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Abstract. In this paper we describe some analytical proper-
ties of theR1/m law proposed by Sersic (1968) to categorize
the photometric profiles of elliptical galaxies. In particular, we
present the full asymptotic expansion for the dimensionless
scale factorb(m) that is introduced when referring the profile
to the standard effective radius. Surprisingly, our asymptotic
analysis turns out to be useful even for values ofm as low as
unity, thus providing a unified analytical tool for observational
and theoretical investigations based on theR1/m law for the
entire range of interesting photometric profiles, from spiral to
elliptical galaxies.
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1. Introduction

After its introduction as a generalization of theR1/4 law (de
Vaucouleurs 1948), the so–called Sersic law (Sersic 1968) has
found a variety of applications. On the observational side, it has
been used as a tool to quantify the non-homology of elliptical
galaxies (see, e.g., Davies et al. 1988; Capaccioli 1989, here-
after C89; Caon et al. 1993; Young & Currie 1994; D’Onofrio et
al. 1994; Prugniel & Simien 1997, hereafter PS97; Wadadekar
et al. 1999). In addition, it has been applied to the description of
the surface brightness profiles of galaxy bulges (see Andredakis
et al. 1995; Courteau et al. 1996). One research area where the
usefulness of the Sersic law as a statistically convenient de-
scription has been exploited is that of the Fundamental Plane of
elliptical galaxies (Graham et al. 1996; Ciotti et al. 1996; Gra-
ham & Colless 1997; Ciotti & Lanzoni 1997; Graham 1998).
On the theoretical side, it has been the focus of several gen-
eral investigations (see, e.g., Makino et al. 1990; Ciotti 1991,
hereafter C91; Gerbal et al. 1997; Andredakis 1998).

According to this law, the surface brightness profile is given
by

I(R) = I0e
−bη1/m

, (1)
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whereη = R/Re, m is a positive real number, andb a di-
mensionless constant such thatRe is the effective radius, i.e.,
the projected radius encircling half of the total luminosity as-
sociated withI(R). In a broad statistical sense, it is found that
bright ellipticals are well fitted by the Sersic law withm around
4, dwarf ellipticals and galaxy disks withm around 1, and finally
bulges and intermediate luminosity ellipticals with1 ≤ m ≤ 4.
For some galaxies, a value ofm even higher than 10 has been
found (e.g., see NGC 4552, Caon et al. 1993).

The projected luminosity inside the projected radiusR is
given by

L(R) = 2π

∫ R

0

I(R′)R′dR′ = I0R
2
e

2πm

b2m
γ(2m, bη1/m), (2)

where (forα > 0)

γ(α, x) =

∫ x

0

e−ttα−1dt (3)

is the(left) incomplete gamma function. The total luminosity is
then given by

L = I0R
2
e

2πm

b2m
Γ(2m), (4)

whereΓ(α) = γ(α,∞) is thecomplete gamma function. From
the definition ofRe it follows that b(m) is the solution of the
following equation:

γ(2m, b) =
Γ(2m)

2
. (5)

2. Asymptotic expansion

Unfortunately, Eq. (5) cannot be solved in explicit, closed form,
and so it is usually solved numerically1. This is inconvenient
for a number of observational and theoretical applications. The
exact values ofb(m) are recorded in Table 1 for1 ≤ m ≤ 10.
For the de Vaucouleurs law,m = 4 andb(4) ≈ 7.66924944. In-
terpolation formulae forb(m) have been given in the literature,
namelyb ' 1.9992m−0.3271 by C89 (as reported by Graham

1 For m = 1, i.e., the exponential profile, the solution can be for-
mally expressed using theLambertW function, asb(1) = −1 −

W (−1, −1/2e) = 1.678346990...
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& Colless 1997),b ' 2m − 0.324 by C91,b ' 2m − 1/3
(for m integer) by Moriondo et al. (1998), and the “numerical
solution” b(m) ' 2m − 1/3 + 0.009876/m by PS97. These
expressions provide an accurate fit in the range0.5 ≤ m ≤ 10;
curiously, their leading term islinear in m, with a slope very
close to 2. In the following we show that this behavior results
from a general property of the gamma function.

Prompted by Eq. (5) we now address the following:

Problem Solve forx

γ(α, x) =
Γ(α)

2
, (6)

for givenα > 0.
Because no explicit solution in closed form is available, we

will focus on the asymptotic expansion ofx(α) for α >> 1.
In fact, it is well known that in many cases asymptotic expan-
sions turn out to give excellent approximations of the true func-
tion even for relatively small values of the expansion parameter.
The starting point of our study is the asymptotic relation (see
Abramowitz & Stegun 1965)

Γ(α) ∼ e−ααα

√

2π

α

[

1 +
1

12α
+

1

288α2
− 139

51840α3

− 571

2488320α4
+

163879

209018880α5
+ O(α−6)

]

. (7)

This is theStirling formula2, which is known to be associated
with a relative error smaller than3 × 10−6 already forα = 2.

Let us now introduce the sequence

xn = α +
n−1
∑

k=0

ck

αk
(8)

with x0 = α, so thatxn+1 = xn + cn/αn. Hereck are coeffi-
cients (to be determined at a later stage), independent ofα. Then
we start by proving the following asymptotic results, applicable
for α >> 1.

Lemma 1 The following asymptotic relation

γ(α, x0) ∼ Γ(α)

2
+ e−ααα

∞
∑

k=0

P
(0)
k

αk+1
, (9)

holds, whereP (0)
k are rational numbers.

The validity of Eq. (9) can be established by means of a stan-
dard asymptotic expansion (e.g., see Bender & Orszag 1978,
Bleinstein & Handelsman 1986) of the integral

γ(α, α) = ααe−α

∫ 0

−1

exp[−αs + α ln(1 + s)]

1 + s
ds. (10)

In fact, the argument of the integral is the same as that of the
integral representation ofΓ(α). In both cases the stationary point

2 The derivation of this formula can be found in standard textbooks.
The coefficients appearing in the asymptotic expansion ofln Γ(α) for
α → ∞ can be expressed in terms of the so–calledBernoulli numbers;
see, e.g., Arfken & Weber 1995, Chapts. 5 and 10.

for the exponent occurs ats = 0, but for Γ(α) the stationary
point is in the middle of the domain of integration, because the
integral extends to∞ (instead, for the integral in Eq. [10] the
upper limit is preciselys = 0). Thus, when we consider the
power series expansion (ins) of the argument of the integral
around the stationary point, forγ(α, α) the evenpowers ofs
contribute exactlyone halfof their contribution toΓ(α), while
theoddpowers determine the terms in Eq. (9) associated with the
coefficientsP (0)

k (in contrast, the odd powers do not contribute

to Γ(α), by symmetry). The calculation ofP (0)
k is tedious, but

straightforward.
Note that there is a “shift” of powers, byα1/2, between

the two terms on the right hand side of Eq. (9). In particular,
the second term is smaller by a factorO(α−1/2). This already
shows thatx0 = α is a first approximate solution to the problem
set by Eq. (6).

Lemma 2 The following asymptotic relation

γ(α, xn+1) ∼ γ(α, xn) + e−αααf(α) (11)

holds, withf(α) = O(α−n−1). To leading order,f(α) ∼
cn/αn+1.

This result easily follows from the definitions of the quantities
involved (Eqs. [3] and [8]), which give

γ(α, xn+1) = γ(α, xn)+e−xn

∫ cn/αn

0

e−t(t+xn)α−1dt.(12)

At this point we can proceed to prove the following theorem:

Theorem For large (real) values ofα, the full asymptotic ex-
pansion of the solution to the problem posed by Eq. (6) can be
expressed as

x(α) = α +

∞
∑

n=0

cn

αn
, (13)

where

cn = −P (n)
n , (14)

and the coefficientsP (n)
k can be calculated byiterationon the

relation

γ(α, xn) ∼ Γ(α)/2 + e−ααα
∞
∑

k=n

P
(n)
k

αk+1
. (15)

The proof is obtained by induction. In fact, Eq. (9) shows that the
statement is true forn = 0, with the coefficientsP (0)

k available
from the asymptotic analysis outlined in the proof of Lemma
1. If we now refer to the result of Lemma 2, with the leading
order expression forf(α), and assume the statement (related to
Eq. [15]) to hold true forxn, we find

γ(α, xn+1) ∼ Γ(α)

2
+e−ααα

[

∞
∑

k=n

P
(n)
k

αk+1
+

cn

αn+1
+ ...

]

.(16)

In other words, the statement is found to hold true also forxn+1,
providedcn = −P

(n)
n , as required by Eq. (14). The method thus
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provides a way to systematically improve the approximation to
x(α) by means ofn steps, leading to an estimatexn; step by
step the possible presence of undesired “shifted” (odd) terms is
eliminated and the process leads to the complete determination
of the coefficients defining the asymptotic series (13). At a given
leveln of desired accuracy, the coefficientsP

(n)
k depend on the

valuesP (i)
k for i = 0, ..., n − 1.

The explicit computation yields:

x(α) ∼ α − 1

3
+

8

405α
+

184

25515α2

+
1048

1148175α3
− 17557576

15345358875α4
+ O(α−5). (17)

The first two terms can be easily checked using standard general
formulae for the leading terms of the relevant steepest descent
asymptotic expansion.

3. Analytical properties of the Sersic law

Therefore, the first terms of the asymptotic expansion ofb(m)
(for realm) are

b(m) ∼ 2m − 1

3
+

4

405m
+

46

25515m2

+
131

1148175m3
− 2194697

30690717750m4
+ O(m−5). (18)

Eq. (18) now clearly explains the value of the interpolation
formulae found earlier (C89, C91, PS97); note that4/405 =
0.0098765.... How many terms in the asymptotic expansion are
required to obtain a better representation ofb(m) when com-
pared to the previously introduced interpolations?

We have computed the relative errors of the various expres-
sions with respect to the true value ofb(m) (obtained by solving
numerically Eq. [5] with a precision of 20 significant digits) for
integer values ofm in the range1 ≤ m ≤ 10, and the results
are reported in Table 1. The first result is that using the first
four terms of the expansion the true value ofb(m) is recovered
with a relative error of6 × 10−7 for m = 1, and4 × 10−9 for
m = 10, i.e., the asymptotic expansion so truncated performs
much better than the formulae cited previously. Obviously, for
larger values ofm the error becomes correspondingly smaller.
The second somewhat surprising result is the fact that Eq. (18)
is already very accurate form as small as 1. This allows us
to include, within the reach of the present analysis, the case of
exponential profiles. A third point that we have noted is that,
for fixedm, there is anoptimal truncationof the asymptotic ex-
pansion, beyond which, as is well known in the general context
of asymptotic analysis, increasing the number of terms in the
expansion does not improve the accuracy of the estimate. For
example, form = 1, the optimal truncation occurs at the fourth
term, for which the relative error is6 × 10−7. For simplicity, in
the following part of this Section we will record a number of in-
teresting analytical expressions restricted to their leading order.
Of course, the asymptotic analysis provided here would allow
us to give explicitly any higher order term, not shown below, if
so desired.

Table 1. True values and relative errors onb(m) for integer values of
m, using the C89, C91, and PS97 formulae. As(4) is the relative error
for the asymptotic expansion given in Eq. (18), truncated to the first
four terms.

m b(m) C89 C91 PS97 As(4)

1 1.67834699 4 × 10−3 10−3 10−3 6 × 10−7

2 3.67206075 2 × 10−4 10−3 10−4 10−6

3 5.67016119 6 × 10−5 10−3 4 × 10−5 4 × 10−7

4 7.66924944 6 × 10−5 9 × 10−4 10−5 10−7

5 9.66871461 2 × 10−5 8 × 10−4 8 × 10−6 5 × 10−8

6 11.6683632 2 × 10−5 7 × 10−4 4 × 10−6 3 × 10−8

7 13.6681146 6 × 10−5 6 × 10−4 3 × 10−6 2 × 10−8

8 15.6679295 9 × 10−5 5 × 10−4 2 × 10−6 9 × 10−9

9 17.6677864 10−4 5 × 10−4 10−6 6 × 10−9

10 19.6676724 10−4 4 × 10−4 9 × 10−7 4 × 10−9

3.1. Total luminosity and central potential for a spherical
system with an R1/m projected luminosity profile

From Eqs. (4) and (18) the total luminosity is found to be

L = I0R
2
e

2πm

b2m
Γ(2m)

∼ I0R
2
e2π3/2e1/3e−2m

√
m[1 + O(m−1)], (19)

where we have used the fact thatb2m ∼ e−1/3(2m)2m[1 +
O(m−1)]. Following C91, the central potential of the spherically
symmetric density distribution associated with the Sersic law is
given by:

Φ0 = −G
M

L
I0Re

4Γ(1 + m)

bm
. (20)

HereM is the total mass of the system, and the mass–to–light
ratio is taken to be constant. Thus, an asymptotic estimate at
givenI0, Re is

Φ0 ∼ −GM

L
I0Re2

5/2π1/2e1/6

√
m

(2e)m
[1 + O(m−1)]. (21)

We note that, form = 1 andm = 4, a truncation of Eq. (19)
to the leading term is characterized by a relative error of 5.7
per cent and of 1.5 per cent, respectively. The corresponding
truncation on Eq. (21) is associated with a relative error of 8.6
per cent and 2.3 per cent.

The proper normalization of the R1/m profile, to be consid-
ered for a case with given scalesL andRe, is

I(R) =
L

R2
e

b2me−bη1/m

2πmΓ(2m)
, (22)

which thus provides the useful quantity

Ie = I(η = 1) ∼ L

R2
e

1

2π3/2
√

m
[1 + O(m−1)], (23)

so that

Φ0 ∼ −GM

Re

23/2

πe1/6

(e

2

)m

[1 + O(m−1)]. (24)
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For m = 1 andm = 4, a truncation of Eq. (23) to the leading
term is characterized by a relative error of 7.3 per cent and of 1.8
per cent, respectively. The corresponding truncation on Eq. (24)
is associated with a relative error of 3.1 per cent and 0.8 per cent.

4. Conclusions

In this paper, the full asymptotic expansion for the dimension-
less scale factorb(m) appearing in the Sersic profile has been
constructed. It is shown that this expansion, even when truncated
to the first four terms as

b(m) = 2m − 1

3
+

4

405m
+

46

25515m2
(25)

performs much better than the formulae given by C89, C91 and
PS97, even form values as low as unity, with relative errors
smaller than' 10−6. The use of this simple formula is thus
recommended both in theoretical and observational investiga-
tions based on the Sersic law. With the aid of this formula, we
have been able to clarify a number of interesting properties asso-
ciated with the Sersic profile. The additional material presented
in Appendix A can be compared to the simple power lawR−2,
often used in the past to fit the photometric profiles of elliptical
galaxies.
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Appendix A: remarks on a power law approximation

The surface brightness profile given in Eq. (1) is sometimes ex-
pressed as (see Eqs. [22]-[23])

I(R) = Iee
b(1−η1/m). (A1)

In this case, for afixed locationη > 0, we may consider an
asymptotic expansion of the surface brightness profile at con-
stantIe for m >> 1. This is obtained by introducing a stretched
radial coordinateξ = ln η and by noting that

b(1 − η1/m) = b(1 − eξ/m)

= −2ξ

(

1 − 1

6m
+

2

405m2
. . .

)

×
(

1 +
ξ

2m
+

ξ2

6m2
. . .

)

. (A2)

Thus, we find

I(R) ∼ Ie

η2
[1 + O(m−1)]. (A3)

We may recall here that the photometric profiles of elliptical
galaxies have often been described in the past in terms of power
laws (see, e.g., Hubble 1930). A naive inspection of the first
term omitted in the expansion (A2) suggests that Eq. (A3) is
adequate provided|ξ(ξ − 1/3)/m| << 1. Note that the term
involved vanishes atξ = 0 and atξ = 1/3. This is an indication

1

4

10

20

Fig. A1. Ratio between theR1/m profile (normalized atIe) and a prop-
erly scaledR−2 profile, form = 1, 4, 10, 20.

that the quality of the power law approximation is asymmetric,
with a modest bias to the outer region.

Consider the functionf(ξ) = b(1−eξ/m)+2ξ. The quantity
exp (f) gives the ratio between theR1/m profile and itsR−2

approximation. The functionf diverges to−∞ both for ξ →
−∞ (i.e., η → 0) and forξ → +∞ (i.e., η → +∞), and has
a single maximumfM at ξM , defined by the relationeξM /m =
2m/b, where

fM = b − 2m + 2m ln

(

2m

b

)

∼ 1

36m
+ O(m−2). (A4)

Note that2m/b is close to unity (in fact,ξM ∼ 1/6), i.e., that
ξM/m is small. Therefore, the power law profile is slightly
underluminous with respect to theR1/m profile in the radial
range between the effective radius and an outer radiusξr ∼
2ξM ∼ 1/3, wheref(ξr) = 0, which coincides with the outer
location identified by a previous naive inspection (see comment
after Eq. [A3]). Outside such radial range the power law profile
is brighter than theR1/m profile. In such a region, wheref <
0, we may ask how far (in radial range) Eq. (A3) applies, by
studying the condition1 − ef ≤ ε, i.e., |f | ≤ ε. We expand
f for negative values ofξ aroundξ = 0, and aroundξr for
ξ > ξr. The range of applicability of Eq. (A3) is thus constrained
by the condition(1–3ε)m<∼η<∼(1 + 3ε)me1/3. This situation is
illustrated in Fig. A1.
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