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Abstract—The oscillations of gravitating objects are considered. Their diagnostics consist of determining the
parameters of the internal state from temporal and spatial properties of the oscillations. Here, analytically solv-
able cases play a major role. A new model, which considerably extends the analytical potential in terms of jus-
tification, classification, parametric analysis, and even quantitative estimates, is proposed. The problem of
waves in a polytropic atmosphere with an arbitrary polytropic index is solved. In mathematical terms, the solu-
tion reduces to Laguerre’s polynomial functions, while the corresponding branches of acoustic and gravity
modes prove to be mutually conjugated and are described by a hydrogen-like spectrum. The fundamental math-
ematical properties of the oscillation equations, which are associated with isospectral deformations of the den-
sity profile, are noted. A new, very simple and physically clear proof of the existence of a hidden symmetry in
this equation is given. An important consequence of this proof is the establishment of an explicit relation

between the transformed eigenfunctions.

The theory of oscillations and the associated spec-
tral apparatus form one of the bases of modern physics.
In particular, studies in the field of solar physics rely
heavily on the theory of solar oscillations (see Unno
etal. 1979; Cox 1980; Vorontsov and Zharkov 1981,
1989; Leibacher et al. 1985; Christensen-Dalsgaard
et al. 1985; Brown et al. 1986; Toomre 1986; Gough
and Toomre 1991; Stix 1991; and Vorontsov 1992).
The direct and inverse spectral problems consist in cal-
culating the functions s{p;, p,, --.) and pi(s;, s;, -..),
where s; and p; are, respectively, a set of parameters of
the oscillation spectrum and a set of parameters that
specify the physical state of the Sun. The direct prob-
lem is solved at once by computations: the parameters
p; are specified, and the spectrum up to modes of rather
high order is numerically calculated by the fork
method. In contrast, the inverse problem is solved by
fitting: the sought-for parameters p; are adjusted to
achieve the best agreement with experimental values of
s; This problem presents some difficulties, because
there are many parameters, because they are dissimilar,
and because it is not easy to move blindly. A good
knowledge of both experimental and numerical results,
separation of the parameters into primary and second-
ary, etc., are required.

For orientation in parameter space and for prelimi-
nary estimates, it is desirable to develop theoretical
approaches that allow analytical expressions to be
derived for the functions s,(p;, p;, -..) and p(sy, $;, -..)-
There is an asymptotic approach that is equivalent to a
quantum-mechanical semiclassical approximation,
which is asymptotically valid in the number of zeros for

high-order modes. In addition, three exactly solvable
cases are known: (i) isothermal, (ii) isochoric, and
(111) isentropic. The first applies to the problem of oscil-
lations of an exponentially distributed, incompressible
fluid. This problem was solved in a classical paper by
Rayleigh (1883). Oscillations of a star with an unper-
turbed constant density were calculated in the well-
known paper of Pekeris (1938); see also Cox (1980,
s. 17.7). The isentropic case was analyzed by Inogamov
(1977, 1984, 1985a).

In this paper we propose a new, exactly solvable
model. This model does not apply to the above cases
(i), (i), and (iii). It incorporates (ii) and (iii) as special
cases. According to this model, the classification of
solvable cases looks as follows: there are (A) exponen-
tial distributions of entropy s = p/pY, which are
exhausted by case (i), and (B) power-law entropy dis-
tributions, which are covered by the model. Thus, our
model is based on the solution of a spectral problem of
perturbations of an arbitrary polytrope. It makes it pos-
sible to classify oscillations, determine the positions of
zeros of all eigenfunctions, and bridge the gap between
the descriptions of low- and high-order modes in the
asymptotic theory. A comparison with experimental
data on solar oscillations shows that the model is fairly
consistent with them.

It is well known [see, e.g., the monographs of Unno
et al. (1979), Cox (1980), and Vorontsov and Zharkov
(1981, 1989)] that the adiabatic approximation can be
used to describe stellar oscillations. The dynamical
equations that express the laws of conservation of mass,
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momentum, and energy in this approximation in differ-
ential form are

Dp =0, (D

p; +div(pv) =0, 2)

pD,v + gradp — pg =0, 3)

divv=0, “4)

D;s=0, o)

where D, = dt + (v - V) is the Lagrangian derivative.
Equations (1), (3), and (4) refer to an inhomogeneous
incompressible fluid [in this case, the energy equation
replaces the condition of incompressibility (4)],
whereas equations (2), (3), and (5) describe a com-
pressible case. The local gravity g is derived from the
gravitational potential ¢, which obeys the Poisson
equation AQ = 4nGp, where G is the gravitational con-
stant. We restrict the analysis to the widely used, fairly
accurate Cowling’s approximation (Unno et al. 1979;
Cox 1980; Vorontsov and Zharkov 1989), in which the
perturbations of the gravitational potential are ignored.
Let us consider the problem in a plane approximation,
which is valid for sufficiently high spherical harmonics

I (assume that k = J/I(I+1)/R, where k is the wave
number, and R is the radius of the star). We shall disre-
gard the self-gravitation of the outer envelopes, because
the mass of a fairly thick convective envelope in the
case of the Sun, which is adjacent to its edge and which
has a thickness of approximately a third of the solar
radius, is known to be about 2% of the total mass of the
Sun. In the unperturbed state, the equation of hydrostat-
ics holds: dPy/dr = —pyg, where g = |g|, and the zero
subscript denotes unperturbed quantities. At equilib-
rium, the medium is at rest. The unperturbed state is
completely defined by a single arbitrary function.
Indeed, in the compressible case, there are two inde-
pendent thermodynamic variables and also a hydrostat-
ics equation. In the incompressible and compressible
cases, the density and entropy distributions, respec-
tively, are chosen for the above function.

Let us linearize the system of equations (1), (3), and
(4) that refer to an incompressible fluid. We denote the
density, velocity, and energy perturbations by p(r), u(r),
wv(r), and p(r), respectively. The dependence of the per-
turbations on the remaining variables is f{r, x, ?) =
finexp(iox + ikx). In what follows, x is the coordinate
that is transverse to the radius r, and # and v are the
velocity components along the x axis and the radius 7,
respectively. Let us consider the pressure in Lagrangian
coordinates. We expand it in small displacements of the
Lagrangian particles

P(r+0r, x + 0x, )

dPy(r) v(r) IOt ik

= P+ dr io

+ p(r)eimt+ ikx

Here or = % is the displacement of a Lagrangian par-
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ticle. The linear term added to the pressure in this par-
ticle is

pu() = —gpoev(r)/(iw) + p(r). (6)

We eliminate the unknown p and u from the system,
which arises as a result of linearization of equations (1),
(3), and (4). We obtain a system of two first-order equa-
tions for v and p. If we eliminate v; the remaining equa-
tion for p will contain the second derivative d’py/dr>.
Therefore, we eliminate p. The resulting equation con-
tains the first derivative with respect to p,. It is the well-
known Rayleigh equation (1883)

)

where the function H,(n) = 1/ (lnpo);] gives the inho-
mogeneity scale, 1| = kr is the dimensionless radius, and

Q= 0/ ./gk is the dimensionless frequency. Clearly,
Po enters this equation only through H,,.

H, v+ vn—(H,+1/Q)v = 0,

It can be readily seen that equation (7) has the
solutions

o)
[ 5]
[
=
<
[

®)

exp(-"), &)

which represent the gravity wave and the mode of Ray-
leigh-Taylor instability, respectively (Inogamov 1984,
1985a, and 1985b). The modes (8) and (9) are isobaric
in the sense that the pressure in the Lagrangian particles
remains constant during their motion. It thus follows
that these modes are invariant with respect to the den-
sity distribution. The mode (8) is closely associated
with trochoidal waves (Inogamov 1985b). All these fac-
tors suggest that it makes sense to rewrite equation (7)
using p; as an unknown.

exp(n),

-1, v =

For this purpose, we replace p by p; in the system of
two first-order equations for v and p using formula (6).
As a result, the equation takes the form

o L, kn_ g
T wp ’
(10)
—1—2V;]+iv+£——(pL)n = 0.
iQ ® Py

Let us eliminate v. Solving system (10) for v; we
obtain

(-3

Taking the first derivative of (11) with respect to 1, we
obtain the expressions for v and v, in terms of p,,

ikn(pL)y 1 ikpL

. 11
® pp Q0P (1

n
(PL)y > and (py)y, - Substituting these expressions into
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the first or the second equation of system (10), we
obtain the equation

Hy(pD)on— (PL)y— (H,+1/Q%)p, = 0. (12)

Let py be such that it tends to finite values in the
limit | — Zoo. It can then be easily shown that the
boundary conditions for v and p; are

W(teo) =0, (13)
pL(Ee=) =0. (14)

Since the unknown quantities v and p; are related
by equation (11), the spectra (sets of eigenvalues)

(Q)), and (Q),,i=1,2, ..., which refer to the prob-
lems (7), (13) and (12), (14), coincide:

@), = (Q),, i=12... (15)

Let us consider the inversion transformation
(Mikaelian 1982; Inogamov 1990; Kull 1991):

PoM) = 1/py(-M). (16)

We denote the variables, which are related to the
inversion problem by a circumfiex above the letter. In
the case of the P, distribution [equation (16)], the spec-
tral problem (7), (13) takes the form

H,on, - 00— (H,+1/Q%) 9 = 0, (17)

(o) = 0. (18)

This can easily be shown using the definition of
inversion (16).
The striking hidden symmetry is that, as it turns out,
Qi =q i=12,.. (19)
for any distributions of p,! Here (Q?) is the spectrum
of the inversion problem (17), (18). Mikaelian (1982)
put forward the hypothesis for the existence of symme-
try (19). Inogamov (1990) gave a rigorous, very com-
plicated proof of the isospectral property (19). Kull
(1991) developed another approach. Equation (12) for
Lagrangian pressure perturbations makes it possible to
trivially prove this property. Indeed, the spectral prob-
lems for the inversion distribution (17), (18) are liter-
ally identical to those for the pressure (12), (14). The
required result follows from this identity and from (15).
An important consequence of the proof “in terms of
py” is that we see not only the invariance of the spec-
trum of eigenvalues, but also how the eigenfunctions
are transformed as a result of inversion. Specifically,
the eigenfunctions ¥~ after the inversion (16) transform
into the eigenfunctions v, which are equal to the eigen-
functions p; . This circumstance remained hidden in the
previous proofs.

Let us consider the compressible case [equations (2),
(3), and (5)]. The analog of the Rayleigh equation for v

INOGAMOV

turns out to be cumbersome. Given the above discus-
sion of isobaricity and p; , it makes sense to use the ana-
log of equation (12). We supplement system (2), (3),
and (5) with equation (6). As in the incompressible
case, eliminating the known quantities u, p, p, and v;
we obtain

H H(p)yy — H(pD)y ~ [HH,+ Hy/ Q'
+H/Q +(Q-1/Q%(H,/y+H,)1p, = 0,

where the local scale height in entropy is H, =
k(dInSy/dy).

(20)

Let us consider an arbitrary polytrope Py o< py* """ .

The hydrostatic distribution is

Spoc (~Ar) "D,

Po o< (-Ar)",
where Ar=r—R.
We calculate the scale heights H, and H, using for-

mulas (21) and (22). Substituting the derived expres-
sions into equation (20), we obtain

@n
(22)

Q’n(pp)s, - nQ(py)s,
QN +n+y (+ 1D)(Q - 1)]p. = 0.

In what follows, 1 = kAr. After the replacement p; =
exp(—M)F(M), n = x/2, equation (23) transforms into a
Kummer-type equation, which is closely related to the
Schrdinger equation for a field with the Coulomb
potential. Its general solution is

(23)

) = €"e,-m)"" o
XFl[(a+n+1),(n+2),(-2n)] + ¢, F(a, -n,-2M) 1,

a=—(Q+1D[ny+@+1)(Q°-1)1/(27QD),

= : (25)
F(a,b,x) = Z(a,./b,.)x'/i!,
i=0
where F(a, b, x) is a degenerate hypergeometric func-
tion,a;=a(a+1) ... (a+i-1), and gy = 1. An exhaus-
tive description of this procedure is given in the mono-
graph of Landau and Lifshitz (1974, p. 741).

In order to find the spectrum for Eq. (23), we must
impose boundary conditions on the surface and in the
depth of the star. We require that p; (0) = 0 and py (—e) =0
and impose these constraints on the general solution
(24). From the conditions of hydrostatic equilibrium
[equations (21) and (22)] we find that n > —1. From this
inequality, together with an analysis of expression (24),
and from satisfaction of the condition at the surface it
follows that ¢, = 0.

In order to use the second boundary condition, we
must analyze the asymptotic behavior of the function
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The values of vy calculated from (27). The p;, p,, p3, ... modes refertom =0, 1, 2, ..., respectively
m
I P P2 P3 D4 Ds Ps p7 Ps Py Pio P11
100 1.59 1.61 1.62 1.63 1.64 1.66 1.67 1.69 1.70 1.71
200 1.51 1.47 1.49 1.50 1.52 1.52 1.54 1.57 1.58 1.59 1.60
300 1.40 1.42 143 1.45 1.46 1.48 1.54 1.52 1.53 1.55 1.56

Fl(a+n+1), (n+2)for n — —oo. The asymptotic solu-
tion of p; splits into decaying and increasing exponen-
tials. For the hydrogen atom, this corresponds to the
asymptotic behavior of the electron wave function at
large distances from the center. It is necessary to find
conditions for the resonance between the boundary
conditions to eliminate the increasing exponential
function. This will give the dispersion relation between
o and k. For —-m > 1 we have (Landau and Lifshitz
1974)

F(a, b, x) _ Gla,a-b+1,-x)
I'(b) I'(b - a)(—x)*

eGb-a,1-a,x)
+ b-a
T'(a)x

" a,b,
. G@bx) = —,
ollx

where I'(a) is the gamma function; to calculate the
powers, the variables x and —x must have the smallest
argument in absolute value. We thus obtain

nGla+n+1,a+4,2n]

F(—a _ 3)(21‘])a+n+1
(26)

pLo ()" ' T(n - 2){e

+ e_nG[~a— 3,—-a—n,-21n]
T@+n+1)(-2n)""*">

where a is given by formula (25). To eliminate the
increasing exponential in (26), we must satisfy the con-
dition a + n + 1 = —m, where m = 0,1,2,... is an integer,
because the function I'(a + n + 1) has a pole at this value
of the argument. Substituting formula (25), we obtain a
quadratic equation for Q2, whose solutions are

. RN
2y 4 _ BHJY n+ jy 0
{1 n+12+A/(n+12) A @7
for a family of acoustic modes and
{(@)}o = 1,
(28)

. - N2
oy = nHIY (n+]y) 0
{1 n+12 n+12 +n+1
for a family of gravity modes. Here 6 = 1 — n(y — 1),
j=2m+2,andm=0,1,2, ... . Curiously, the increase
in the degree of stratification instability, i.e., the
increase in O, results in a rise of the fan of acoustic
modes, which corresponds to their hardening. The spec-
ASTRONOMY LETTERS Vol 22

No. 6 1996

trum (28) for gravity modes is supplemented with the
fundamental mode {(Q?),},, for which the correspond-
ing eigenfunction is {p; }o = 0. It is therefore absent in
the spectrum of the spectral problem for p; . The remain-
ing functions that correspond to this mode are finite.

From (27) and (28) we find that the eigenfunctions of
the modes p and g are
prm) o< (-n)" "' e"F(-m, n +2,-2m)

_ ()" miLy P (=2n)
T (n+2)(n+3)...(n+m+1)

where Lf: D are the generalized Laguerre polynomials.

Expressions (27) and (28) are compact analytical
formulas which can be used to calculate the oscillation

frequencies @ = Q./gk from the wave number k, mode
number m, and the parameters n and y. Let us check
them against the results of typical numerical calcula-
tions and against experimentally measured frequencies
of the best studied, five-minute, solar p oscillations.
Since the entropy gradients inside a thick convection
zone are small, we set n = 1/(y — 1) in (27) and fix k.
We take from the literature the set of p-mode frequen-
cies ®;, ®,, ... that correspond to this k. The substitute
these test values into (27) and calculate y(rm) at various
values m=0,1,2, ... for the quantity y(m) (m=0,1,2, etc.
refer to the modes p,, p,, p3, ..., respectively). If the
tested formulas are unrelated to these spectra, then
varying m over a wide range would result in variations
of y(m) over the same range.

Our results are summarized in the figure and the
table. We carried out the check over a wide range of
variations in k. The vertical bars in the figure indicate
Y(m) values which were obtained by recalculating the
experimental data of Deubner (1975). The height of the
bar is determined by the error of the frequency mea-
surement. Since Deubner took measurements for nine
values of k, there are nine groups of bars. Each group
refers to its “own” value of k, which is marked with a
vertical arrow under this group. Each group includes
several closely spaced bars. The extreme left bar refers
to the p; mode, the next bar refers to the p, mode, etc.
Clearly, there is no disagreement among y(rn) for vari-
ous values of m. On the contrary, all of these values are
in good agreement within the experimental error.

The recalculated dispersion relations of Ando and
Osaki (1975) are indicated in the figure by the solid
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The values of 7y calculated from (27). The vertical bars rep-
resent experimental data, the curves indicate numerical cal-
culations, the numbers are m + 1.

lines. The numbers beside the curves are p-mode
numbers. It can be seen from the figure that the diver-
gence of the curves 21Y(3) — (2)|/[Y(3) + y(2)] and
21v(2) — (1)]/[(2) —y(1)] is small and does not exceed
5-7%.

The table compares our results with typical current
experimental relations ®(/). We took the experimental
data from Fig. 3 in the review of Harvey (1995). The
table gives the values of Y as a function of harmonic
number / for a sequence of p;, p,, ... modes. An analy-
sis of the data given in the table shows that the values
of ¥ remain approximately constant when varying m
over a rather wide range. This leads us to conclude that
the derived formulas are in satisfactory agreement with
known numerical and experimental results.

ACKNOWLEDGMENTS

I wish to thank the Max Planck Institut fiir Astro-
physik, where part of this work was performed, for their
hospitality. I also thank the Russian Foundation for
Basic Research for support (project no. 95-02-06381).

INOGAMOV

REFERENCES
Ando, H. and Osaki, Y., Publ. Astron. Soc. Jap., 1975,
vol. 27, p. 581.

Brown, T.M., Mihalas, B.W., and Rhodes, E.J., Jr., Physics of
the Sun, Sturrock, P.A. et al., Eds., Dordrecht: D. Reidel,
1986, vol. 1, p. 177.

Christensen-Dalsgaard, J., Gough, D.O., and Toomre, J., Sci-
ence, 1985, vol. 229, p. 923.

Cox, J.P, Theory of Stellar Pulsation, Princeton: Princeton
Univ., 1980.

Deubner, F.-L., Astron. Astrophys., 1975, vol. 44, p. 371.

Gough, D.O. and Toomre, J., Ann. Rev. Astron. Astrophys.,
1991, vol. 29, p. 627.

Harvey, J., Phys. Today, 1995, vol. 48, p. 32.

Inogamov, N.A., Cand. Sci. (Phys.—Math.) Dissertation.
Chernogolovka: Inst. Teor. Fiz., Akad. Nauk SSSR, 1977.

Inogamov, N.A., Izv. Akad. Nauk SSSR, MZhG., 1984, issue 1,
p- 158.

Inogamov, N.A., Izv. Akad. Nauk SSSR, MZhG., 1985a, issue 6,
p. 92.

Inogamov, N.A., Izv. Akad. Nauk SSSR, MZhG., 1985b, issue 5,
p. 145.

Inogamov, N.A., Voprosy dinamiki i ustoichivosti plazmy
(Problems of Dynamics and Stability of Plazma), Mezhve-
domstvennyi Shornik, Moscow: Mosk Fiz. Tekh. Inst., 1990,
p- 100.

Kull, HK., Phys. Rep., 1991, vol. 206, p. 197.

Landau, L.D. and Livshitz, E.M., Kvantovaya Mekhanika
(Quantum Mechanics), Moscow: Nauka, 1974.

Leibacher, J.W., Noyes, R.W., Toomre, J., and Ulrich, R.K.,
Sci. Amer., 1985, vol. 253(3), p. 48.

Mikaelian, K.O., Phys. Rev. Lett., vol. 48, p. 1365.
Pekeris, C.L., Astrophys. J., 1938, vol. 88, p. 189.

Rayleigh, Lord, Proc. London Math. Soc., 1983, vol. 88,
p- 189.

Stix, M., The Sun, An Introduction., Berlin: Springer, 1991.
Toomre, J., Seismology of the Sun and the Distant Stars,
Gough, D.O., Ed., Dordrecht: D. Reidel, 1986, p. 1.

Unno, W., Osaki, Y., Ando, H., and Shibahashi, H., Nonra-
dial Oscillations of Stars, Tokyo: Tokyo, 1979.

Vorontsov, S.V., Sov. Astron. Lett., 1992, vol. 36, p. 175.

Vorontsov, S.V. and Zharkov, V.N., Uspekhi Fiz. Nauk, 1981,
vol. 134, p. 675.

Vorontsov, S.V. and Zharkov, V.N., Helioseismology. Soviet
Scientific Review/section E. Astrophys. Space Phys. Rev.,
Sunyaev, R.A., Ed., Harwood Acad., 1989, vol. 7, part 1, p. 1.

Translated by A. Dambis

ASTRONOMY LETTERS Vol. 22 No. 6 1996

© MAHUK Hayxka/Interperiodica Publishing ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996AstL...22..780I

