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Abstract. Monte Carlo techniques are used iteratively to confbe the only feasible technique. Indeed, inspection of the as-
pute the radiative equilibrium temperature stratification of teophysical literature reveals numerous cases where the Monte
non-grey, spherically-extended stellar atmosphere in LTE. T8arlo method has been applied specifically to treat complexi-
derived temperature distribution agrees well with that predictéds that would defeat or severely test the conventional approach.
by Castor's[(1974) code, as also does the emergent spectrBome recent examples are: studying the penetration of UV ra-
However, in contrast to such conventional codes, the adopthdtion into the interiors of clumpy interstellar clouds (B@iss
Monte Carlo techniques and associated temperature-correcfi®f0), treating resonance-line scattering in accretion disk winds
procedure are in no way restricted to 1-D stratifications. A¢Knigge et al| 1995), and computing polarization maps for the
cordingly, this successful test indicates that realistic 2- and 3ebcumstellar envelopes of protostars (Fischer et al. 1994). It is
radiative equilibria can be similarly computed. noteworthy, however, that in these examples and indeed in most

Monte Carlo transfer codes the absorption and scattering coef-
Key words: radiative transfer — methods: numerical — starficients are not coupled to the radiation field. Evidently, such
atmospheres problems, which require solution by iteration, have for the most
part been avoided by developers of Monte Carlo codes.

When a problem is solved iteratively, corrections are applied
at each iteration, and these are derived from the residuals that
express the previous solution’s failure to satisfy the problem’s
The theoretical investigation of many astrophysical phenome@sic equations. An obvious concern, therefore, when contem-
requires the accurate determinations of ambient and emergsiating Monte Carlo techniques, is that these residuals will at
radiation fields. Nowadays, with the ready availability of powsome stage be dominated by sampling errors, thus possibly halt-
erful computers, this is usually accomplished by solving theg the convergence of the iterative sequence before a solution
equation of radiative transfer numerically. Thus, derivatives anflthe desired accuracy has been achieved. In fact, this is ex-
integrals are approximated by differences and summations, @ty the problem that thwarted Pride (1969) in his ambitious
the resulting algebraic system solved by matrix inversion, witliitempt to calculate a non-LTE, plane-parallel, radiative equi-
an outer iteration loop being required when the absorption alitstium stellar atmosphere with Monte Carlo methods. At large
scattering coefficients are coupled to the radiation field duedgptical depths, the flux residuals were dominated by sampling
their dependence on state variables. For problems with a higifors and so the temperature corrections were meaningless.
degree of symmetry, such as plane-parallel stellar atmospheresNevertheless, with today’s computer power and with appro-
or spherically-symmetric stellar winds, this conventional nyriate Monte Carlo techniques, problems requiring solution by
merical approach can hardly be faulted and has indeed ledtépation are feasible. A recent example is the work of Och et al.
powerful codes that accurately solve these 1-D problems, e @g98), who iteratively determined the temperature and ioniza-
with full non-LTE treatments of excitation and ionization ofion stratification for a photoionized nebula of uniform density
numerous elements. However, as astronomers’ interests tusing a Monte Carlo treatment of radiative transfer, obtaining
increasingly to 2- and 3-D problems, this approach becomgsod agreement with the predictions of conventional codes both
problematical, for the number of variables to be solved for théor the nebula’s structure and its emission line spectrum. Since
becomes huge, as do the codes themselves. Moreover, mogheit Monte Carlo code is not fundamentally restricted to spher-
the iterative schemes fundamental to the success of these eidal-symmetry, it can readily be generalized to treat realistic 3-D
ing codes are specific to 1-D geometry. models of inhomogeneous nebulae.

When geometrical simplicity is lost, the Monte Carlo ap- In this paper, another such 1-D test problem is treated,
proach to transfer problems becomes attractive and may oftetmely that of computing the temperature stratification and
emergent spectrum of an extended spherical non-grey stellar
* Present address: Astrophysics Group, Blackett Laboratory, Im_atmosphere in LTE, a problem solved with conventional meth-

perial College of Science, Technology and Medicine, Prince Consgrqs by Cgs_t_or (1974_)' The .part|cular-mvestlg_atlon_descr.lbed
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continuum formation in a Monte Carlo code (Abbott & Lucysphere that is extended because of high L/M now seems little

1985) developed to investigate the dynamical consequencesofe than an academic exercise. Accordingly, we focus here

multi-line transfer effects in hot star winds and was briefly ajust on the problem of deriving the temperature distribution

luded to by Schmutz et al. (1990). Although successful, tHisom the condition of radiative equilibrium. Thus, the princi-

work was in the end omitted from the code developed for Wolpal test problem is the following: given the density stratification

Rayet winds (Lucy & Abbotf 1993 — see Sect. 2.3) in order ta(r) predicted by Castor’s code, derive the corresponding tem-

avoid two nested iteration loops. Nevertheless, the omitted teplerature stratificatiod’(r) as well as the resulting emergent

nique is likely to be useful in other astrophysical contexts, &sminosity densityL,,.

indicated by similar, but not identical work briefly described

by Bjorkman & Wood ((199F7). As with the work of Och et al.

(1998), the techniques described herein readily generalize tg'ZM onte Carlo procedures

and 3-D problems. In this section, the Monte Carlo methods used to obtain the
temperature distribution in an extended, spherically symmetric,
non-grey stellar atmosphere are described. These methods rep-

2. Test problems resent a continuation and extension of previous work on stellar

In order to test Monte Carlo codes, it is necessary to apply th&fds (AbEOtt & Lucy 1985; Lucy & Abbott 19€3), supernovae
first to special cases where simplifying assumptions have gicy1987; Mazzali & Lucy 1993), and photoionized nebulae
lowed exact or highly accurate solutions to be derived with coff2ch et all. 1998).

ventional analytic or numerical techniques. Here, where the aim

is to derive the temperature distribution throughout a mediugn . Energy packets and radiative equilibrium

in radiative equilibrium, the simplest test cases are provided by o
the theory of grey stellar atmospheres. In this case, the exact/8dvionte Carlo treatments of radiative transfer, we can take the

lution is known for plane-parallel geometry (the Hopf function§lculation’s “quanta” to be photons, thereby simulating exactly
and accurate numerical solutions are available for spherical, £ Physical processes occurring as matter and radiation interact.
tended atmospheres. However, we also have the freedom to take the quanta to be

Although results for grey atmospheres will be briefly re_QaCketS of photons of the same frequent_:y_ sodhat = nhz/_
ported, they are essentially trivial in the present context, in tHtthe energy content of a packet containinghotons. This
they do not test our ability to improve solutions iteratively in thi$ Often advantageous. For example, taking all packets to have
presence of Monte Carlo noise. Accordingly, amore meaningf}e Same energy(v) = &, implies that packets in the infrared
and challenging test problem has been sought from the extgﬁ\_(e'large numbers of photons that one thereby avoids following
sive literature omon-grey stellar atmospheres computed undépdividually (Abbott & Lucy[1985). _
the assumption of local thermodynamic equilibrium (LTE). In this investigation, photons are also grouped into packets

The chosen problem is that considered by Castor (197_g5_con.stant energy bgt now with the monvatlon of rigorously
Motivated by evidence that the continuum-forming layers #'P0sing the constraint of zero flux divergence on the Monte
the Of star¢ Puppis and in a number of Wolf-Rayet stars a,garlg radiation fields derlyeq for an iterative sequence of ap-
extended, he creatsthtic model atmospheres having this chaProximate temperature distributions. Thus, when a packet of
acteristic by considering stars of exceptionally high luminosity@diant energy:(v,) = o suffers a pure absorption event, it is
to-mass ratios. Using a method based on moment equations §ngmitted with frequency. in accordance with the emissivity
requiring iteration on Eddington factors and on ratios of me&f the medium and with energy
absorption coefficients, Castor computed both the structureE?Le) = c(va) - Q)
these extended atmospheres and their emergent spectra. ‘

In view of its closely similar scientific motivation, Castor's  This simple but powerful device constrains the radiation
work provided a natural test problem for testing Monte Carfield to be divergence-free at each and every iteration, and this
techniques that would allow the Abbott-Lucy code to includeas the following consequence: For a not-yet-converged tem-
continuum formation in model winds for hot stars. Howeveperature stratification, this Monte Carlo radiation field will in
because of this aim, an acceptable technique should not megsneral be a closer approximation to the final radiative equi-
reproduce Castor’s results, it must also permit the treatmentibfium solution than would be that derived by actually solv-
line transfer — fundamental to the dynamics of the winds — aidj the equation of radiative transfer. Accordingly, successively
allow radiative equilibrium to be imposed in the matter framieringing matter into thermal equilibrium with a sequence of
rather than the rest frame (Lucy & Abbdtt 1993). The techniqueich divergence-free radiation fields should result in rapid con-
described below meets these conditions as well as not beugggence, with acceptable results if sampling errors are small
restricted to 1-D geometry. enough.

In Castor’s work, both the density and the temperature strat- As the above remarks imply, with the adopted procedure, the
ification were computed. However, given our present undeterived Monte Carlo radiation fields only represent solutions of
standing of thedynamical causes of atmospheric extension ithe equation of radiative transfer when the temperature distribu-
hot stars, solving for the complete structure of a static atmtien has converged to the radiative equilibrium solution, for only
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then does Eg[{1), which implies a balance between the rate 8& Trajectories

absorption and emission of energy, correspond to physical ye- .
ality. Apart from sampling errors, the divergence-free radiatio'r_rf"’wIng thus launched a packet across the lower boundary, we

must now compute its trajectory as it scatters off free elec-

fields at early iterations differ from the final solution only ir} . o
ons and undergoes absorptions followed by re-emissions due
consequence of the temperature dependence of the absorq{l n ) .

. - . 0 bound-free and free-free processes. This trajectory ends when
and scattering coefficients. Accordingly, for grey atmospheregs acket escanes 1o infinity or re-enters the core by crossin
“convergence” is immediate, since successive temperature i§ﬁ§- I%wer boundgr Notice t%at because of Ely. (1) ):;ckets dc?
ates then differ only because of different sampling errors. Y- A1), P

not disappear within the atmosphere. Nor, in this scheme, are
packets spontaneously created within the atmosphere.

3.2. Initiation Within each uniform shell, the random flight path of a packet
In order to carry out the Monte Carlo calculation, the extend&?tween events Is
atmosphere is approximated byspherical shells, with thggth 7, = —In(z) , (5)

shell having inner and outer radii; andR; 1, and these radii
are such thaR; ., /R; is constant. Within each shell, the den
sity p, the temperaturd’, and the scattering and absorptior,, = (k, + o)p/ . (6)

coefficientso, k, are constant. This crude, low-accuracy dis- = )
cretization is common practice in Monte Carlo treatments Jfthis displacement would carry the packet out of its current

radiative transfer because it simplifies the sampling of fligff'€!l: then the packet is moved along its linear flight path to
paths. The shell densitigs are obtained from Castor's codeNe boundary with the next shell, at which point a newis
glected and its further progress followed in the next shell. On

the other variables are derived iteratively as the radiative eqd! ek 2
librium solution is found. the other hand, if this displacement leaves the packet within

At the lower boundary = R, the outwardly-directed ra- the current shell, then at the end-point of the displacement the
diation field is taken to be ' packet is either scattered or undergoes absorption followed by

re-emission. We take this physical event to be a scattering if

(7)

which corresponds to the physical displacemagiten by

I; = B,(Ty) @ _

—i.e.isotropic in the outward hemisphere with black body inten- ky +o

sity at unknown “boundary” temperatufé. Using the current and to be an absorption otherwise.
estimate ofT},, energy packets are selected according to this Note that the selection of a newy when a packet crosses a
boundary condition as follows: boundary does not result in bias: a photon alwayshas1 as

the expected path length to its next interaction no matter what
distance it has already travelled.

After a physical event, the packet’s frequency and direction
k— % Y B.d oo B.d 3) cosine must be re-assigned. If the event was a scattering, the
K /0 vav //0 vav frequency is unchanged —i.e., assumption of coherent electron

scattering. If the event was an absorption, the re-emitted packet

(1) The mid-probability points;, of K equal probability bins
for black body emission are determined from the equation

with £ =1, 2, ..., K. Note that this calculation can be dongs assigned frequenaygiven by the equation

in terms of the frequency variable//kT}, and so need not be B -

repeated wheff;, changes. . :/ jl,dy// judv (8)

(2) An integerk is chosen randomly from the intervél, K) 0 Jo

and the frequency of the emitted packet sef.= wherej, = k,B, is the emissivity. In either case, the new
(3) The initial direction cosine is taken to be direction cosine is selected according to the rule

where here and below denotes a random number from th&orresponding to isotropic scattering or emission.

interval (0, 1). As with frequency sampling at the lower boundary, the op-

In practice, it is beneficial to depart from step (2) by in(_aration indicated by Ed.I8) is in practice replaced by a pre-

troducing stratified sampling for the frequency distribution d?er_at.ion calculation of egual p_robability emissivity t?"‘s* a.nd
packets emitted at the lower boundary. Thus, in fact, we coif it is the label of the bin that is randomly selected in assign-

strain Poisson noise by selecting equal numbers of packets o @ frequency to a re-emitted packet. Note that these bins
each of thel frequency bins. change from shell to shell and must be recomputed after each

The frequency sampling at the lower boundary can pgmperature-correction step.

checked by computing the mean valuetof/kT}. For black When these emissivity bins are calculated, the mean fre-
body emission, this should = 3.83223 " guency of the emissivity function for each shell can also be cal-

culated. These can then be used to check the mean frequencies
of the packets re-emitted during the Monte Carlo calculation.
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3.4. Monte Carlo estimators Itis worth noting that these estimators are such that all pack-

s entering the volume eleméritcontribute. With estimators

I - e
In orderto detectdepartures'from radiative equilibrium, we m ;sed on a reference surface withinsome packets will enter
first calculate the rate at which matter absorbs energy from {

radiation field, and this must be derived from the Monte Car?ﬁd depart from” without crossing that surface and so do not

0] . . . .
T, . ntribute. This, together with the total fr m allowed in th
model of the radiation field. Now, the exact expression forth?% bute S, togethe € total freedom allowed the
shapes of the volume elements, strongly suggest the superiority

quantity is of this approach.
. o0 A further point to emphasize is that packets contribute to
A=dn /O by Jydv, (10) our estimate of the absorption rate even if they pass through V

) o o ) ) without being absorbed. Indeed, Hq.(14) returns estimates of the
and in radiative equilibrium this balances the rate at which m%sorption rates throughout a model atmosphere even when that

ter emits energy, given by atmosphere is so tenuous that all packets pass through without
. o0 absorption. This is a point of difference with the investigation
E=dr /O k,B,dv . (11)  of Bjorkman & Wood {1997), where the absorption rate is com-

puted only from the packets that are absorbed in the volume

Evidently, to computed, we must first compute the mearelement. If the estimator is thus restricted to absorbed packets,
intensity J,,. Now, in constructing Monte Carlo estimators fothe result is noisier, is indeterminate in the optically thin limit,
moments of the radiation field, the natural starting point is ttead we have failed to use our knowledge of the exact formula
basic definition of specific intensity in terms of energy flow in given in Eq.[([ID).
given direction across a reference surface. This is the approach
f'idopt_ed by Ochetal.(1998), leading to an e_sUmatoLfcglven_ 3.5. Temperature corrections
in their Eq. (13). However, for problems without symmetries,
there will in general be no unique or natural reference surfadésV packets are launched across the lower boundary in our
for the volume elements of the adopted discretization. Accodlonte Carlo experiment anli,, of these ultimately escape to
ingly, with respect taJ, and weighted integrals thereof, it isinfinity, then our estimate of the star’s luminosity is

preferable to construct Monte Carlo estimators from the basic €0
result that the energy density of the radiation fieldinf+dv) (%) = Noo 1 - (15)
isdnJ,dv / c.

Since the factoey /At has hitherto remained free, we now fix

to the volume element containing it. Accordinglyfifienotes itby settingl(co) = L., the desired luminosity of the model,
- . With At th rmin Ed.(IL4) now gives th -
the path length between successive events, where “events” in- th &o/At thus dete ed, ) now gives the ab

? : ﬁorrPtion rate throughout the atmosphere in physical units, and
cludes crossings of boundaries between volume elements, the . . s .
in"general this rate will not balance the emission rate given by

this segment of a packet’s trajectory contributgst / At to Eq.[11) - i.e.A(r) 4 E(r). To obtain a modified tempera-

g;e_t'zn/e?XSZ%E?@;J?%Z%”;?QLf&%:\’g@;ﬁ:gmzﬁ:ﬁg;% e distribution that brings the atmosphere closer to radiative
N P equilibrium, we note that’ can be written as

The estimator for the volume element’s energy density that fg!
lows from this argument gives the following estimator for th& = 47kp B , (16)
monochromatic mean intensity

At a given instant, a packet contributes enet@y) = <

wherekp is the Planck-mean absorption coefficient dhd=
Jody — 1 e 1 Z (12) (o /m)T* is the integral of the Planck function. This then sug-
v dr AtV — ’ gests that the temperature distribution for the next iteration
should be that given by
whereV is the volume and the summation is over all flight
segments iV for packets with frequencies iv(v + dv). The p _
corresponding estimator for the integrated mean intensity is drkp
1 e 1 with quantities on the right-hand side evaluated from the just-
J = m AV Zﬁ (13) completed iteration. This is the adopted temperature-correction
procedure, with only the slight modification that an undercor-
where the summation is now over all segment¥’iregardless yection factor~ 0.5-0.8 is commonly used.
of frequency. Readers familiar with temperature-correction procedures

If we now compare Eq<.16) and (12), we see immediatelyfr non-grey atmospheres will recognize that Eql (17) can be
that a Monte Carlo estimator for the absorption rate is written as

. o 1 k‘J
A=— =) k. 14) B=-—+-J, 18
A a9 B=’ (18)
This is the expression used below in an iterative scheme to finterek ; is the intensity- or absorption-mean absorption coef-
the radiative equilibrium4 = E) solution. ficient. Thus, the adopted schemejpparently identical to the

(17)
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notorious lambda-iteration procedure that has long been known |
to fail (see, e.g., Mihalas 19i70). However, this failure relatesto |
its use with conventional transfer techniques and can be traced Percentage errors of
to the fact that Eq[{18) gives a “correction” without using in- |
formation about the required constant valuelgf-). Here the
Monte Carlo radiation field itself carries this information and, in
fact, at all iterations rigorously obeys the constrdifit) = L..
Thus the adopted procedure can be described as bringing the
matter into equilibrium with a radiation field that already hags
the correctZ.(r), and the procedure only fails to converge im{
mediately becausk, depends on T. a
The boundary temperatufg,, which determines the fre-
guency distribution but not the luminosify™ of the radiation
emitted atthe lower boundary, must also be iteratively improved. o
Now, integration of Eq[{2) gives

Temp distributions

LT =47R? x 0T}, (19)

Monte Carlo

and we also have Iterations 1-13

| | | |

Lt=nNZ2. (20) ) 5 48 46 44
At Log T(K)

Accordingly, after completion of a Monte Carlo step/Atis  Fig 1. Percentage errors of the iteratively-derived temperature distri-

obtained as noted earlier from Eq.|(15). EqI(20) then gives  putions plotted against the exact temperature of each spherical shell as

which on substitution in Eq.{19) yields an improved value fajiven by Castor's (1974) code. The initial model (0) as well as the first

T,. The implied correction is, however, applied with the sambree iterates are labelled.

undercorrection factor used above when iteratively correcting

T(r).

that eliminates the need for interpolation when comparing tem-
perature distributions. With these choices, the number of shells
In this section, the Monte Carlo technique and the temperatui®s = 43, and the outer radius B, = 84.236 R).

correction procedure described in SELt. 3 are used to derive theln sampling black body emission at the lower boundary and

radiative equilibrium solution for the density stratification givethe emissivity in each shell{ = 1000 equal probability bins

by Castor's[(1974) code. are used.

4. Numerical results

4.1. Parameters 4.2. Temperature corrections

The basic parameters for the extended, spherical atmosphera/éite the above parameters, Castor’s code compu(tes 7'(r)
L, =9.37 x 10°L¢), M = 30M,, and a composition of pure and the emergent spectrum. For the Monte Carlo calculation,
hydrogen. With these parametels, = o L/47GMc = 0.95. thisp(r) istaken as given and an initial gu&ggr) made for the
The luminosity is therefore close to the Eddington limit, angtmperature distribution. With two state variables thus known,
so the atmosphere is distended by the greatly reduced effectivedegree of ionization of hydrogen and the scattering and ab-
gravity. sorption coefficients can be calculated for all shells. Together
As Castor[(1974) himself pointed out, such high values wfith an initial guess} for the boundary temperature, these
I'. are not achieved by stars in their hydrogen-burning phasesefficients then allow a Monte Carlo step to be made. At the
and so this mechanism is certainly not relevant for the extend=ampletion of this step, a divergence-free model of the ambient
continuum-forming layers of Of stars. The interest here is thatdiation field is available, from which an improved temperature
the resulting stratification makes sphericity important. Morelistribution7’ (r) and an improved boundary temperat(ie
over, the Schuster mechanism in such extended, scatteriage computed as described in 3.5. This procedure is then
dominated atmospheres results in the Lyman continuum benegeated until “convergence” is achieved.
in emission. Together, these aspects of Castor’s (1974) work In Fig.d, the results of 13 such iterations are shown in a
provide a challenging test for the Monte Carlo approach.  Monte Carlo experiment for whiclv = 500 000 is the number
For the Monte Carlo calculation, the lower boundary is takeaf packets emitted at the lower boundary. Since Castor’s code
to be atR; = 9.089 R, corresponding to Rosseland mean ogerovides an essentially exdE{r), the plotted quantity i§7; —
tical depthrg = 7.13 according to Castor’s code. The constarit) /T; rather thanT; — T;_1) /T;_1, the fractional change from
ratioR;1/R; is set= 1.053 as in Castor’s calculation, a choidie previous approximation.
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From Fig[1, we see that the iterations (with an overly cau-
tious undercorrection factor = 0.5) converge rapidly unti 5 | Monte Carlo Spectrum
but thereafter exhibit apparently random fluctuations about a
mean that agrees to better than 1% with Castor’s solution. For
most astrophysical purposes, both the amplitude of the fluczss -
tuations after “convergence” and the accuracy of recovering a
known solution are entirely satisfactory. (A slight anomaly at
the surface may be seen in Fi. 1, in the form of a slight uptick #n
the fractional errors of all iterates. This is due to the waythe
were derived from Castor’'s model, which results in his surface
value being assigned to tinéd-point of the outermost shell in
the Monte Carlo calculation.)

Although of little consequence, the displacement from Cas-
tor's solution is systematic and therefore merits investigation.z2s -
When the calculation is repeated with the lower boundary higher | b N(R) =2,500,000
inthe atmosphere —i.e., largR —this systematic displacement i

niPerg/

Lo

. . . . . N(inf) = 63,979

increases. This suggests that the problem is the approximation ° ;

— Eq.[2) - used as the lower boundary condition, and which is B
H H F T T Y T Y T T Y I

valid only in the limitTg — oo. Nevertheless, there may also 165 " e . 1as “

be a contribution to the displacement from small differences in Log Freq(Hz)
the two codes’ treatments of the absorption coefficient as well
P Elg. 2. The Monte Carlo spectrum (filled circles) derived from 63,979

as from the cruder discretizations used in the Monte Carlo cal2 <. . ,
escaping packets compared to the spectrum predicted by Castor’s

culation. (1974) code (solid line). Also plotted (open circles) is the spectrum
obtained from the formal integral using the source function derived
4.3. Grey atmospheres from the Monte Carlo model of the ambient radiation field.

As a further check on systematic error, the Monte Carlo code
has been applied to the essentially trivial problem of computiffgt Emergent spectrum
grey atmospheres in radiative equilibrium. Having demonstrated in SeCL#.2 that the iterative scheme re-
In the plane-parallel case, the lower boundary is placedg@bduces Castor’'s temperature distribution with acceptable ac-
71 = 2,and the limb-darkening law obeyed by the emitted packyracy, we now compare emergent spectra. With the tempera-
ets is linear with coefficient = 3/(5 + 371), which would be tyre distribution from the 13th iteration — an unnecessarily large
exactifT'() for 7 > , were the Milne-Eddington solution. In nymber of iterations, in fact — a further Monte Carlo step is car-
an experiment withV = 5 x 10° packets, the derived temperaried outwithV increased by a factor of 5 5 x 10¢ packets. Of
ture distribution matched that calculated with the Hopf functiopese v, = 63979 escape to infinity and their distribution in
with root mean square error = 0.021% and maximum errorfrequency constitutes the Monte Carlo prediction for the emer-
0.045%. These are negligibly small compared to the offsetdant spectrum. This prediction (filled circles) is shown in Eig. 2,
Fig.[ from Castor’s solution. together with the spectrum predicted by Castor’s conventional
In this same Monte Carlo experiment, the mean intensityiignsfer calculation.
also calculated as in Och et al. (1998) using reference surfacescomparison of the two theoretical spectra reveals excellent
at the mid-points of the slabs into which the plane-parallel &greement in the Lyman and Balmer continua. In particular, the
mosphere is discretized. The resulting temperature distribut@peration of the Schuster mechanism in inverting the Lyman
obtained by settingg = .J has root mean square error = 0.031%jscontinuity has evidently been accurately modelled. A signif-
and maximum error = 0.061%. These are moderately inferigant fall-off in accuracy is, however, seen in the IR and EUV.
to the results above and therefore support the preferenceffis is of course a consequence of the small number of escap-
volume-based mean intensity estimators. ing packets in these frequency bins and illustrates the limited
The Monte Carlo code has also been applied to spherigghamical range of Monte Carlo calculations.
grey atmospheres, specifically to the calculations of Hummer & | 2- or 3-D problems, it will often be desirable to compute
Rybicki (1971). In an experiment with' = 500 000, theirtem-  spectra as seen from different orientations after deriving the
perature distribution for opacity index= 3/2 and outer radius temperature stratification with a technique such as described
r = 100 is reproduced with root mean square error = 0.061fare. This can be done via the formal integral for the emergent
and maximum error = 0.20%. intensity —i.e., by computing the intensity observed along mul-
These grey atmosphere successes confirm that high pr@gie lines-of-sight to the object when viewed at the required
sion can be achieved with this Monte Carlo code and that thgentation and then summing to obtain the luminosity density
slight offset in the non-grey test case is not a consequencerof But to do this, the mean intensity, is needed in order to
the adopted technique. evaluate the source function at points along these lines-of-sight.
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In fact, the necessary estimator is given by Eq. (12), which con- In conclusion, the successful reproduction of Castor’s
verts to physical units wheny /At is determined by forcing the solution for an extended, non-grey atmosphere implies that
Monte Carlo calculation to be consistent with the luminosity a€alistic 2- and 3-D problems that similarly require solution
the source(s) illuminating the domain of calculation. by iteration can be tackled with some confidence using

A formal-integral calculation of the emergent spectrum usdonte Carlo techniques. Moreover, in sharp contrast with
ing the source function thus extracted from fiie= 2.5 x 10° conventional methods, the Monte Carlo codes will remain mod-
simulation has been carried out with the familiar- z cylin- estin size and can therefore be quickly constructed and verified.
drical coordinates. The resulting spectrum is plotted in[Hig. 2

as open circles and is seen to agree closely with the spectrum
derived from escaping packets. Acknowledgements. The non-grey model atmosphere used to test the

Monte Carlo code was calculated by D.C. Abbott with Castor’'s code
_ at JILA in 1988. He also provided unpublished information about the
5. Conclusions ionization and absorption coefficient routines in that code.
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