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ABSTRACT 

Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astro- 
physical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If 
the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy 
change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a 
simple form involving only the time and energy variables. In an earher paper (Park & Petrosian 1995, hereafter 
Paper 1 ), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some 
simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of 
the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We 
examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation 
method which uses the exact correspondence between the Fokker-Planck equation and the Ito stochastic differ- 
ential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are 
singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each 
method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-de- 
pendent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit 
Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods 
suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic 
simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles 
are used and is computationally very expensive compared to the finite difference method. 
Subject headings: acceleration of particles — diffusion — methods: numerical 

1. INTRODUCTION 

Ever since its introduction by Fermi ( 1949,1954 ) and Davis 
(1956), stochastic (or second-order Fermi) acceleration has 
been advanced as a mechanism for accelerating electrons and 
ions to suprathermal energies. One commonly assumed agent 
of this acceleration is plasma wave turbulence, which is ex- 
pected to be present in nonequilibrium conditions of highly 
magnetized plasmas. Charged particles, spirialing along mag- 
netic field lines, are then accelerated through resonant interac- 
tions with plasma waves. This problem is often treated in the 
quasi-linear approximation (see, e.g., Schlickeiser 1989) and 
leads to the Fokker-Planck equation with a diffusion coeffi- 
cient whose magnitude and form depends on the power spec- 
trum and other characteristics of the plasma turbulence. In 
general, the resultant equation is complicated, and one must 
resort to some simplifying approximations. Two commonly 
used simplifications are the following. 

First, if the rate of pitch angle scattering is much larger than 
the rate of energy change and other relevant rates (e.g., rate of 
particle escape), then the distribution of particles can be as- 
sumed to be isotropic. We can integrate out the pitch angle 
variable in the Fokker-Planck equation by averaging over a 
timescale longer than the timescale for pitch angle diflusion, 
but shorter than the timescale for energy diffusion. Second, the 
dependence on the spatial variable can be eliminated by using 
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a volume-integrated distribution, leading to a considerable 
simplification if the magnetic field, the particle density, and the 
turbulence energy density are nearly constant throughout the 
acceleration region. For efficient acceleration, the scattering 
mean free path of particles must be much smaller than the size 
of turbulent region, in which case the spatial convection of par- 
ticles can be approximated by spatial diflusion. Eventually, 
particles will leave the acceleration region. The loss of these 
particles can be modeled by adding an energy-dependent es- 
cape term to the Fokker-Planck equation. Under these as- 
sumptions, the Fokker-Planck equation becomes a function of 
only time / and energy x. In spite of these simplifications, ana- 
lytic solutions can be found only for limited and cases; numer- 
ical methods must be used for more general cases. 

In Park & Petrosian ( 1995, hereafter Paper I), we examined 
the analytical properties of Fokker-Planck equations having 
this simplified form. Previous treatments of these equations 
suffered from incorrect or ambiguous boundary conditions be- 
cause they did not use singular boundary conditions to account 
for the singularity of the Fokker-Planck equation at the bound- 
ary points x = 0 and x = co. We described an extension of 
the familiar Sturm-Liouville eigenfunction expansion theory 
which can deal with these special problems. Using this tech- 
nique, we solved the steady state and the time-dependent 
Green’s functions of three specific cases to study the depen- 
dence of the solution on the coefficients of the Fokker-Planck 
equation. In general, we found that the solutions have a power- 
law or an exponential energy dependence. The forms of these 
solutions can be estimated from the energy dependences of the 
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diffusion, advection, and escape timescales of the Fokker- 
Planck equation. 

In this paper, we study the numerical properties of the Fok- 
ker-Planck equation and address two problems mentioned in 
Paper I. The first problem is determining the numerical bound- 
ary conditions. Analytically, the entire energy range from 0 to 
oo can be examined. Numerically, only a finite range can be 
studied because a singular Fokker-Planck equation can diverge 
at the boundaries. In addition, singular boundary conditions 
cannot be implemented numerically. A finite range implies 
that the boundary points are regular so we must determine 
what regular boundary conditions must be applied. The second 
problem is the possibility of numerical underflow or overflow 
caused by the divergence of the solutions near the boundaries. 
Over the energy range of interest, the solution may vary by 
many orders of magnitude and numerical truncation errors or 
catastrophic cancelation errors can occur. We must find a 
method which is not susceptible to these errors. 

Numerical methods for solving Fokker-Planck equations 
fall into two broad classes, Monte Carlo simulations and finite 
difference schemes. Bai (1982) used a Monte Carlo method to 
study electron transport under the effects of Coulomb scatter- 
ing. Miller & Ramaty ( 1989) extended the Monte Carlo study 
to ultrarelativistic electrons under the influence of synchrotron 
losses, magnetic convergence, pitch angle scattering from 
plasma turbulence, and other processes. More recently, Mac- 
Kinnon & Craig ( 1991 ) advocated a Monte Carlo simulation 
technique using the exact equivalence between the Fokker- 
Planck equation and the Ito stochastic differential equation 
( van Kämpen 1992, chap. 9 ), and demonstrated the study of a 
particle transport problem. Achterberg & Knills ( 1992) and 
Krülls & Achterberg ( 1994) used this method to study the sto- 
chastic acceleration of particles. Although Monte Carlo simu- 
lations are relatively easy to implement, they are computation- 
ally very expensive. This limits the number of test particles 
which can be simulated, making the results susceptible to Pois- 
son noise. For the same reason, it is difficult to perform 
searches through the parameter space of the Fokker-Planck 
equation. 

Finite difference schemes are computationally very efficient 
and produce accurate solutions. They are, however, more 
difficult to implement because they have various stability con- 
straints. Miller, Guessoum, & Ramaty ( 1990) used a fully im- 
plicit finite difference scheme to solve the time-dependent and 
steady state solutions of the “hard-sphere” (see, e.g., Ramaty 
1979) Fokker-Planck equation. Unfortunately, they do not 
discuss the exact method used and the boundary conditions 
imposed. Some equations examined in this paper cannot be 
solved using some fully implicit methods because the methods 
become unstable. Hamilton, Lu, & Petrosian ( 1990) examined 
the time-dependent solutions of a multidimensional Fokker- 
Planck equation by using the technique of operator splitting to 
build composite methods from simpler finite difference 
schemes. Hamilton ( 1990) and Hamilton & Petrosian ( 1992) 
used these techniques to solve the time-dependent one-dimen- 
sional Fokker-Planck equation for electrons undergoing wave- 
particle acceleration in the presence of Coulomb losses 
(Steinacker, Dröge, & Schlickeiser 1988). 

In § 2, we give a description of the Fokker-Planck equation 
and the boundary conditions. In § 3, we examine the general 

properties of finite difference schemes for Fokker-Planck 
equations. In § 4, we give detailed evaluations of six finite 
difference methods. The first is the simple fully implicit differ- 
ence scheme described, for example, by Press et al. (1992, 
chap. 19). The second is a method proposed by Chang & Coo- 
per ( 1970, hereafter CC70). The third is a method proposed 
by Larsen et al. ( 1985, hereafter LLPS85 ). The next three are 
semi-implicit versions of these three methods. We evaluate the 
accuracy and robustness of each method by solving test 
equations. We also discuss some peculiar boundary effects 
caused by the singular nature of the Fokker-Planck equations. 
In § 5, we evaluate the Monte Carlo stochastic simulation 
method on the same test equations and compare it to the finite 
difference methods. In § 6, we give the conclusions of this 
paper. 

2. THE MODEL 

2.1. The Equation 

The Fokker-Planck equation described in Paper I (eq. [1]) 
contains the time variable t and the normalized energy or mo- 
mentum variable x which extends over the interval 0 <x < oc. 
Following the notation used by CC70 and others, we rewrite 
this equation as 

du 
dt 

1 d ' 
A(x) dx 

C(x)^ + B(x)u 
dx 

u 
T(x) + G(*), (1) 

where u(x, t)A(x)dx is the number of particles in the interval 
x and x; + ¿X at time t. This equation is identical to Paper I (eq. 
[1]) except for minor renaming of variables and the addition 
of the phase factor ^4 (x), which is 1 if jc represents energy but 
47tx:2 if x represents momentum. Although we can always re- 
define our variables [u(x, t) -► A{x)u(<x, t)] to eliminate the 
phase factor, it does not complicate the derivation of the finite 
difference scheme so we retain it for compatibility with previ- 
ous studies. We use B(x), C(x), T(x), and Q(x) for the ad- 
vective, diffusive, escape, and source terms, respectively. These 
coefficients are determined by the physical conditions of the 
background plasma which is responsible for the acceleration 
process. For pure wave-particle stochastic acceleration, these 
can be approximated by power-law forms over a wide range of 
energies. Numerical methods do not require simplified coeffi- 
cients, but we consider these cases for comparison with known 
analytic solutions. These coefficients are considered indepen- 
dent of time because we assume that they vary over a timescale 
longer than the timescale of interest. The numerical techniques 
discussed in this paper can be readily extended to time-varying 
coefficients, but the properties of Fokker-Planck equations 
with time-varying coefficients are not well-understood, and it 
becomes impossible to verify the numerical solutions with 
known analytic ones. 

Over the energy interval 0 < x < oo, we assume that these 
coefficients have the following characteristics. First, the phase 
space must have positive volume, so^4 (x) > 0. Second, a math- 
ematically well-posed diffusion equation must have C(x) > 0. 
If C(x) < 0, then we obtain an “inverse” diffusion problem 
that is unstable under small perturbations in the initial condi- 
tion. This situation does not correspond to the physics that we 
are studying here. Third, B(x) corresponds to the advective 
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term, describing a systematic tendency for upward or down- 
ward drift of particles; this can have any value between — oo 
and oo. Fourth, the escape time must be non-negative T(x) ^ 
0, otherwise the zero solution, u{x, t) = 0, becomes unstable 
under perturbations. Finally, Q(x) > 0 because it is the rate of 
particle injection. 

2.2. Boundary Conditions 

We found in Paper I that equation ( 1 ) is singular at x = 0 
and x = oo, causing the solutions to diverge at these points. We 
used singular boundary conditions (Paper I, eqs. [17] and 
[18]) to determine the analytic solutions, but they cannot be 
implemented numerically. To avoid these problems, we must 
evaluate the equation over the finite interval 0 < xb < x < 
Xa/ < oo, where at xb and xM, we must impose regular boundary 
conditions. 

In Paper I, we explained that any regular boundary condi- 
tion of the form au + ßu' = 0 can be used if the boundaries 
extend sufficiently beyond the energy range of interest. Two 
conditions come to mind. The first is the n o-particle condition, 
which sets 

u(x0) = u(xM) = 0 , (2) 

A(x) dxu(x, t) (5) 

satisfies the property dJf ¡dt = F(xM, t) — F(xq, t) = 0 and is 
conserved. The no-particle condition gives no such conserva- 
tion law. 

Last, CC70 pointed out that the no-flux condition, when 
used with some numerical methods, guarantees positive solu- 
tions. Positivity is an inherent property of equation ( 1 ), and 
any numerical method should preserve this property. Negative 
solutions can cause numerical instability in the calculation of 
the particle distribution. They can also cause subsequent cal- 
culations of electron transport effects and the photon produc- 
tion to become unstable. 

All numerical methods, regardless of the boundary condi- 
tion, will produce boundary effects because they must use a 
finite energy interval instead of an infinite one. If the bound- 
aries are sufficiently far away, then the no-flux boundary con- 
dition will produce an accurate solution in the interior region. 
Near the boundaries, the numerical solution will be accurate if 
the true solution is consistent with the no-flux condition. How- 
ever, some equations do not satisfy the no-flux boundary con- 
dition. In these cases, we can expect sharp transients near the 
boundary. Examples are shown in § 4. 

forcing the number density to vanish at the boundaries. The 
second is the no-flux condition (see Paper I, eq. [3]), which 
requires that 

F(xo,t) = F(xM,t) = 0, (3) 

where the particle flux in x-space is given by 

F(x, t) = C(x)^ + B{x)u . (4) 

Here, we follow the definition used by CC70 which contains an 
overall sign opposite to the customary definition of the flux 
(Paper I, eq. [2]) to reduce the propagation of repeated minus 
signs in later derivations. 

For the following four reasons, we use the no-flux condition 
instead of the no-particle condition. First, the analytical study 
of Paper I suggests that most solutions do not satisfy the no- 
particle condition. It does suggest that many equations are con- 
sistent with the no-flux condition, even if singular boundary 
conditions must be used to solve them analytically. 

Second, as discussed in Paper I, the no-flux condition pro- 
vides a good approximation for the effects of additional physi- 
cal processes not directly incorporated into equation ( 1 ). Par- 
ticles cannot gain energy indefinitely because the source of 
energy which drives the acceleration process is finite. Similarly, 
particles cannot lose energy below the mean thermal energy of 
the background plasma because of collisions with these back- 
ground particles. While the no-particle condition makes some 
sense at high energies, it is not justified at low energies. 

Third, the no-flux condition provides a conservation law for 
the Fokker-Planck equation. In the absence of sinks and 
sources [ T{x) = oo, Q(x) = 0], the total number of particles 
in the system 

3. GENERAL PROPERTIES OF FINITE DIFFERENCE 
SCHEMES 

3.1. Notational Conventions 

The discrete time steps are indicated by tn. We can omit the 
explicit reference to n in defining 

At = tn+l-tn (6) 

(even though At will not be constant) because we will only be 
considering ‘‘one-step” finite difference schemes whose solu- 
tions at each step depend only on the immediately previous 
time step. Multistep finite difference schemes (Strikwerda 
1989, chap. 4; Press et al. 1992, chap. 19) are usually higher 
order, hence potentially more accurate, but they are more 
difficult to implement and their properties are less well un- 
derstood. They do not appear to be better suited for our prob- 
lem, and we do not consider them in this paper. 

The continuous variable x over the range xb to xM is divided 
into M + 1 discrete points indicated by xm, with the integer 
index m ranging from 0 to M. The midpoint between two mesh 
points is defined by the simple arithmetic mean 

Xm+l/2 — (-^m+1 •^'m)/2 . (7) 

Although other definitions (e.g., geometric mean or harmonic 
mean) may be better suited in special cases, the difference will 
be minimal if the mesh size is small (Axm/xm 1 ). The mid- 
point difference, defined by 

Axm+i/2 -Tm+l Tm, (8) 

gives us Axm = (xw+i - Xm-i )/2, after using equation (7 ). 
Using the above definitions, we can write the Fokker-Planck 

coefficients at each mesh point as 
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Am = A(xm), (9) 

and similarly for Bm, Cm,Tm, and Qm. At midpoints, however, 
we define 

Am+l/2 = (Am + Am+l)/2 (10) 

to avoid the evaluation of ^(xm+1/2). This is a good approxi- 
mation if Axm+i/2 is sufficiently small because Am+l/2 = 
A(xm+l/2) + 0[(kxm+\/2lXm+i/i)2], where we have used the 
famihar “big-oh” notation O(x) (see, e.g., Ames 1977, chap. 
1 ). Similar definitions hold for ^+1/2, Cm+i/2, and so on. For 
the time-dependent variables w(jc, t), we define 

Um — W(Xm, tn) , (If) 

with the superscript n denoting the time step. Combin- 
ing this with definition (10) allows us to write Wm+1/2 = 
(un

m + iC+1)/2. 

3.2. Mesh Generation 

r = 1 and r = {xMlXq)xim, respectively. The parameter r can 
be used to shift the density of mesh points between the lower 
energies and the higher energies depending on the location of 
the shortest energy scales. Unfortunately, it is difficult to know 
where this occurs without some a priori knowledge of the solu- 
tion. 

The analytic solutions given in Paper I show that the Fokker- 
Planck equations often produce scale-free power-law distribu- 
tions over a wide range of energy. Therefore, we use the loga- 
rithmic mesh layout with M= 100 which gives Axm/xm ~r — 
1 ^ 0.15 over 6 orders of magnitude. We pick M= 100 because 
it gives accurate solutions without computational costs. 

3.3. Flux Conservative Finite Difference Schemes 

CC70 proposed a flux conservative difference scheme for an 
equation similar to equation ( 1 ) without the source and escape 
terms. We discretize equation ( 1 ) as 

,.n+l   ..n 1 ZPn+\   T7n+\ «.n+\ _ 1 ■Tm+l/2 ” m—l/2   J- O / i ^ \ 
a > J A T1 ' V A J 1 At Am Axm Tm 

To obtain the solution at ti+x from the previous solution at 
U, we use the time steps generated by 

At - min {ti+x - ti, Tnaturai)/A, ( 12) 

where N is the number of steps between successive solutions, 
and tnatural is the natural timescale for the specific Fokker- 
Planck equation. For the equations considered later in § 4, we 
set A ^ 20 because this gives reasonably accurate solutions, 
and Tnatural — 1 because the time variable can be renormalized 
to make the dominant processes have timescales of order 
unity. 

The energy interval of interest in this paper is approximately 
from xb — 10-3 to Xjv/ ^ 103. If x: represents the energy of an 
electron in units of the rest mass, then this corresponds to an 
interval from 500 eV to 500 MeV. Ideally, the mesh size Axm 

should be smaller than the characteristic scale over which the 
solution varies at , 

Axm ^ 
du/dx 

(13) 

for m = 0, ..., M, where we have used equation (4) for the 
flux F’lZ1. We show below that the essential properties of the 
CC70 scheme, developed for Tm= co and Qm = 0, can be re- 
tained. Following CC70, we implement the no-flux condition 
(3)as 

^1/2 = ^2 = 0, (16) 

because, in the absence of sinks or sources, it conserves the 
numerical particle number 

M 
AT = umAmAxm, (17) 

m=0 

analogous to equation (5), regardless of the exact form for 
F^1 or the mesh layout Axm. 

CC70 proposed one particular choice of F^1 ; this and five 
others are evaluated in § 4. In each case, substituting it into 
equation (15) results in a tridiagonal system of linear 
equations, which can be written as 

If the solution w(x) is exponential or quasi-periodic over a wide 
energy range, then the right-hand side of equation (13) is 
nearly constant. The optimal mesh layout is the uniform mesh 
given by A xm = constant. If the solution is a scale-free power 
law distribution, u ce xô for some slowly varying index 5, then 
condition (13) can be satisfied by the familiar logarithmic 
mesh Axm/xm = constant ^ 1/5. In practice, we require also 
that Axm/xm ^ 1 to minimize errors due to the nonuniform 
mesh. 

Hamilton ( 1990 ) examined more general mesh layouts, gen- 
erated by 

ßrrMm—X F bmUm CmUm+x rm 

— Cm = 0 > 
(18) 

where rm is a function of . Tridiagonal systems can be solved 
using a very efficient Gaussian elimination with back substitu- 
tion routine (Press et al. 1992, chap. 2) whose computational 
time is of O(M) instead of 0(M3). 

An important result from CC70 (also Richtmyer & Morton 
1967, chap. 8 ) states that tridiagonal systems satisfying the pos- 
itivity condition 

AXm+X 
Axm 

(14) 

where the adjustable parameter r is a constant for all m. The 
uniform mesh and the logarithmic mesh are special cases with 

I hm I > I am I H- I cm I , 

< am,bm,cm>0, (19) 

— 0 , 
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will guarantee u^1 ^0. The true solution to equauon ( 1 ) is 
always positive, so the ideal numerical method should also give 
positive solutions. Note that condition ( 19 ) is the sufficient but 
not the necessary condition to guarantee positive solutions. 

CC70 derived an expression for 1 which, when coupled 
with the numerical no-flux condition (16), satisfies condition 
(19). We verify in § 4.3 that this condition continues to hold 
even with the addition of the sink and source terms. LLPS85 
found another expression for 1 which also satisfies the pos- 
itivity property. We evaluate this method in § 4.4. 

3.4. Explicit and Semi-implicit Methods 

All time indices on the right-hand side of equation (15) are 
n + 1 which makes this discretization fully implicit. If we use 
instead n, we obtain an explicit scheme, which is simpler be- 
cause it does not require the solution of a tridiagonal system 
of equations. Unfortunately, explicit schemes have a stability 
criterion hdj ùsx2

m ^ Am/Cm (Strikwerda 1989, chap. 6; Press 
et al. 1992 chap. 19), which forces the time step to be too small 
for practical use. 

Fully implicit routines, however, are unconditionally stable 
for all Ax and A¿ and therefore are extremely useful for diffu- 
sion or Fokker-Planck type problems. One disadvantage of the 
fully implicit scheme is that it is only first-order accurate in 
time (Strikwerda 1989, chap. 6), leading to an examination of 
higher order schemes. 

A second-order method can be obtained by replacing all oc- 
currences of « + 1 on the right-hand side of equation (15) with 
« + 5. The resulting system of equations remains tridiagonal. A 
well-known example of the semi-implicit method is the Crank- 
Nicholson scheme (Strikwerda 1989, chap. 6; Press et al. 1992, 
chap. 19). It is unconditionally stable, which makes it useable 
for diffusion type problems. Unfortunately, it is not dissipative 
(Strikwerda 1989, chap. 5), which prevents short-wavelength 
noise from decaying away. Hence, it can be less accurate than 
a lower order dissipative routine (Strikwerda 1989, chap. 10) 
such as the fully implicit method. Another major drawback is 
that the tridiagonal matrices from semi-implicit methods do 
not guarantee positive solutions because the condition > 0 
in equation (19) can be violated. We show some evidence of 
this in § 4.5. 

All of the preceding discussion relies on the von Neumann 
stability analysis (Strikwerda 1989, chap. 2) which assumes a 
uniform mesh and constant coefficients, and neglects the effect 
of the boundary conditions. While more sophisticated meth- 
ods are available (see, e.g., Strikwerda 1989, chaps. 9, 11 ) that 
do not suffer from these drawbacks, they are much more 
difficult to apply. Empirical evidence (Press et al. 1992, chap. 
19) suggests that the von Neumann analysis is valid even for 
the nonuniform mesh and variable coefficients used in this 
paper. 

3.5. Operator Splitting Method 

The technique of fractional steps or operator splitting 
(Richtmyer & Morton 1967, chap. 8; Press et al. 1992, chap. 
19) is not a distinct method for solving the Fokker-Planck 
equation but a way of reducing a large problem into a series 
of smaller ones. It solves a partial differential equation with J 
differential operators (iÇ) 

flu 
-—= ¿Ptu + + ■ • ■ + ¿fj-iU + ¿fjU , (20) 
ot 

using a sequence of / finite difference operators (Lf) to get 

un+l = LjLj-t. ■ -L2LlU
n. (21) 

Each finite difference operator Lj solves the differential equa- 
tion du/dt = £fjU by advancing the solution At in time from un 

to un+l using un+l = LjUn. Press et al. ( 1992, chap. 19) states 
that as a rule of thumb, the composite finite difference solution 
is stable if the operator with the highest number of derivatives 
is stable, even if the rest are unstable. 

Traditionally, this method has been used successfully for 
multidimensional problems, where the operators are grouped 
according to their independent variables. For example, Ham- 
ilton et al. ( 1990) used this technique to solve the time-depen- 
dent Fokker-Planck equation describing the evolution of elec- 
trons in three variables, energy, pitch angle, and spatial 
distance. Hamilton ( 1990) and Hamilton & Petrosian ( 1992) 
applied this technique for the one-dimensional Fokker-Planck 
equation ( 1 ) with good results. We have discovered that for 
best results, the differential operator should not be split within 
a single independent variable for the following reasons. 

First, if the operators are splitting haphazardly, the bound- 
ary conditions may become ambiguous. For example, suppose 
one operator contains the second-order diffusive term that re- 
quires two boundary conditions, while the other operator con- 
tains the first-order advective term that requires only one. The 
overall effect of different operators solving parts of the whole 
problem with different boundary conditions cannot be easily 
predicted. 

The second problem is that the finite difference operators do 
not generally commute, that is to say, Lf Lj =£ LyLz for i ^ j. On 
the other hand, the differential operators do commute un- 
der the addition operator. Consequently, there exists an ambi- 
guity on the ordering of the difference operators Lj. The solu- 
tion obtained from one particular ordering can differ from 
another. For example, if the timescale of one operator tx~uI 
\S£xu \ differs from the timescale of another t2 ^ w /1 \, then 
the solution ww+1 = L2Lxu

n may be significantly different from 
ww+1 = LxL2u

n if either tx or t2 is much less than At. In § 4.6, 
we discuss this problem further by studying a concrete ex- 
ample. 

4. EVALUATION OF SPECIFIC METHODS 

In this section, we evaluate six finite difference schemes re- 
sulting from three different expressions for the flux F^f1. Be- 
cause numerical methods are normally used when no analytic 
solutions can be found, it is important that the numerical 
method be robust. A method which works well for one equa- 
tion can fail for another. Therefore, we test each method under 
three equations (given below) whose exact analytic solutions 
are known. 

4.1. Test Equations 

The following three equations were solved numerically over 
an interval from x0 = 10-3 to = 103 using a logarithmically 
spaced mesh with M = 100: 
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^ - k) - K + ÔU - x¡„j)0(í) (22) 

lh=l)x[x2^dx~XU)- UlX + ^ 

— = — IX3 — - x2u\-u + b(x- xinj)5(0. (24) 

In all three cases, the injection function is a monoenergetic dis- 
tribution at Jtinj = 0.1, which we simulate as a narrow Gaussian 
distribution whose width is smaller than Ax at xinj. For the 
first two equations, monoenergetic particles are injected at xinj 
beginning at / = 0 at the rate of one particle per unit time. 
In the third equation, the impulsive source term at ¿ = 0 is 
implemented as an initial value for w(x, t = 0). There is no 
further injection of particles, so we set Q{x) = 0. 

The first equation is the familiar hard-sphere equation (see, 
e.g., Ramaty 1979) with the addition of a term corresponding 
to relativistic Coulomb losses (Paper 1, eq. [62]; Hamilton & 
Petrosian 1992; Steinacker et al. 1988). We can define the 
timescales for diffusion, advection, and escape (see Paper I, 
eqs. [46], [47], [48], and [75]) as tc = x

2/C(x), tb = x) 
I B(x) I, and tt = T(x), respectively. For this equation, rc = 
rr = 1, but = x/( 1 + x), which can vary by 3 orders of 
magnitude from xb to x^. This will test the ability of the nu- 
merical method to resolve a widely varying advective times- 
cale. The exact analytic solution of equation (22) at steady 
state (du/dt = 0) is given by Paper I (eq. [71]; see also Stei- 
nacker et al. 1988). The second equation also looks like the 
familiar hard-sphere equation but the escape time, rT = x, is 
energy-dependent and varies by 6 orders of magnitude over 
the energy interval. The analytic steady state solution of this 
equation is given by Paper I (eq. [57]; see also Dröge & 
Schlickeiser 1986). The third equation tests the time-depen- 
dent properties of the numerical methods by comparing them 
to the analytic solution given by Paper I ( eq. [ 59 ] ). Also, both 
the diffusive and advective timescales (tç = rB= 1 /x) vary by 
6 orders of magnitude over the energy interval so this forms 
another test of the numerical method. 

4.2. Simple Fully Implicit Method 

The simplest finite difference method (Press et al. 1992, 
chap. 19) uses the midpoint difference for both the advection 
and the diffusion terms to write the flux (4) as 

^m+\/2Un+X- -mVl/2 + cn 

,/H-l _ 
(25) 

=^±iZ1[(1 + M;m+ 2/2)Æ, 
Axm+1/2 

-(1 -W'm+./2/2)^+1], (26) 

where 

Wm+1/2 — Bm+\/2 
Cm+\/2 

Axm+1/2. (27) 

The second equality (26) is useful for comparing this method 
to other methods described in §§ 4.3 and 4.4. 

Substituting equation (25) into equation (15) produces the 
tridiagonal system of equations: 

dm = • 
Ai C, 

Cm 

AmAxm Axm-I/2 

At Cm+l/2 
AmAxm Axm+[/2 

*=^(l-wm-l/2/2), 

(1 + wm+l/2/2). 

1 +- 
At 

AmAxm 

Çm+l/2 

Cm-. 

A*m+l/2 

k rm = AtQm + Um , 

t^(l+Wm_i/2/2) 

+ At/Tm, 

AXm-x/2 

(1 - wvm/2/2) 

(28) 

which is valid for m = 1, ..., M — 1. The no-flux boundary 
condition (3) should be added to obtain the coefficients for 
m = 0 and m = M. If the mesh were uniform (Axm = 
constant), then this method would be first-order accurate in 
time and second-order accurate in space. For a nonuniform 
mesh, it degrades to first-order accurate in space. 

Figure 1 shows that this method produces unstable negative 
solutions when solving the steady state solution of equation 
(22). This verifies the analysis of CC70. Figure 2 shows very 

Fig . 1.—Numerical solutions ( dashed lines) of eq. ( 22 ) using the sim- 
ple fully implicit method (28) compared to the exact analytic solution 
{solid line) from Paper I. Three different numerical boundaries are shown 
to illustrate the effect of varying the locations of the boundary points: 
(short-dashed lines) Xq = 10-2, xM = 102; (medium-dashed lines) Xq = 
10-2-5, Xm — 1025; (long-dashed lines) Xq = 10-3, x^ = 103. The steady 
state numerical solutions were obtained ati = 10 (normalized units). The 
numerical solution produces unstable oscillatory solutions at low energy 
for all three boundaries. 
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Fig. 2.—Same as Fig. 1 but for eq. (23). Note the good fit to the ana- 
lytic solution over many orders of magnitude except near the right bound- 
ary. The cause of this boundary effect is discussed §4,7. 

good correspondence between the numerical and analytic so- 
lutions of equation (23), except near the right boundary. In 
Figure 3, the time-dependent solutions of equation (24) are 
compared for three different times. The discrepancy at i = 30 
is noticeable, but at this point, the particle number in the sys- 
tem has become negligible (note that this solution has been 
scaled by a factor of 1011 ). The numerical method corresponds 
with the exact solutions very well near x:irîj, but rapidly becomes 
less accurate closer to either boundaries. For x ^ x:inj, the errors 
are caused by large gradients in the particle distribution which 
corresponds to a diffusion timescale <^AL For jc ^ xinj, the er- 
rors are caused by the finite boundary. Although this method 
appears to be successful for a large number of Fokker-Planck 
equations, it produces oscillatory negative solutions for some 
equations, so it is not recommended. 

4.3. Chang-CooperMethod 

A second expression for F^1 comes from CC70 (eqs. [16] 
and [18]), which uses the centered difference on the diffusive 
term, but a weighted difference on the advective term. The flux 
is written as 

Ffft+i ¡2 — (1 ^m+l/2)^m+l/2WmVl + ^m+l/lU^1 

m+l/2 " 
iirt+1   iin+1 **m+l 

^Xm+l/2 
(29) 

Çm+l/2 
A*m+l/2 

ItvZ+i/iKVi - iv-+1/2u
n

m
+,l, (30) 

where ôm and IV are defined by 

wm exp (wm) - 1 ’ 

^ = f/sinhf, 

(31) 

(32) 

(33) 

and wm is given by equation (27). Our definitions of wm and 
Wm are slightly diflerent from CC70 so that Wm is a symmetric 
function of wm and Wm = wm. For wm+1/2^1, equation 
( 30 ) reduces to the simple fully implicit method given by equa- 
tion (26). 

Substituting equation (30) into equation ( 15), we obtain a 
tridiagonal system of equations whose coefficients are 

Om 
& Cm -1/2 

Cm 

Am&Xm A-Xm_ 1 /2 

Cm+1/2 
Am^Xm Axm+i/2 

m 1/2 ? 

m+1/2, 

èm - 1 + - 
Ai 

AmAXm 
C ?n—1/2 

Axm- m-l/2 

i Cm+l/2 jV- + . rT m+i/2 
AXm+1/2 

rm = AtQm + un
m . 

+ At/Tm 

(34) 

Fig . 3.—Time-dependent solutions ( dashed lines) of eq. ( 24 ) using the 
simple fully implicit method compared to the analytic solutions {solid 
lines), for t = 0.3, 3, and 30 (normalized units) in decreasing height. Solu- 
tion at / = 30 is scaled up by a factor of 1011. Numerical boundary is given 
by xb = 10-3 and xM

= 103. Large deviations occur only when the number 
of particles has dropped by several decades. 
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As explained in CC70, the parameter <$m+1/2 is determined so 
that the stationary solution to the numerical scheme is identi- 
cal to the analytic stationary solution without source or escape. 
CC70 required B(x) to be strictly positive. A more careful ex- 
amination shows that any value of 2?(jc) is allowed, so wm+1/2 

can take on values from -oo to +oo and the parameter ôm+i/2 

then varies from 1 to 0, respectively. This scheme adjusts the 
weight ôw+i/2 so that the differencing on the advective term is 
always “upwind.” In other words, if B(x) > 0, forcing particles 
to flow to low energy, the difference scheme puts more weight 
on the higher energy mesh points when determining the flux. 
Conversely, if B(x) 0 so that particles flow to high energy, 
then more weight is given to the lower energy mesh points. 
This property makes the Chang-Cooper method first-order ac- 
curate in both space and time, even over a uniform mesh. 

Although expression (33) is useful for analytical manipula- 
tions, it may cause numerical overflow or underflow problems 
in practice because | wm \ may become extremely small or large. 
For computational purposes, we use 

Wm = 

1+ïi+ »•' 

I |wj exp (- 
l- 1 - exp (- 

24 1920 

Wml/2) 

Wml) 

(|wm| <0.1), 

(|wj ^0.1), 

(35) 

which is valid when using typical “single precision” floating 
point numbers. The corresponding expression for “double 
precision” numbers can be easily derived. Notice from equa- 
tion (32) that both W + and Wm increase in magnitude only 
as a linear power of \wm\ for large \wm\. This is important 
because it prevents the coefficients of the tridiagonal matrix 
from overflowing. 

The original method considered by CC70 did not contain 
the escape or source terms. For that case, they showed that the 
method gives positive solutions for some values of At and Ax. 
LLPS8 5 ( eq. [ 34 ] ) showed that it guarantees positivity for any 
values of At and Ax. We can easily show that equation (34), 
which contains the additional escape and source terms, also 
gives positive solutions. If we make the substitution ¿7^ = 
Um/Um and Um = exp (-Zjlô1 W7+1/2) into equations ( 15) and 
( 29 ), it can be verified that the tridiagonal matrix for 1 sat- 
isfies the positivity condition ( 19) for . We conclude that 

1 must also be positive. 
Figure 4 uses the Chang-Cooper method to solve the steady 

state solution of equation (22). The oscillatory solutions pro- 
duced by the previous method is not present, and the numeri- 
cal solution shows very good agreement with the analytic solu- 
tion. The boundary effect on the left occurs over one mesh 
interval and does not go away as the boundaries are extended 
further apart. There is some evidence that this method is not as 
accurate as the fully implicit method shown in Figure 1 for 
x ^ 1. However, the difference is slight, and the elimination of 
instability at low energy more than compensates for this loss of 
accuracy. When this method is used to solve equations (23) 
and (24), the results look identical to Figures 2 and 3. 

4.4. Larsen-Levermore-Pomraning-Sanderson Method 

LLPS85 studied finite difference schemes for both linear and 
nonlinear Fokker-Planck equations. Two expressions are rele- 

Fig . 4.—Same as Fig. 1 but using the Chang-Cooper method ( 34 ). The 
fit is very good even at low energies where no stability problems are appar- 
ent. This method is the most robust among the ones tested in the paper. 
The sharp boundary transient on the left-hand side occurs over a single 
mesh point. It is not unique to this method as discussed further in § 4.7. 

vant for the linear problem. One of them (LLPS85, eq. [23]) 
becomes identical to the Chang-Cooper method for linear Fok- 
ker-Planck equations so we do not have to consider it any fur- 
ther. The other (LLPS85, eq. [9]) is the third method consid- 
ered in this paper, and it writes the flux 1 as 

m+1/2 A
Cm+1/2 

Axw+1/2 
-e-w^ud2un^x], (36) 

where wm is given by equation (27). Like the Chang-Cooper 
method, this expression reduces to expression (26) in the limit 
oïwm< 1, 

Substituting the flux (36) into equation (15), the resulting 
tridiagonal system can be written exactly as the Chang-Cooper 
method (34) with the replacement of 

Wti = exp (±wm/2) (37) 

for equation (32). This method can be shown to guarantee 
positive solutions like the Chang-Cooper method. Upon closer 
examination, we discover that problems can arise when ap- 
plied to equations considered in this paper. Notice that W+ 

and W~ can now increase exponentially for large \wm\. For 
some equations, | wm | becomes so large that the coefficients 
overflow the floating point number system. Even if an overflow 
error does not occur, this scheme becomes inaccurate as 

I wm| ^ 1 because equation (36) no longer approximates the 
flux accurately. 

In Figure 5, we solve equation ( 22 ) using the LLPS method. 
The numerical solution deviates from the true analytic solu- 
tion at low energies. The deviation starts where \wm\ ^ 1, at 
which equation ( 36) no longer approximates the flux correctly 
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Fig. 5.—Same as Fig. 1 but using the LLPS method, which can be ex- 
pressed identically as eq. ( 34 ) with the substitution of eq. ( 37 ). Significant 
deviation occurs at low energy, making this method unsuitable for many 
equations. 

because of its exponential dependence on \wm\. When this 
method is used to solve equations (23) and (24), the results 
are identical to Figures 2 and 3, respectively. For these 
equations, | wm | ^1 over the energy interval shown, so this 
method is able to solve them accurately. 

4.5. Semi-Implicit Methods 

For each of the three methods presented in §§ 4.2, 4.3, and 
4.4, the semi-implicit counterpart can be obtained by replac- 
ing F^Vi/2 with as explained in § 3.4. For definitive- 
ness, we call the semi-implicit version of the simple fully im- 
plicit method the “Crank-Nicholson” method (see, Press et al. 
1992, chap. 19); the semi-implicit version of the Chang-Coo- 
per method is called the “semi-implicit Chang-Cooper” 
method; and the semi-implicit version of the LLPS method is 
called the “semi-implicit LLPS” method. Inspecting the result- 
ing expressions, we notice that the tridiagonal system of 
equations for all the semi-implicit methods can be written as 

@m — tlm/'l , 

Cm = Cm!2 , 
< (38) 

b’m = {bm — l)/2 + 1 , 

Ï m~ Tm F Um tlmUm—\ bmUm CmUm+\ , 

where am,bm,cm, and rm are the coefficients of the fully im- 
plicit methods as defined by equations ( 28 ) and ( 34 ). As noted 
in § 4.4, the tridiagonal system of equations for the LLPS 
method is identical to the Chang-Cooper method, except for 
the substitution of equation (37). These semi-implicit meth- 
ods do not satisfy condition ( 19) so they cannot be shown to 
guarantee positive solutions. 

For each of the three semi-implicit methods, we can perform 
the same tests as we did with the three fully implicit methods. 
For the test equations (22) and (23), there was no discernible 
difference between the fully implicit and the semi-implicit rou- 
tines. The solutions to equation (22) looked identical to Fig- 
ures 1, 4, and 5. That is to say, that the Crank-Nicholson 
method showed oscillatory negative solutions like the simple 
fully implicit method; the semi-implicit LLPS method showed 
exponential divergence from the true solution just like the fully 
implicit LLPS method. The semi-implicit Chang-Cooper 
method accurately solved both equations just like its fully im- 
plicit counterpart. The solution for equation (23) for all three 
semi-implicit methods looked identical to Figure 2. 

When these methods were tested with equation (24), differ- 
ences appeared between the semi-implicit methods and the 
fully implicit methods. As Figure 6 shows, all the semi-implicit 
methods exhibit unstable oscillatory solutions at ¿ = 30. They 
result from either an inherent property of the semi-implicit 
methods (recall that the positivity condition [19] is sufficient 
but not necessary), or by numerical round-off errors from the 
extra matrix multiplication in the calculation of r'm in equa- 
tion (38). 

There is evidence in Figure 6 that the semi-implicit methods 
produce more accurate time-dependent solutions for x ^ 1. 
This is consistent with their second-order accuracy in time 
which should give better results at a given mesh size. However, 
they appear to be more unstable for jc ^ 1 than the fully implicit 
methods, where Sxm becomes increasingly larger. If high time- 
dependent accuracy is desired, then the semi-implicit Chang- 
Cooper method may be used with care, but the results should 

Fig. 6.—Same as Fig. 3 but using semi-implicit schemes. All three 
semi-implicit versions of the simple fully implicit, Chang-Cooper, and 
LLPS methods, produce solutions essentially identical to this figure. These 
methods are more accurate than their corresponding fully implicit meth- 
ods at the same mesh sizes. However, they can produce unstable oscillatory 
solutions, as shown for t = 30, so they should be used with caution. 
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always be checked against the more robust fully implicit 
Chang-Cooper method. 

4.6. Operator Splitting 

In § 3.5, we stated that the operator splitting method can 
produce different results, depending on how the operator is 
split into its smaller parts. For example, consider equation ( 23 ) 
which may be split into two suboperators, S£xu = (x2u' - xu)' 
and = -u/x + - Xinj)0(O- One solution can be writ- 
ten as un+l = LlL2u

n and the other can be written as un+l = 
L1LiUn

:> where Lx and L2 are the respective finite difference 
methods for each operator. For illustrative purposes, we used 
the fully implicit Chang-Cooper method (without the source 
and escape terms) for the operator Lx. The operator ££2 has an 
exact analytic solution which was converted to a finite differ- 
ence form for L2. 

Figure 7 shows the numerical solutions of equation ( 23 ) us- 
ing the L\L2 combination {long dashed line) and the L2LX 

combination {short dashed line) compared with the exact ana- 
lytic solution {solid line). The boundary effects exhibited by 
both numerical solutions near the right boundary are ex- 
plained in § 4.7, and we ignore them for now. Near the left 
boundary, we notice that the two numerical solutions differ 
noticeably. The short-dashed fine approximates the true solu- 
tion acceptably, while the long-dashed line does not. However, 
the short dashed line has difficulty around the injection points 
xinj, while the other handles this region better. Without pos- 
sessing the exact analytic solution, it would be difficult to de- 
cide which was the correct solution. 

Fig . 7.—Two numerical solutions of eq. ( 23 ) using two different oper- 
ator splitting methods ( long-dashed and short-dashed lines) and the exact 
analytic solution {solid line). Depending on the ordering of the difference 
operators, two different results can be obtained at low energies for this 
equation. 

The difference between the two methods can be understood 
in terms of intrinsic timescales of the individual difference op- 
erators Li and L2. As discussed in § 4.1, the timescale for L{ is 
equal to the diffusion and advection timescales tc = rB ~ 1, 
but the timescale for L2 is the escape timescale rT = x, which 
varies between 10~3 to 103. The time step used in the numeri- 
cal integration was At ^ 0.05 P rrat low energies. As a result, 
the numerical method cannot resolve the rapid variations in 
the solution from successive applications of L\ and L2. 

4.7. Boundary Effects 

In general, boundary effects are caused by solving the Fok- 
ker-Planck equation over the finite interval Xo < x < xM, in- 
stead of the infinite interval 0 < x < oo. This implies that 
boundary effects are generic features of any numerical meth- 
ods. Normally, we would expect the boundary effects to dimin- 
ish as the numerical boundaries are moved further apart. Some 
Fokker-Planck equations have this behavior because their true 
steady state solutions are consistent with the no-flux boundary 
condition at x = 0 and x = oo. 

For other equations, the boundary effect does not diminish 
as the numerical interval is increased. In all numerical solu- 
tions equation (22) regardless of the method, for example Fig- 
ure 4, a sharp pileup of particles appears at the left boundary. 
This transient effect occurs over a single mesh point. We also 
notice that the pileup occurs for all three energy intervals and 
does not diminish as we make the interval larger. To un- 
derstand this effect, we examine the flux of particles of this 
equation at steady state, which is F oc constant as x -► 0 ( Paper 
I, Table 4 ). No matter how far away we push the left boundary, 
the numerical no-flux boundary condition can never be satis- 
fied and an unavoidable pileup of particles results. The mathe- 
matical reason for this is related to the singular nature of this 
Fokker-Planck equation and was discussed in Paper I. The 
physical reason comes from extending the relativistic Coulomb 
loss term of equation {22){E qc u) into the low-energy regime 
where the relativistic approximation breaks down. 

At the right boundaries of Figures 1, 4, and 5, the boundary 
effects are much less severe because the analytic flux of parti- 
cles for equation (22)isF-*0asx-*- oo (Paper I, Table 4). 
The right boundary of Figure 2, however, shows significant 
boundary effects. Here, the flux of particles for equation (23) 
is given by F cc constant as x oo (Paper I, Table 2), which 
causes the pileup of particles. This is an inherent property of a 
singular Fokker-Planck equation, and no numerical technique 
will be able to circumvent its boundary effects completely. 

5. STOCHASTIC SIMULATION METHOD 

A method which arrives at a solution through statistical av- 
erages is typically called a “Monte Carlo” method. In the 
context of stochastic acceleration of particles, a Monte Carlo 
method tries to simulate the microscopic scatterings of parti- 
cles. Unfortunately, the microscopic timescales of wave-parti- 
cle interactions are considerable smaller than the macroscopic 
timescales of interest, making Monte Carlo simulations com- 
putationally very expensive. One class of Monte Carlo meth- 
ods which suffers less from this problem is the technique of 
stochastic simulation. It relies on the exact equivalence of the 
Fokker-Planck equation to the Ito stochastic differential equa- 
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tion (van Kämpen 1992, chap. 9) so that, in the absence of 
source or escape terms, equation ( 1 ) can be written as (Kriills 
& Achterberg 1994; Achterberg & Kriills 1992; MacKinnon & 
Craig 1991) 

dx = [C(x) - B(x)]dt + [2C(x)] x/2r(t)dt. (39) 

Here, the first term on the right-hand side comes from the ad- 
vective and diffusive drift terms, the prime denotes differenti- 
ation with respect to jc, and the second term models the fluc- 
tuations responsible for the diffusion term, where r(t) is a 
Gaussian random noise satisfying (r(/)) = 0 and (r(t)r(s)) = 
6(t- s). The ensemble-averaged phase space density of many 
particles, each evolving according to equation (39), is equiva- 
lent to the solution of equation ( 1 ). 

Equation ( 39 ) immediately leads to a numerical simulation 
by evolving test particles at discrete time steps according to 

Ax = [C'(x) - B(x)]At + [2C(x)] l/2Ar , (40) 

where Ar = J^r^dt is a Gaussian random variable. The prop- 
erties of r(t) imply that ( Ar) = 0 and ( Arz Ary) = Atöjj for two 
discrete time intervals i and 7, where is the Kronecker delta 
function. It has been implicitly assumed that the time step sat- 
isfies dt < At ^ Tnatural > where dt is the microscopic scattering 
timescale and rnatural is a characteristic timescale of the equa- 
tion. 

To deal with the escape term in equation ( 1 ), we calculate 
the probability of escape, 

(41) 

at each time step and remove each escaping particle as deter- 
mined by a uniform random number generator. This is more 
efficient than the method suggested by Achterberg & Kriills 
(1992), which assigns a commulative escape probability 
weight to each particle. Equation (41) works for an energy- 
dependent escape time as well. 

In the simulation of an initial value problem where no new 
particles are injected after the initial injection, the number of 
particles in the system at any future time cannot be greater 
than the initial number. The memory requirements and the 
execution time of the computer simulation is fixed and known 
beforehand. When calculating the steady state distribution, 
new particles are injected into the system continually, and the 
steady state is reached when the rate of particle injection is 
equal to the rate of particle escape. When the escape time is 
constant, the final particle number can be calculated to be 

= T f dxQ(x). When the escape time is energy-dependent, 
the final particle number cannot be calculated a priori, so we 
cannot constrain the memory requirements and the excution 
time of the simulation. 

A modification which avoids this problem is the following. 
Instead of simply removing the escaping particles from the sys- 
tem, we reinject them back at jcinj, thereby forcing a balance in 
the rate of escape and the rate of injection. We note that an 
injection function other than the monoenergetic distribution 
can be implemented by reinjecting the particle with a proba- 
bility proportional to Q(x). If we run this simulation to 

¿steadystate ^ ^natural* we will obtain the steady state distribution 
up to some undetermined normalization constant. Unfortu- 
nately, solutions at intermediate times t < /steady state are unphys- 
ical because we have artificially enforced a balanced between 
the rate of particle injection and the rate of escape. If time- 
dependent solutions are required, then we must keep the two 
rates independent of each other, as done by Achterberg and 
Kriills ( 1992). Despite these problems, this particular modifi- 
cation is useful for obtaining the steady state solutions because 
it guarantees a fixed upper limit to the total number of particles 
at steady state. 

Although the stochastic simulation method is less sensitive 
to the effects of boundary conditions than the finite difference 
method, the implementation of the boundary conditions re- 
quires careful consideration. In particular, particles can over- 
shoot and cross the x: = 0 boundary at finite t because the time 
step size At is discrete and the fluctuation term can be ran- 
domly large. Additionally, particles may reach x = oo in a finite 
time for certain equations. In equation (23), ignoring the 
diffusion term (which makes some particles reach x= co even 
faster), the equation governing these particles is dx oz x2dt. A 
particle injected at x^ = 0.1 reaches x = oo after t — 1 /xinj = 
10 — ¿steady state- If particles are removed from the system when 
they cross the boundary, then we obtain the no-particle condi- 
tion (2). If the particles are simply pegged to the boundary, 
then this corresponds to the no-flux condition (3). For some 
equations, losing too many particles through the no-particle 
condition increases the Poisson noise to an unacceptable level. 
To avoid this possibility and to facilitate comparisons with the 
finite difference methods discussed in the previous sections, we 
use the no-flux condition, with the lower and upper boundaries 
set to 10“3 and 103. In practice, these boundaries should be 
moved much further apart to reduce the boundary effects. 

Figures 8-10 show the solutions of equations (22) to (24), 
respectively, using the stochastic simulation method. The 
steady state solutions in Figures 8 and 9 were vertically rescaled 
by eye to match the analytic solutions; Figure 10 required no 
normalization because it solved the time-dependent problem. 
All three plots show good agreement with the analytic solution 
where there are sufficient number of particles in the bins. As 
the number of particles in the bin decreases, the Poisson noise 
increases. For Figure 10, the solution at / = 30 was not plotted 
because no particles were left in the system. Just like the finite 
difference methods, boundary effects are apparent. 

In terms of computational efficiency, the stochastic simula- 
tion method, for the parameters used here, takes about 50 to 
100 times longer than the corresponding finite difference 
method. The stochastic simulation method may offer advan- 
tages for multidimensional equations, but these advantages 
may be canceled by the larger number of test particles required 
for the larger phase space volume. A more detailed study is 
required to address this issue. For single-dimensional Fokker- 
Planck equations, however, the finite difference method offers 
better accuracy at lower computational cost. 

6. CONCLUSIONS 

The best finite difference method for solving the Fokker- 
Planck equation obtained in the study of stochastic accelera- 
tion is essentially the Chang-Cooper method given by CC70. 
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Fig . 8.—Same as Fig. 1 but dashed line solved using the stochastic sim- 
ulation method ( 40 ). The simulation used 10 4 particles in 30 logarithmicly 
spaced bins, a time step of At = 0.05, and boundaries at 10~3 and 103. 
Although the solution matches the analytic solution well when sufficient 
particles fall within the bins, the Poisson noise becomes dominant when 
the particle number density decreases by just a few decades. 

Fig. 10.—Same as Fig. 3 but dashed lines solved using the stochastic 
simulation method. The solutions shown for t = 0.3 and 3, in decreasing 
height; the solution at i = 30 was not plotted because no particles were 
remaining in the system. Other parameters are same as Fig. 8. Numerical 
results do not agree well with analytic results. This method suffers from 
Poisson noise when the number of particles in a bin becomes small. Be- 
cause a fixed number of test particles must be used, the dynamic range of 
Monte Carlo methods, in general, is small. 

Fig . 9.—Same as Fig. 2 but dashed line solved using the stochastic sim- 
ulation method. Parameters are same as Fig. 8. The numerical results do 
not match the analytic solution very well. 

Our implementation (34) makes a small extension to include 
the escape and source terms while maintaining the guarantee 
of positive solutions. 

The semi-implicit Chang-Cooper method (§4.5) seems to 
be the most robust among semi-implicit methods studied in 
this paper. It sometimes suffers from unstable oscillatory nega- 
tive solutions. It is accurate to second-order in time, producing 
slightly more accurate solutions for time-dependent problems. 
When high accuracy is a requirement, then this method should 
be considered. 

The most useful numerical boundary condition is the no- 
flux condition given by equation ( 3 ). The combination of this 
condition and the Chang-Cooper method guarantees positive 
solutions. The boundary effect produced by the application of 
the no-flux condition on Fokker-Planck equations which do 
not admit a no-flux solution is caused by the singular proper- 
ties of the Fokker-Planck equation. Solutions in the region of 
interest will be accurate if the numerical boundaries are suffi- 
ciently far away. Boundary effects are inherent features of any 
numerical solutions of singular Fokker-Planck equations. 

The problem of numerical overflow and underflow when 
solving equations over many orders of magnitudes is ade- 
quately handled by using the Chang-Cooper method. The tri- 
diagonal matrix elements produced by this method are not as 
susceptible to numerical underflow or overflow as the elements 
of the LLPS method. 
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The operator splitting method, which is extremely useful for 
multidimensional problems, should not be used for one-di- 
mensional Fokker-Planck equations. Different results can be 
obtained for different operator orderings. In any case, there is 
no compelhng reason to use the operator splitting method be- 
cause the one-dimensional differential operator can easily be 
evaluated using the Chang-Cooper method in its entirety. 

The stochastic simulation method is not recommended for 
one-dimensional Fokker-Planck equations. It is computation- 
ally expensive and susceptible to Poisson noise. The same 
equation can be solved faster and more accurately using finite 
difference methods. For multidimensional problems, however, 
it may offer some advantages, but further study is required. 

From the solution of the Fokker-Planck equation, we can 
calculate the spectra of photons produced by these accelerated 
particles. Comparing them with observational data from solar 
flares (Park, Petrosian, & Schwartz 1996), for example, gives 
us constraints on the Fokker-Planck coefficients, which in turn 
reveals the nature of the stochastic acceleration process. 
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