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Abstract. We present a general and practical procedure to solve
the general relativistic hydrodynamic equations by using any of
the special relativistic Riemann solvers recently developed for
describing the evolution of special relativistic flows. Our pro-
posal relies on a local change of coordinates in terms of which
the spacetime metric is locally Minkowskian and permits ac-
curate numerical calculations of general relativistic hydrody-
namics problems using the numerical tools developed for the
special relativistic case with negligible computational cost. The
feasibility of the method has been confirmed by a number of
numerical experiments.
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1. Introduction

In the near future the first generation of Earth-based laser-
interferometer detectors of gravitational waves will be operating
(LIGO, VIRGO, GEO600, TAMA). This perspective has stimu-
lated researchers working in numerical relativistic astrophysics
to develop robust codes for the simulation of the different astro-
physical sources of gravitational radiation, such as, e.g., stellar
core collapse, coalescing compact binaries or accretion onto
compact objects.

Relativistic hydrodynamical codes experienced a substantial
advance at the beginning of the nineties (Martı́, Ibáñez & Mi-
ralles, 1991) with the implementation of high–resolution shock–
capturing methods (HRSC) originally developed in classical
fluid dynamics. These methods make use of the hyperbolic and
conservative character of the equations and display a number of
interesting features and properties, as being stable and conserva-
tive, converging to physical solutions and having high accuracy
in regions where the solution is smooth. They are all based on
the resolution of local Riemann problems at the interfaces of
numerical cells –following the seminal idea of Godunov (1959)
– ensuring a consistent treatment of discontinuities (shocks).
The first relativistic applications of these techniques showed
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their capabilities in describing accurately complex flows, with
high Lorentz factors and strong shocks, superseding traditional
methods (Wilson 1979) which failed to describe ultrarelativis-
tic flows (Norman & Winkler 1986). Up to now, the use of
HRSC methods in relativity has been mainly restricted to the
field of special relativistic hydrodynamics (SRH) in the simu-
lation of collisions of heavy ions and, remarkably, extragalactic
jets (Mart́ı, Müller & Ibáñez, 1994). We refer the interested
reader to the introductory section in Banyuls et al. (1997) for
a recent review of the current status of HRSC techniques in
numerical relativistic hydrodynamics.

In recent years, the great success obtained in the first rela-
tivistic applications has drawn the attention of specialists who
started to develop specific Riemann solvers for SRH. Nowa-
days, most of the reliable HRSC methods developed during the
last twenty years in classical hydrodynamics have their special–
relativistic extension (see, e.g., Ibáñez et al., 1997, for an up-
dated list). In the case of general relativistic hydrodynamics
(GRH), the development of numerical codes based on the res-
olution of local Riemann problems is still in its infancy. Only a
small number of papers have considered the extension of HRSC
methods from SRH to GRH (see below). In addition, recently,
several formulations of Einstein equations as a first-order hyper-
bolic system of balance laws have been derived (Friedrich 1985;
Bona et al. 1995; Abrahams et al. 1995; Fritelli & Reula 1996).
This opens a new strategy in the field of Numerical Relativity,
permitting the use of HRSC schemes, specifically designed for
such hyperbolic systems, to solve the coupled system of space-
time plus hydrodynamics (Bona et al. 1993).

The basic idea behind this work is to obtain a general proce-
dure that allows us to take advantage of the increasing number of
special relativistic Riemann solvers (SRRS) developed recently,
in order to generate numerical solutions describing the evolution
of relativistic flows in strong gravitational fields (background
or dynamical). All the previous works done to extend HRSC
methods to GRH have used linearized Riemann solvers (Martı́,
Ibáñez & Miralles 1991; Eulderink & Mellema 1995; Romero
et al. 1996; Banyuls et al. 1997). In this paper we describe a
procedure to use any type of SRRS in general relativistic hydro-
dynamics, including the exact Riemann solver for 1D problems.
This procedure relies on a local change of coordinates at each
numerical interface, in terms of which the spacetime metric is
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locally flat, analogously to the approach followed in classical
fluid dynamics, when using the solution of Riemann problems in
general curvilinear coordinates. The numerical implementation
is simple, computationally inexpensive, and provides a useful
tool for the researchers currently working in SRH to enter the
field of GRH.

The structure of this paper is the following: In Sect. 2 we
summarize the GRH equations in the{3 + 1} formalism and
the basic ideas of HRSC methods. In Sect. 3 the formulation of
Riemann problems in locally flat spacetimes and the method to
obtain the numerical fluxes for the GRH equations from those
obtained in SRH is explained. In Sect. 4 we briefly describe the
set of numerical tests and applications performed to demonstrate
the feasibility of the approach. Finally, in Sect. 5 we summarize
our results and foresee other applications of our proposal.

2. GRH equations in the 3+1 formalism and HRSC
methods

Let M be a general spacetime, described by the four dimen-
sional metric tensorg. The line element has the form

ds2 = −(α2 − βiβ
i)dt2 + 2βidxidt + γijdxidxj . (1)

Throughout the paper Greek (Latin) subscripts run from 0 to
3 (1 to 3) and geometrized units are used (G = c = 1). Let
{∂t, ∂i} be the coordinate basis andn the unit timelike vector
field normal to the spacelike hypersurfacesΣt (t = const.)

∂t = αn + βi∂i (2)

We denote byJ andT the density current and the energy–
momentum tensor for a perfect fluid, respectively,

J = ρu (3)

T = ρhu ⊗ u + pg (4)

with u the four-velocity of the fluid,ρ the rest–mass density,
p the pressure andh the specific enthalpy (h = 1 + ε + p/ρ,
whereε is the specific internal energy).

The equations describing the evolution of a relativistic fluid
are thelocal conservation laws of baryon number and energy–
momentum and can be written, for observers which are at rest
in the sliceΣt (Eulerian observers), in terms of the divergence
of the 5 vector fields{J, T · n, T · ∂1, T · ∂2, T · ∂3} as,

∇ · A = s, (5)

whereA denotes any of the above 5 vector fields ands is the
corresponding source term. Explicit expressions of these vec-
tors in terms of theprimitive variables {ρ, ε, vi} (with vi the
components of the velocity measured by an Eulerian observer) ,
as well as expressions for the source terms, are given in Banyuls
et al. (1997).

Let us consider the integral form of the above equations on
a four–dimensional volumeΩ ⊂ M with three–dimensional

boundary∂Ω, and apply Gauss theorem to obtain the corre-
sponding balance equation

∫

∂Ω

A · d3Σ =

∫

Ω

sdΩ. (6)

For numerical applications, we choose the volumeΩ as the
one bounded by the coordinate hypersurfaces{Σxα ,Σxα+∆xα}.
Hence, the time variation of the mean value ofA0,
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In order to update the solution in time, the volume and sur-
face integrals on the right hand side of Eq. (9) have to be evalu-
ated (see Sect. 3). HRSC schemes rely on the calculation of the
A vector fields by solving local Riemann problems combined
with monotonized cell reconstruction techniques.

3. Formulation of Riemann problems in locally
Minkowskian coordinates

According to the equivalence principle, physical laws in alocal
inertial frame of a curved spacetime have the same form as in
special relativity. Locally flat (or geodesic) systems of coordi-
nates, in which the metric is brought into the Minkowskian form
up to second order terms, are the realization of these local in-
ertial frames. However, whereas the coordinate transformation
leading to locally flat coordinates involves second order terms,
locally Minkowskian coordinates are obtained by a linear trans-
formation. This fact is of crucial importance when exploiting the
selfsimilar character of the solution of the Riemann problems
set up across the coordinate surfaces.

Hence, we propose to perform, at each numerical interface, a
coordinate transformation to locally Minkowskian coordinates
assuming that the solution of the Riemann problem is the one in
special relativity and planar symmetry. This last assumption is
equivalent to the approach followed in classical fluid dynamics,
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when using the solution of Riemann problems in slab symme-
try for problems in cylindrical or spherical coordinates, which
breaks down near the singular points ( e.g. the polar axis in
cylindrical coordinates). Analogously to classical fluid dynam-
ics, the accuracy will depend on the magnitude of the Christoffel
symbols, which might be large whenever huge gradients or large
temporal variations of the gravitational field are present. Finer
grids and improved time advancing methods will be required in
those regions.

In the rest of this section we will focus on the evaluation of
the first flux integral in Eq. (9).
∫

Σ
x
1

A · d3Σ =

∫

Σ
x
1

A1√−g dx0dx2dx3 (10)

To begin, we will express the integral on a basiseα̂ with e0̂ ≡ n

andeî forming an orthonormal basis in the plane orthogonal to
n with e1̂ normal to the surfaceΣx1 ande2̂ ande3̂ tangent to
that surface. The vectors of this basis verifyeα̂ ·e

β̂
= η

α̂β̂
with

η
α̂β̂

the Minkowski metric (in the following, caret subscripts
will refer to vector components in this basis).

Denoting byxα
0 the coordinates of the center of the inter-

face at timet, we introduce the following locally Minkowskian
coordinate system

xα̂ = M α̂
α (xα − xα

0 ), (11)

where the matrixM α̂
α is given by∂α = M α̂

α eα̂, calculated at
xα

0 . In this system of coordinates the flux terms in the equations
of GRH are written as in SRH, in Cartesian coordinates, and the
flux integral (10) reads
∫

Σ
x
1

(A1̂ − β1̂

α
A0̂)

√

−ĝ dx0̂dx2̂dx3̂ , (12)

with
√

−ĝ = 1 + O(xα̂), where we have taken into account
that, in the coordinatesxα̂, Σx1 is described by the equation

x1̂ − β1̂

α
x0̂ = 0 (with β î = M î

i β
i), where the metric elements

β1 andα are calculated atxα
0 . Therefore, the effect of a non-zero

shift is that the interface where the Riemann problem has to be
solved is not at rest but moves withspeed β1̂/α.

At this point, all the theoretical work developed in the last
years, concerning SRRS, can be exploited. The procedure in-
volves the following steps:

1) We set up the Riemann problem by giving the values at the
two sides ofΣx1 of two independent thermodynamical variables
(namely, the rest mass densityρ and the specific internal energy
ε) and the components of the velocity in the orthonormal spatial
basisvî, which are calculated using

vî = M î
i v

i (13)

where
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Fig. 1. Spherical accretion of an ideal gas: profiles of density (ρ), inter-
nal energy (ε) and velocity (v/c) as a function of the radial coordinate,
after the steady state has been reached. The critical point (rc), the crit-
ical density at the critical point (ρc) and the adiabatic exponent of the
equation of state (γ) have been takenrc = 200M , ρc = 7×10

−4 and
γ = 4/3. The solid line corresponds to the analytic solution and the
diamonds to the numerical one obtained using the exact SRRS.

2) The special relativistic Riemann problem is solved for
the variablesρ, ε and vî, obtaining the fluxes associated to
J,T · n,T · eĵ . Notice that the effect of a non-zero shift has to
be considered at this stage. Although most linearized Riemann
solvers provide the numerical fluxes for surfaces at rest, it is
easy to generalize them to moving surfaces relying on the con-
servative and hyperbolic character of the system of equations
(see, e. g., Harten & Hyman 1983).

3) Once the Riemann problem has been solved, by means of
any linearized or exact SRRS, we can take advantage of the self-
similar character of the solution of the Riemann problem, which
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makes it constant on the surfaceΣx1 simplifying enormously
the calculation of the above integral (12):

∫

Σ
x
1

A · d3Σ = (A1̂ − β1̂

α
A0̂)∗

∫

Σ
x
1

√

−ĝ dx0̂dx2̂dx3̂ (15)

where the superscript (*) stands for the value onΣx1 obtained
from the solution of the Riemann problem. The quantity in
parenthesis in Eq. (15) represents the numerical flux acrossΣx1 .
Notice that the numerical fluxes correspond to the vector fields
J, T ·n, T · e1̂, T · e2̂, T · e3̂. In order to obtain the momentum
fluxes in the original coordinates (T ·∂i) the additional relation

T · ∂i = M ĵ
i (T · eĵ) (16)

has to be used.
4) Finally, the numerical fluxes are multiplied by the surface

integral appearing at the right hand side of (15), that is expressed
in terms of the original coordinates as
∫

Σ
x
1

√

γ11
√−g dx0dx2dx3 (17)

and can be easily evaluated for a given metric.
Let us remind that, in this section, we have focussed on

the calculation of the flux terms in Eq. (9), for given left and
right states. Obviously, the performance of the numerical code
depends on the quality of the provided initial states, as well as the
computation of the source terms in Eq. (9), and the algorithm for
time advancing. In all the calculations presented in next section,
left and right states for Riemann problems have been obtained
with a monotonic, piecewise linear reconstruction procedure.
The source integrals have been evaluated assuming constant
values ofρ, ε andvi inside the numerical cells. Finally, advance
in time has been done by means of a TVD-preserving, third order
Runge-Kutta, that takes into account the influence of the source
terms in the intermediate steps. Notice that the treatment of the
source terms is essential for the method to work in regions where
they dominate. A treatment consistent with the reconstruction
procedure and better time advancing schemes may be required in
regions very close to coordinate singularities, where the source
terms might diverge.

4. Tests and applications

In order to demonstrate the feasibility of our procedure we have
considered an exhaustive sample of standard discontinuous ini-
tial value problems for which the exact solution is known, as
well as some numerical applications involving strong gravita-
tional fields. The set of SRRS used in the computations are the
exact one (Martı́ & M üller 1994) for 1D problems, as well as
SR extensions of the linearized solvers described in Harten, Lax
& van Leer (1983), Roe (1981), and Donat & Marquina (1996).

To summarize, we have successfully redone all the experi-
ments shown in Banyuls et al. (1997), that includes relativistic
shock-tube tests for non-diagonal metrics, as well as a number of
simulations of relativistic wind accretion onto a Schwarzschild

Fig. 2. Non-spherical hydrodynamic accretion onto a Schwarzshild
black hole. The initial model is characterized by an asymptotic ve-
locity of 0.5c and Mach number5. The adiabatic exponent of the fluid
is5/3. The simulation employs a grid of120×40zones in the radial and
polar directions respectively. The radial domain extends from2.1M
to 38M . The polar domain extends from0 to π. The flow moves from
left to right. The different pannels show isocontours of the logarithm
of the density normalized to its asymptotic value. Starting from the
upper-left pannel and in a clockwise sense we show results for the Roe
solver (as used in Banyuls et al (1997)), its SRRS version, Marquina’s
solver and HLLE. The isocontours span the same interval regardless of
the solver used. This range goes from0 to 1.15. The maximum values
are always found at the rear part of the hole where the matter piles up.
The different solvers agree on this value up to three significant figures.

black hole. In Fig. 1, we show the results from a simulation of
spherical accretion of an ideal gas onto a Schwarzschild black
hole. The analytical solution derived by Michel (1972) is repre-
sented by the solid line and the diamonds represent the numeri-
cal solution obtained using the exact SRRS, after the stationary
state has been reached. In Fig. 2, we display results from two di-
mensional simulations of non-spherical accretion onto a moving
black hole, corresponding to one of the models recently studied
in Font & Ibãnez (1998) [model MC2 in their table I]. The fig-
ure displays isocontours of the rest mass density in logarithmic
scale. The upper-left panel displays the results obtained from
the code described in Banyuls et al. (1997), the upper-right
panel shows the results obtained with the new approach using
the same solver (Roe-like). Results obtained with the new ap-
proach using HLLE (the SR extension of Harten, Lax & van
Leer (1983) method width Einfeldt (1988) prescription as de-
scribed in Schneider et al. (1993)) and Marquina’s solvers are
shown in the lower-left and lower-right panels, respectively.

The main conclusion emerging from the comparison is that
our new approach generates remarkably similar results for the
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four different SRRS, the tiny differences being due to the intrin-
sic properties of each solver, e.g., Roe’s solver is the least dif-
fusive and therefore more oscillatory. The results following the
method presented in Banyuls et al. (1997) are indistinguishable
from the ones obtained using the special relativistic Roe-like
solver in this new approach. It can be shown analytically that
both algorithms are equivalent.

5. Conclusions and outlook

We have developed a general procedure to use SRRS in multi-
dimensional general relativistic hydrodynamics that allows us
to take advantage of the increasing number of SRRS developed
recently, overcoming partial approaches derived in previous pa-
pers, which were restricted to linearized Riemann solvers. Since
the change of coordinates we propose is linear and only involves
a few arithmetical operations, the additional computational cost
of the approach is completely negligible.

The procedure has a large potentiality and could be applied
to other systems of conservation laws, as the equations of gen-
eral relativistic magneto-hydrodynamics, providing a very use-
ful numerical tool to solve them using the corresponding Rie-
mann solvers developed for the special relativistic case. The
feasibility of the approach has been extensively tested and its
numerical performance is, at least, as good as other schemes de-
veloped in previous papers, having the additional advantage of
being very well suited to include future work and improvements
that might be done in the field of SR Riemann solvers.
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Banyuls, F., Font, J. A., Ib́añez, J. Ma., Mart́ı, J. Ma., and Miralles,
J.A., 1997, ApJ, 476, 221.
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Font, J.A., Ib́añez, J. Ma., Marquina, A. and Martı́, J.Ma., 1994, A&A,

282, 304.
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Mart́ı, J.Ma., Ibáñez, J. Ma., and Miralles, J.A., 1991, Phys. Rev., D43,
3794.

Mart́ı, J.Ma., and M̈uller, E., 1994, J. Fluid Mech., 258, 317.
Mart́ı, J.Ma., Müller, E., and Ib́añez, J. Ma., 1994, A&A, 281, L9.
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