6 (g � 4=3), 4 (g � 5=3) and 7 (g � 2) are

depicted in Fig. 5. Once more, the variable we show in this ®gure is

the logarithm of the scaled rest-mass density. Clearly visible in this

plot are the larger shock opening angles for the larger values of g.

This is explained by the enhanced values of the pressure inside the

shock `cone" as g increases. We already noticed this behaviour in

the non-rotating simulations performed in FI98a,b. Now, the larger

values of g, combined with the rapid rotation of the black hole

(a � 0:99), wrap the upper shock wave around the accretor. This

effect is more pronounced for the larger g values. We also note that

the lower shock wave is less affected by the increase in g. While it

still opens to larger angles, the existing rotational ¯ow counteracts

the effects of the pressure force, keeping its position almost

unchanged.

The enhancement of the pressure in the post-shock zone is

responsible for the so-called `drag' force experienced by the

accretor.We notice here that the rotating black hole is redistributing

the high-pressure area, with non-trivial effects on the nature of the

drag force. Whereas in the Schwarzschild case the drag force is

alignedwith the ¯ow lines, pointing in the upstream direction, in the

Kerr case we notice a distinct asymmetry between the corotating

and counter-rotating side of the ¯ow. The pressure enhancement is

predominantly on the counter-rotating side. In Fig. 6 this observa-

tion is made more precise with the examination of the pressure

pro®le, at the innermost radius, for the a � 0:99 case. Three

different g values are illustrated, showing the strong dependence

of the pressure asymmetry on the adiabatic index. This is particu-

larly clear in the limiting case g � 2 (dashed line). We observe a

pressure difference of almost two orders of magnitude, along the

axis normal to the asymptotic ¯ow direction. The implication of this

asymmetry is that a rotating hole moving across the interstellar

medium (or accreting from a wind) will experience, on top of the

drag force, a `lift' force, normal to its direction of motion (to the

wind direction).

It is interesting to note that this effect bears a strong super®cial

resemblance to the so-called `Magnus' effect, i.e., the experience of

lift forces by rotating bodies immersed in a stream ¯ow. There, the

lift force results from the increased speed of the ¯ow on the

corotating side (owing to friction with the object), and the increase

of pressure on the counter-rotating side (which follows immediately

from the Bernoulli equation). We note that the direction of the lift,

in relation to the sense of rotation, agrees in both contexts. We

caution though that the underlying causes may be very different. In

the black hole case the ¯ow is supersonic and there is no boundary

layer.

Completing the study of the broadmorphology of the ¯ow and its

dependence on the black hole spin, we extend the value of a above

M, choosing, in particular, a � 1:1M (model 5). This case corre-

sponds to accretion on to a naked singularity. Although from the

theoretical point of view such objects are believed not to exist in

nature (according to the cosmic censorship hypothesis, all physical

singularities formed by the gravitational collapse of non-singular,

asymptotically ¯at initial data must be hidden from the exterior

world inside an event horizon), we none the less decided to perform

such a computation, in order to assess the behaviour of the code in

this regime, and to explore the extrapolation of previous simula-

tions. The resulting morphology for this simulation, using KS

coordinates, is plotted in Fig. 7. We show isocontours of the

logarithm of the rest-mass density in a region extending 4M in

the x and y directions from the singularity. In this situation, there is

an ambiguity as towhere to place the inner boundary of the domain.

The closer one gets to r � 0 the stronger the gravity becomes (with

in®nite tidal forces at the singularity). This introduces important
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Figure 5. Stationary ¯ow morphology for three different values of g, the

¯uid adiabatic index: 4=3 (top), 5=3 (middle) and 2 (bottom). The solution is

depicted at a ®nal time t � 500M. In every casewe plot 20 isocontours of the

logarithm of the normalized density fromÿ0:18 to 2:73 (g � 4=3),ÿ0:16 to

2:27 (g � 5=3) andÿ0:15 to 2:22 (g � 2). The domain extends fromÿ4M to

4M. The black hole horizon is indicated by the dashed circle. The larger the

value of g, the larger is the shock opening angle and the morewrapped is the

upper shock around the black hole.



resolution requirements on the numerical code. For this reason we

chose rmin � M, in accordance with the location of the inner

boundary in the maximal case a � M. As can be seen from Fig. 7

the ¯ow morphology for this model follows the previous trend

found for lower values of a (models 1 to 4): the shock appears

slightly more wrapped (around the r � M circle) and the maximum

rest-mass density in the rear part of the accretor increases.

3.3 Accretion rates

We compute the accretion rates of mass, radial momentum and

angular momentum. The procedure of computation can be found in

FI98a and FI98b. The rates are typically evaluated at the accretion

radius, ra, de®ned as

ra �
M

v2¥ � c2s¥
: �44�

For our models ra � 3:85M. The results are plotted in Figs 8±10 for

BL coordinates and in Figs 11±13 for the KS system. In these

®gures we show the time evolution of those rates for the whole

simulation. For comparison purposes, the radial and angular

momentum accretion rates have been scaled to one (scaling by a

factor of 1250 and 80, respectively in the BL coordinate runs;

correspondingly, with KS coordinates these factors are 300 and

400). We have checked that, as expected, the qualitative behaviour

of the accretion rates is independent of the radius at which they are

computed, as long as a stationary solution is found.

All rates show a clear transition to a ®nal stationary state, around

the time interval 100M±200M, regardless of the coordinate system

used. The non-rotating case (a � 0) shows no signs of oscillations,

leading to remarkably constant values for all rates (again indepen-

dent of the coordinates). Non-zero a values are seen to show

considerable more oscillatory behaviour around some average

value. The reason behind this effect is purely numerical. The

black hole geometry leads, in the rotating case, to a signi®cantly

larger number of non-zero Christoffel symbols, which appear

explicitly in the source terms of the hydrodynamic equations (see

the Appendix). Increasing the resolution (in particular the angular

one) considerably reduces the amplitude of the oscillations, as can

be read off Fig. 14.

The mass accretion rates have been scaled to the canonical value

proposed by Petrich et al. (1989). In KS coordinates (Fig. 11) this

value is larger than in BL coordinates (Fig. 8). However, this is just a

coordinate effect as we show in the next section. In addition, in

Fig. 8 there appears to be a certain trend on the variation of the mass

rate with a, being (slightly) larger for larger values of a. This is not

the case for KS coordinates, where the normalized mass accretion

rate is around 156, regardless of the value of a.Wewill come back to

this issue later in this section.

In Fig. 9 we plot the (scaled) radial momentum accretion rate

for BL coordinates. The maximum drag rate is obtained for non-

rotating holes. As for the mass accretion rate, the radial momen-

tum rate also shows a clear dependence on a, especially when

using BL coordinates. This dependence is not so clear for KS

coordinates (see Fig. 12). This discrepancy will be explained

below. Note also that, because of the different scale factors

used, the radial momentum rates in Fig. 9 are a factor of 4 larger

than those of Fig. 12.

Finally, the angular momentum accretion rate (Figs 10 and 13) is

clearly non-zero for rotating black holes in contrast to the a � 0
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Figure 6. Pressure pro®le at the innermost radius for the a � 0:99 case. Three different values of g are depicted: g � 4=3 (solid line), g � 5=3 (dotted line) and

g � 2 (dashed line). Note the pressure difference between the counter- and corotating sides for the g � 2 case. This originates a lift force on the black hole. This

mechanism is analogous to the Magnus effect of classical ¯uid mechanics.

Figure 7. Morphology of the supersonic accretion ¯ow on to a naked

singularity (a � 1:1M, model 5) at a ®nal time t � 500M. Shown are 20

isocontours of the logarithm of the normalized density from ÿ0:16 to 2:39.

The domain extends from ÿ4M to 4M. Note that the ¯ow solution follows

the same trend as Fig. 4: the upper part of the shock wave moves a bit more

towards the front of the `hole' as a consequence of both the larger spin and

pressure gradient at the rear part.



case. For both coordinate systems it exhibits a clear trend: the larger

the value of a the larger the angular momentum rate. Owing to the

different scales used in the different coordinates, the angular

momentum rates in Fig. 10 are a factor of 5 smaller than those in

Fig. 13.

To clarify the discrepancies found in the computation of the

accretion rates in the different coordinate systems, we plot in Fig. 15

the dependence of those rates with the speci®c angular momentum

of the black hole. In order to do so, we average the rates over the

®nal 200M of the evolution, once the steady state is well estab-

lished. Results for the BL system are depicted with a ®lled triangle

whereas results for the KS system are represented by ®lled circles.
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Figure 8. Normalized mass accretion rates as a function of (coordinate) time for the ®rst four models in Table 1. The ®gure corresponds to the simulation

employingBoyer±Lindquist coordinates. Regardless of the angularmomentum of the black hole, all models present, as expected, a similar ®nal steady-state rate.

By averaging over the ®nal 200M time interval the maximum differences are found to be 1:5 per cent. For clarity purposes the y-axis has been offset. The non-

rotating model is remarkably stable. The amplitude of the oscillations increase as a increases.

Figure 9. Scaled radial momentum accretion rates as a function of (coordinate) time for the ®rst four models of Table 1. The ®gure corresponds to the simulation

employing Boyer±Lindquist coordinates. As already shown in the mass accretion rate (Fig. 8) all models present a similar ®nal steady-state rate. Again, the non-

rotating model shows the most stable behaviour.

Figure 10. Scaled angular momentum accretion rates as a function of (coordinate) time for the ®rst four models of Table 1. The ®gure corresponds to the

simulation employing Boyer±Lindquist coordinates. The accretion rate of angular momentum also proceeds in a stationary way. It vanishes for Schwarzschild

black holes and increases as the angular momentum of the black hole increases.



We only consider the subset of models 1±5 in Table 1. As in the

previous ®gures, the momentum accretion rates have been properly

scaled with adequate factors. The radial momentum rates presented

in this plot are computed both at ra (solid lines) and at rmax (dashed

lines). From this ®gure the non-dependence of the mass accretion

rate on a becomes more clear. This is the expected result, as the

mass accretion rate is an integral invariant, and hence does not

change by deformations of the surface over which it is computed.

Deforming this surface outwards, by increasing the radius at which

the mass accretion rate is measured, must lead to the same result, so

long as the solution is in a steady state. At suf®ciently large radii, the

rotating aspect of the metric is essentially `hidden" and the accre-

tion rate should depend only on the total mass of the central

potential. We conclude that the larger discrepancies found when

computing the mass accretion rate in the BL coordinates (see Fig. 7

for models 1 to 4) arise purely for numerical reasons, induced for

instance by themore extreme dynamical behaviour of some ®elds in

the near zone of the black hole potential. However, the deviations
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Figure 11. Normalized mass accretion rates as a function of (coordinate) time for the ®rst four models of Table 1. The ®gure corresponds to the simulation

employing Kerr±Schild coordinates. For clarity purposes the y-axis has been offset. All models present a fairly constant value, the maximum differences being

less than 1:2 per cent.

Figure 12. Scaled radial momentumaccretion rates as a function of (coordinate) time for the ®rst fourmodels of Table 1. The ®gure corresponds to the simulation

employing Kerr±Schild coordinates. Again, the stability achieved for the non-rotating case is noticeable.

Figure 13. Scaled angular momentum accretion rates as a function of (coordinate) time for the ®rst four models of Table 1. The ®gure corresponds to the

simulation employing Kerr±Schild coordinates.
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Figure 14.Mass accretion rate as a function of (coordinate) time for model 4 of Table 1. All models with aÞ 0 present a much more oscillatory behaviour than

the non-rotating one. This ®gure shows results obtained with three different angular resolutions. As the resolution is increased the amplitude of the oscillations is

signi®cantly reduced, which is a clear indication of the numerical nature of such oscillations. Note that, for clarity, both axes have been offset.

Figure 15.Averaged accretion rates of mass (top), linear momentum (middle) and angularmomentum (bottom) versus the black hole spin. All rates are averaged

at the ®nal 200M of the evolution. They are all computed at the accretion radius except for the linear momentum rate, which is also computed at rmax (dashed

lines). The non-dependence of themass and linearmomentum rates on a is noticeable, especially for theKS coordinate system. For the linearmomentum rate this

is particularly true when computed at large radii (rmax, dashed lines) but does not hold, for numerical reasons, at small radii (ra, solid lines).



never exceed a few per cent, more speci®cally, 1:5 per cent for the

BL system simulation and 1:2 per cent using KS coordinates.

Coming back to the radial momentum accretion rate computa-

tion, we have veri®ed that its dependence on the black hole angular

momentum is strongly related to the radius at which it is computed.

We ®nd that at large radii its value remains remarkably constant for

all values of a. In Figs 9 and 12we plot the drag rate computed at the

accretion radius. In BL coordinates (Fig. 9) we get a 15 per cent

difference between the a � 0 and a � 0:99 cases. For KS coordi-

nates (Fig. 12) this difference is reduced to 5 per cent. However, if

the radial momentum accretion rate is computed at rmax (as in

Fig. 15, dashed lines), we obtain signi®cantly smaller differences: 7

per cent for BL coordinates and only 0:4 per cent for KS coordi-

nates.

We quantify next how the mass accretion rate depends on the

arbitrary location (but necessarily larger than r�) of the inner

boundary in BL coordinates. Placing this inner boundary at

r � 2:1M for model 3 we ®nd the surprising result that, although

the broad ¯owmorphology looks qualitatively similar in both cases,

the accretion rates strongly depend on the value of the innermost

radius. We note that a small change in location (such as from 1:89M

to 2:1M) introduces, roughly, a 10 per cent difference on the

computed mass accretion rate.

Fig. 15 also illustrates the dependence of the angular momentum

accretion rate with the spin of the black hole. Clearly, this quantity

increases with a in a non-linear way.

We complete our study of the different accretion rates by

presenting their dependence on the ¯uid adiabatic index. To do

this, we choose the rapidly rotating hole (a � 0:99M) of models 4, 6

and 7. Table 2 shows the results obtained using the KS coordinate

system. Again, we are averaging the accretion rates on the ®nal

200M of evolution. We note that we are now choosing a different

normalization. The reason is that the canonical mass accretion rate

we are using to scale all rates (see Petrich et al. 1989; see also

Shapiro & Teukolsky 1983) is ill-de®ned for g > 5=3. As we are

mostly interested in their qualitative behaviour and not in the

particular numbers, renormalizing all rates to unity suf®ces for

our purposes. Our numerical study shows that all accretion rates

decrease (in absolute value for the momentum rates) as g increases

from 4=3 to 2. This is in contrast with the results presented in FI98a

for the non-rotating case. However, this is just an apparent dis-

agreement related to the different normalization procedures

employed in the two surveys.

3.4 Coordinate system comparison

We focus now on a direct comparison between the accretion

patterns obtained with the different coordinate systems. In order

to do so we take advantage of the stationarity of the solution at late

times. In Fig. 16 we show the setup that allows for a simple

comparison between the BL and KS coordinate systems in the

case of stationary ¯ows. For such ¯ows, a one-to-one correspon-

dence between physical points can be established using the appro-

priate coordinate transformations presented before.

The procedure of comparison involves a transformation from

�r; Äf� coordinates to �r;f� and, ®nally, to �x; y�; �r cosf; r sinf�.

For the case of scalar quantities, such as the density, the comparison

procedure ends here. For vector ®elds, such as the velocity, we

employ in addition the linear transformations given by

equations (26)±(28).

We focus on model 4 of Table 1 (a � 0:99M). Fig. 17 shows the

isodensity contours at the ®nal time (t � 500M) in BL coordinates.

The left panel corresponds to an actual BL evolution, while the right

one shows how results from a simulation originally performed in

KS coordinates look when transformed to BL coordinates. The

innermost dotted circle marks the location of the horizon. The

dashed line marks the position of rmin in BL coordinates (we

intentionally cut out the interior region in the right panel). The

qualitative agreement of the two plots is remarkable.

We turn now to the comparison of the radial and azimuthal

components of the velocity. This is depicted in Fig. 18. The

convention for the left and right panels follows the same criteria

as in Fig. 17. Again, the agreement is excellent, even though

comparing these two quantities involves, besides the coordinate

shift (from Äf to f), also a non-trivial linear transformation.

From these ®gures one can notice that the smooth features of the

solution (i.e., the pre-shocked part of the ¯ow) are well captured in

both systems, whereas the shock and the innermost regions present

slightly more numerical noise in BL coordinates. Notice also that,

although in BL coordinates we are forced to cut out an important

domain of integration (because of numerical instabilities associated
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Figure 16. Schematic illustration of the setup that allows for a simple

comparison between the Boyer±Lindquist (BL) and Kerr±Schild (KS)

coordinate systems in the case of stationary ¯ows. The black hole is assumed

maximally rotating, the hypersurfaces depicted lie in the equatorial plane

and the azimuthal direction is suppressed. Shown are three different KS time

levels at intervals of 10M (thin horizontal lines) and the corresponding BL

levels (curved lines). The BL time levels retard in®nitely long at the horizon

(thick vertical line at 1M). The thick long dashed lines represent the domains

on which ¯ows are being computed in both coordinate systems. The KS ¯ow

extends just inside the horizon, whereas the BL ¯ow is truncated at about

1:8M (the dotted vertical line at 2M is the ergosphere boundary). For

stationary ¯ows, a one-to-one correspondence between physical points

can be established using the appropriate coordinate transformations.

Table 2.Accretion rates versus ¯uid adiabatic index. Dependence of

the different accretion rates on the adiabatic index of the ¯uid for

model 4 (a=0.99M). The results are for KS coordinates. All rates are

averaged on the ®nal 200M of the simulation and conveniently

scaled to one.

Model g Mass Linear Angular

momentum momentum

4 4/3 0.94 -0.98 -0.91

4 5/3 0.83 -0.98 -0.69

4 2 0.74 -0.85 -0.67



with this pathological system), it is also true that the solution does

not seem to be qualititavely affected, at least for the ¯ows con-

sidered here. This may be explained by the fact that the ¯ow is

highly supersonic at the innermost zone. This simpli®es the task of

imposing appropriate boundary conditions there; for example, a

simple linear extrapolation will always work.

It is instructive to see how the solution would look in BL

coordinates if the location of rmin were moved inwards. This is

plotted in Fig. 19. Here we show isodensity contours starting in a

region much closer to the horizon than in Fig. 17 (note that at the

horizon the coordinate transformation is singular). We can now

follow the shock location all the way down to those inner regions,

showing the singular spiralling around the central hole.

As our ®nal comparison between quantities computed in the two

coordinate systems we study the correlation of the mass accretion

rates. In order to do so, we must compute the mass rate with respect

to proper time, through a given physical surface. The relation

between the proper, t, and coordinate, t, times (which is the one
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Figure 18. Comparison of the stationary accretion pattern (model 4). Isocontours of the radial (top) and azimuthal (bottom) three-velocity components. The left

and right panels follow the same convention as Fig. 17. The agreement in the simulations is again excellent.

Figure 17. Comparison of the stationary accretion pattern. Isocontours of the logarithm of the density for model 4 (a � 0:99). The left panel shows the Boyer±

Lindquist evolution. The right panel corresponds to a Kerr±Schild integration but transformed back to Boyer±Lindquist coordinates. The dotted and dashed

circles indicate the location of the horizon and rmin, respectively. The agreement is remarkable.



employed in the plots of the accretion rates) involves the lapse

function, dt � adt. Making the comparison hence requires

including the ratio of the lapse in the two coordinate systems at

that physical location. The ®nal relation is given by the surface

integral

ÇmBL � ÿ

�

1

W
Da

���

g
p

v
Är
ÿ

b
Är

a

� �

dS �45�

where Çm denotes the rate of change in (coordinate) time of the mass

accreted and all quantities [except W, see equation (30)] in the

integrand are computed in the KS system. The result of the

comparison, for model 4, is plotted in Fig. 20. We show the mass

accretion rate sampled at discrete (coordinate) times (every 50M).

The circles indicate the mass accretion estimate in the original BL

simulation. The plus signs show this rate as a result of the

transformation from the KS simulation. We can again conclude

that the qualitative agreement is good, especially, and as expected

by the comparison procedure we use, once the steady state is

reached.

4 DISCUSS ION

In this paper we have presented detailed numerical computations of

non-axisymmetric relativistic Bondi±Hoyle accretion on to a rotat-

ing (Kerr) black hole. The integrations have been performedwith an

advanced high-resolution shock-capturing scheme based on an

approximate Riemann solver. In particular, we have studied accre-

tion ¯ows on to rapidly rotating black holes.

We have demonstrated that, even in the presence of rotation, the

relativistic accretion patterns always proceed in a stationary way.

This seems to be a common feature of relativistic ¯ows as opposed

to non-axisymmetric Newtonian computations. Previous relativis-

tic simulations for Schwarzschild (non-rotating) black holes

already pointed out this stability (FI98b). The physical minimum

size of the accretor considered now is r� � M, the (outermost)

event horizon of a Kerr black hole. For our initial data, theminimum

value corresponds to 0:29ra, with ra being the accretion radius. This

parameter controls the appearance of the tangential instability in

Newtonian ¯ows. The instability was found there to appear only for

tiny accretors. Although we have now smaller accretors than in the

Schwarzschild case, the ¯ow patterns still relax to a ®nal steady

state.

The effects of the black hole rotation on the ¯ow morphology

were seen to be con®ned to the inner regions of the black hole

potential. Within this region, the black hole angular momentum

drags the ¯ow, wrapping the shock structure around, and generating

an overpressure on the counter-rotating side. This is reminiscent of

similar behaviour in classical ¯uid mechanics (i.e., the Magnus

effect), although there does not appear to be a deeper physical

similarity between the two contexts.

As a hypothetical scenario, we have also considered accretion

¯ows on to a naked singularity (a > M). Our preliminary observa-

tion is that the morphology of the ¯ow in this case is a smooth

continuation of the black hole simulations.

The validity of the results has been double-checked by perform-

ing the simulations in two different coordinate systems. A gratify-

ing result of our study, con®rming the accuracy of the computations,

is the overall agreement obtained in this comparison (performed for

a variety of matter ®elds), taking advantage of the stationarity of the

®nal accretion ¯ow. Although the transformations of scalars and

vectors from one coordinate system to the other are far from trivial,

we have found good overall agreement in our results.

The stationarity of the solution has also been demonstrated by

computing the accretion rates of mass and momentum. Those rates

were found to depend on the coordinate system used, but they

roughly agree when transformed to the same frame. The mass and

radial momentum rates show (slight) dependence on the spin of the

black holewhen using BL coordinates, but not so for the KS system.

As those quantities should be independent of the black hole angular

momentum, the computations using KS coordinates were, numeri-

cally, more accurate. On the other hand, as one would expect, the

angular momentum accretion rates vanish only for Schwarzschild

holes and substantially increase as a increases. We have also

presented the dependence of the different accretion rates on the

adiabatic index of the (perfect ¯uid) equation of state. The results

found for a rotating black holewith a � 0:99M show smaller values

for all rates as g increases.

We have shown that the choice of the Kerr±Schild form of the

Kerr metric, regular at the horizon, allows for more accurate

integrations of the general relativistic hydrodynamic equations

than the standard singular choice (i.e., Boyer±Lindquist coordi-

nates). Such horizon-adapted (regular) systems eliminate numerical
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Figure 19. Extension of the stationary accretion pattern of Fig. 17 (right) to

regions much closer to the black hole horizon. In Boyer±Lindquist coordi-

nates the shock is totally wrapped around the horizon.

Figure 20. Comparison of the mass accretion rates for model 4 as computed

originally in Boyer±Lindquist coordinates (circles) or transformed from

Kerr±Schild coordinates (plus signs). This plot clearly demonstrates and

quanti®es the large amount of agreement found in the simulations.



inconsistencies by placing the inner boundary of the domain inside

the black hole horizon, hence, causally disconnecting unwanted

boundary in¯uences.
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APPENDIX

In this Appendix wewrite down, explicitly, the ¯uxes and the source

terms of the general relativistic hydrodynamic equations for the

Kerr line element. In addition, we also write down the non-

vanishing Christoffel symbols needed for the computation of the

sources. All the expressions are given for the two different systems

of coordinates used in the computations and are specialized for the

equatorial plane �v � p=2�.

A1 Fluxes

A1.1 Boyer±Lindquist

F
r
�w� � Dv

r
; Srv

r
� p; Sfv

r
; �t� p�v

r
ÿ �

; �A1�

F
f
�w� � D v

f
ÿ

bf

a

� �

; Sr v
f
ÿ

bf

a

� �

;

�

Sf v
f
ÿ
bf

a

� �

� p; t v
f
ÿ

bf

a

� �

� pv
f

�

: �A2�

A1.2 Kerr±Schild

F
r
�w� � D v

r
ÿ

br

a

� �

; Sr v
r
ÿ

br

a

� �

� p;

�

S Äf v
r
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br
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; t v
r
ÿ

br
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F
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Äf
; Srv

Äf
; S Äfv

Äf
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Äf
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A2 Sources

S�w� � �S1; S2; S3; S4�: �A5�

A2.1 Boyer±Lindquist

S1 � ÿaDvrQ; �A6�

S2 � ÿa�Srv
r
� p�Q� aT

rr
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S4 � ÿa�t� p�v
rQ� aT tra;r ÿ 2a2
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with the de®nitions

Q �
1

r
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2D
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with T
mn being the perfect ¯uid stress±energy tensor

T
mn

� rhumun � pg
mn
: �A14�

The subscript comma denotes partial differentiation and the Gd
mn

stand for the Christoffel symbols. Quantity h appearing in the

stress±energy tensor is the speci®c enthalpy, h � 1� «� p=r.

A2.2 Kerr±Schild
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with
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A3 Non-vanishing Christoffel symbols
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