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ABSTRACT

We study the excitation of MHD waves in a coronal loop as its field line footpoints are forced to
follow the photospheric convective motions. By focussing on the specific case of cylindrically symmetric
footpoint motions, the original problem is reduced to one in which fast waves and Alfvén waves are
decoupled. This allows for a full analytical treatment of the photospheric excitation of both sausage
waves and of torsional Alfvén waves. Previously, Berghmans & De Bruyne considered the case of tor-
sional Alfvén waves. In the present paper we extend that analysis to sausage waves that are excited by
radially polarized footpoint motions (e.g., typical for granules). The time-dependent solution that we
obtain is written as a superposition of body and leaky eigenmodes whose excitation is easily determined
from the imposed footpoint motion. This provides analytical insight into the dynamics and energetics of
both impulsively and periodically driven sausage waves. In each case, we explain the time evolution of
the generated waves and discuss typical “signatures” that can be looked for in numerical simulations

and possibly in solar observations.
Subject headings: MHD — Sun: corona — waves

1. INTRODUCTION

Since the X-ray and UV imaging done by Skylab (1973), it
has become clear that the solar corona is mainly structured
in magnetic flux tubes, with the footpoints of the magnetic
field lines tightly rooted in the dense photosphere. It is gen-
erally accepted that this line-tied magnetic loop geometry is
a key ingredient toward an understanding of coronal
heating. In the context of wave heating theories, one expects
that impinging MHD waves are caught in the coronal part
of the loop, which acts as a leaking, resonant cavity
(Hollweg 1984).

A lot of work was done on sideways excitation, where one
assumes a wave to impinge laterally on the loop. This
problem is mathematically easier since one can include the
impinging wave as a source term or boundary condition for
the radial equation without having to solve the longitudinal
equation explicitly. Such an impinging MHD wave must
necessarily be a fast wave since Alfvén waves cannot trans-
port energy perpendicular to the magnetic field and slow
waves are negligible in the corona because of the low gas
pressure. When a loop is perturbed by a pulse on its side
surface, it will respond at a discrete set of fast wave fre-
quencies characteristic of the loop’s global equilibrium
structure (Wright & Rickard 1995). These fast wave eigen-
frequencies define what will be referred to here as the global
modes. It was shown in resonant absorption theory that
these global modes may locally couple to Alfvén waves
when their eigenfrequency falls into the Alfvén continuum
of the loop. In this process, small length scales are generated
very efficiently at the coupling point. This leads to dissi-
pation and ultimately heating of the coronal loop (see
Goossens & Ruderman 1995 for a review).

However, it is important to see that sideways excitation
by an externally impinging fast wave can only yield a minor
contribution to the heating of a coronal loop by resonant
absorption. One should recall that because of the enhanced
density, the interior Alfvén speed v,; must be smaller than
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the exterior Alfvén speed v,,. Under these conditions, the
frequency w, of a fast wave propagating through the
coronal environment must always be higher than the Alfvén
continuum w,(r) of the loop:

;= (K2 + k2 + k2) P05, > k04, > k05, = 04 .

Therefore, only fast waves that are exponentially decaying
on their way to the loop can resonantly excite Alfvén waves
in the loop. This suggests that fast waves originating from
within the loop must be the prime contribution. Such fast
waves can be excited by, e.g., a reconnection event inside the
loop (which we do not consider in this paper) or by the
photospheric motions of the footpoints of the magnetic field
lines.

Nevertheless, this photospheric excitation of resonant
waves has been subject to criticism. One argues that typical
photospheric driving frequencies and amplitudes are inade-
quate to generate waves that can make a relevant contribu-
tion to the heating of the corona. Because of the lack of
both detailed observations and rigorous calculations,
however, this criticism remains rather speculative. In fact,
few investigations have been performed on how the photo-
spheric motions drive coronal MHD waves (see, e.g., Poedts
& Boyton 1996 or Cadez & Ballester 1994 for recent
exceptions). Specifically, we feel that the “missing link” in
wave heating scenarios by resonant absorption is the ques-
tion of how resonant Alfvén waves can be indirectly driven
by footpoint motions through coupling with “global
modes.” This problem involves the explicit solution of the
wave dynamics not only in the radial direction, but also in
the longitudinal direction in order to include the appropri-
ate boundary conditions at the loop’s feet. Moreover, it is
advisable to study the initial value problem, since an
asymptotic state may well be unattainable (Berghmans &
De Bruyne 1995). As a consequence, the photospheric exci-
tation of global modes and their subsequent coupling to
resonant Alfvén waves turns out to be a difficult mathemati-
cal problem.

In an attempt to make a contribution to the solution of
this problem, we start from the simplified situation of cylin-
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drically symmetric perturbations (m = 0) in ideal, linear
MHD, in which Alfvén waves and fast waves are decoupled.
This has the advantage that we can study each type of wave
dynamics separately, before we take their interaction
(resonant absorption) into account in future studies.
Berghmans & De Bruyne (1995) studied in this context how
torsional deformation of a coronal loop at its footpoints
excites Alfvén waves. Their simple model problem (one-
dimensional wave equation) retained enough physics to
study the propagation of Alfvén waves, reflections, loop
resonances, and phase mixing in real space and time.
Several typical timescales where derived, and it was shown
that only when wave reflection at the boundaries is partial,
damped back and forth running waves can build up an
asymptotic state.

In this paper the model problem of Berghmans & De
Bruyne (1995) is extended by allowing radially polarized
excitation, which in the case of m = 0 means global com-
pression (and expansion) of the coronal loop at the foot-
points. This kind of photospheric driving excites the
sausage wave, which is indeed the m = 0 member of the fast
waves family. After enlisting the assumptions made, we state
in § 2 the two governing equations that are decoupled
thanks to the supposed cylindrical symmetry. The equation
corresponding to torsionally polarized perturbations was
treated in Berghmans & De Bruyne (1995) so that we can
restrict the present analysis to the equation that corre-
sponds to radially polarized perturbations. In § 3 we first
transform this equation with the aid of a finite sine trans-
form with respect to z and a Laplace transform with respect
to time. This results in an inhomogeneous ordinary differen-
tial equation with respect to r. In § 4 we solve the corre-
sponding homogeneous problem, first, as a Sturm-Liouville
eigenvalue problem for the vertical wavenumber and,
second, as a Schrédinger problem. Both approaches yield
interesting spectral information that allows us to solve in § 5
the inhomogeneous problem and invert the finite sine trans-
form with respect to z and the Laplace transform with
respect to time. The resulting solution of the coronal,
footpoint-driven sausage wave is written as a superposition
of sausage eigenmodes of the loop. In § 6 we derive expres-
sions for the kinetic energy contributions of each of these
eigenmodes. These expressions turn out to be a convenient
diagnostic tool in § 7, where we look at the time evolution of
the resulting perturbation from impulsive and periodic foot-
point motions. In each case, we explain the time evolution
of the generated waves and discuss typical “signatures”
that can be looked for in more realistically modeled numeri-
cal approaches and possibly in solar observations. Finally,
in § 8 we summarize our results.

2. PHYSICAL MODEL

A coronal loop is modeled as a static, straight, gravita-
tionless plasma cylinder with radius d, obeying the standard
set of equations of ideal MHD. We use a cylindrical coordi-
nate system (r, 0, z), where r represents the radial coordi-
nate, and 0 the (ignorable) poloidal coordinate. We assume
the plasma to be bounded by a rigid wall condition at r = d’
that is sufficiently far away from the loop edge at r = d. This
rigid wall is chosen because of mathematical simplicity but
can be thought of as a consequence of interaction with
nearby loops. We come back (§ 4.2) to this when taking the
limit d' — co. The z-coordinate represents length along the
loop. We assume the plasma to be bounded by two rigid

boundary planes: one at z = 0, where we impose a given
footpoint motion, and the other at z = L, where we assume
the loop is line tied. These boundary planes model the sharp
transition from corona to photosphere (ie., transition
region, chromosphere, and photosphere). We will refer to
these boundary planes as being the “ photospheric edges” of
the loop, and we implicitly assume that a disturbance initi-
ated in the photosphere will indeed reach the corona.

The plasma is permeated by a uniform magnetic field
(B, = Bye,) and has a uniform pressure p,, which we
neglect in a low f-approximation in comparison with the
magnetic pressure. Inhomogeneity of the plasma is modeled
by a stepwise varying density

_Jpi, f0<r<d,
pO(r)_{pe, ifd<r<d’, (1)

where p, denotes the exterior, coronal density (outside the
loop) and p; denotes the interior density (at the central axis
of the loop). For simplicity, we did not take into account a
z-dependence of the density. This means that our analysis is
to be applied to a coronal loop with its apex lower than 1
scale height (around 100 Mm).

The plasma is being shaken by small-amplitude excita-
tions at the footpoints of the magnetic field lines on the
z = 0 plane. We therefore superpose linear perturbations on
the previously described equilibrium. By introducing the
Lagrangian displacement vector & as

0¢

and defining the Alfvén speed as

BZ
2alr) N 1po(r) ’ ®

we can derive in the linear approximation the following
equations

(AZ-2)-2[taw, 1]

Eﬁ_ﬁ or|r or r 00
1 02 0? 1010w 10¢&
<Eﬁ_ﬁ>f"‘?%[? o Troo| ©

The equation for the third component of & describes the
low-B limit of the slow mode: an anisotropic sound wave.
As sound waves are not expected to yield a significant con-
tribution to the heating of the corona (Athay & White
1978), we only consider the components in equations (4)
and (5). These two equations are a coupled system of differ-
ential equations in ¢, and &, describing coupled fast Alfvén
waves. The terms on the right-hand side of these equations
are proportional to gradients of total pressure:
2
p- B[LAE) 10), "
ulr or r 06
A straightforward simplification of equations (4) and (5) can
be achieved by focussing on 6-independent motions. This
decouples the equations such that

12 ), a[1awe)
(Ea_ﬁ_ﬁ)f"a_r[F or ] @
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1 02 0?
<E6—t2—§)59=0, 9]

while the total pressure is given by

—B210

— o - (rir) . (9)
u r or

In Berghmans & De Bruyne (1995) we restricted the
analysis to equation (8). The solutions of this equation are
known as torsional Alfvén waves. In the present paper we
solve the equation for the £, component. This leads to a
fully analytical solution for the footpoint-driven sausage
wave in our model of coronal loops. We take all quantities
in equations (7) and (8) as being nondimensionalized with
respect to 1 Mm (10° m) for the length scales and to 1 s for

the timescales. For the figures, we use the parameter set

L=100, d=5, d=50,

UAi=2’ vAe=45 (10)

as typical coronal loop values, unless otherwise specified.

3. MATHEMATICAL APPROACH

Equation (7) is a partial differential equation with respect
to r, z, and t, where the footpoint motions are represented
by inhomogeneous boundary conditions in the z-direction:

fr(ra z= 0’ t) = R(T)T(t) s
(r,z=L,t)=0. (11)

We assumed for simplicity that the dependencies on r and ¢
of the footpoint motion are separable. The functions T'(¢)
and R(r) could be matched to, for example, granule charac-
teristics (see § 7). With the aid of the function

10,20 = & 7,9 — (1 - %)R(r)T(t) . ®

we can include the footpoint motion as a driving term, while
the boundary conditions become homogeneous:

1 0> o o(ry) z
(.Tﬁ‘?)x ar[r ar] (“z)f(”‘)’ 13)

where

10rR)| R()*T
[ 9=T0 [r o ] ~ (14)
and
W=0=xz=L)=0. (5)

These homogeneous boundary conditions for the function
now allow for the following sine expansion:

X(n) = f * @) sin <'2—" z) dz (16)
1(2) = 25 ZlX(n) sin (f z> 17

Integration by parts yields in addition

L 62 2
J; 662 sin <% z)dz = —(1—71) X(n) .
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At this stage, one might have doubts about the validity of
the straight loop approximation for low-n contributions.
We will come back to thisin § 7.1.1.

Expanding the function 1 — z/L in equation (13) in a
series of sines results in

z 2 2 L
<1 _z>__,,21n_sm (fz>forze(0 L], (18)
where the right-hand side is convergent for all values of z
except z = 0. This poses no difficulties since in what follows
we only look for a weak solution. Using the transformation
equations (17) and (18), equation (13) becomes

1 02 nm 1 0(rX)
ga—tz"+<L>X‘5[‘ 2 ]——f(r,t), (19)

r

where X is a function of (r, n, ?).
In a next step, we remove the time dependence by the
following Laplace transform:

R(w) = f “X@e dt 20)
0
1 (o
X@t)=— JX(w)e tdw , (21)
(o
© 2x o
2 gotdr = — 02X, 22)
"

where C is the Bromwich contour running parallel to the
real axis of the w-plane above all singularities of X(w). In
equation (22) we assumed for simplicity thatatt =0

X(t)=0 and aa%( =0 (23)

everywhere, which avoids the need to take up initial condi-
tions in the analysis. Applying this transform yields

o [10rX) nm\2 ?]. L\,
2[:28]- [(T) - le- _<n_n>f no), 8

where X is now a function of (r, n, ). We can rewrite this
equation as

? 10 nt\> 1
SR B (R

= vA(r)( >f (r, @), (25

or alternatively as

(4, — o)X = vA(r)< >f (r, ®) (26)

i) [0 [ oX nm\2 1],
B, {a—,( a,) [’(f) +?]X}- ol

This problem will be solved by inverting the operator
(4, — @) (§ 5). It is convenient, however, to first study the
spectrum of the operator 4, .

4. THE EIGENVALUE PROBLEM

with

AX =

In this section we solve the problem
A, X (r,n) = 02X (r, 1), (28)
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where the eigenfunctions X, are subject to the Dirichlet
boundary conditions: X, =0 at r =0 and at r =d'. For
later use, it is convenient to note that

2
Ayyr=A, + 02020 + 1) % : (29)

In what follows we will often drop the references to the
mode number n. It is easy to check that A is self-adjoint
with respect to the scalar product

UV = L U@V é(r) dr, (30)

where the asterisk denotes complex conjugate. In these cir-
cumstances, general theory tells us that:

1. The eigenvalues w? are real, and
2. Eigenfunctions correspondmg to different w? are
mutually orthogonal.

Rewriting equation (28) as a classical Sturm-Liouville eigen-
value problem,

0 0X, nt\? 1 , T
o (' 0r)_[’<L> +r]X“‘ ~% 2y e G

we obtain the additional information that, as long as
d < o0,

1. The set of eigenvalues w? is discrete;

2. The set of elgenfunctlons X, is complete

3. All eigenvalues w? are stnctly positive, so that all the
eigenfrequencies are real.

With the help of the rescaled variable

2
r= “’—; % r=z(odrif0<r<d, (32
Vai
nm\>  o?
r= =) —Fr=z(@rifd<r<d, (3
L Vae
we can rewrite equation (31) as the Bessel equation when
r<d,
*X, 10X, 1
ar12 += I a ’ + (1 - r:_z) - 0 (34)
and as the modified Bessel equation when r > d,
°X, 10X, 1
arIZ + rl ar/ - 1 + ri2 0 (35)

The solution inside the loop (which has to remain finite at
= () is then given by

Ji[z{wQ)r] (36)

while imposing vanishing wave amplitude at r = d’ leads to
the external solution

K[z (0g)r] [z(3)d ] — I, [z(g)r]K, [z@})d] . (37)

The condition of continuity of &, and of total pressure (see
eq. [9]) at r = dleads to the dispersion relation
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201 [z{07)d){ K[ z())d]] [z (0])d]

— K, [z{07)d o[z {w})d]}
=zl o[z{)dl{K, [z})d] ] [z (@])d]
— Ky[z[0))d 11 [z(0)d]} . (38)
This dispersion relation is actually a special case (m = 0 and
B = 0) of dispersion relations found earlier by other authors
(see, e.g., Cally 1986 and references therein). Each solution
w? of this equation is an eigenvalue of the operator A. The
corresponding eigenfunction X (r) is found by taking the
appropriate combination of equations (36) and (37):

X (1) = H(d — n)J [z{03)r{K, [z0})d]

x I [z()d] — K, [z(07)d 1 [z()d]}

+ H(r — d)J [z{07)d]{K [z(])r]

x I [z0)d] — K, [z(0)d 1 [z(07)r]} , (39)
where H(x) is the Heaviside step function and g ranges from
1 to co. The dispersion relation (eq. [38]) is transcendental
and will be solved numerically. Note that starting from the

eigenvalues for n, we can estimate the position of the eigen-
values for n + 1 from equation (29) as

nZ
wl(n) + v3(2n + 1) I

2
< 0¥(n + 1) < 02(n) + v2,2n + 1) % . (40)

These estimates were used as starting values for an iterative
root-finding algorithm. The result is shown in Figure 1,
where we have drawn o, (i.e., the positive square root of the
eigenvalues w?, for different ¢’s) as a function of n.

4.1. Classification of Eigenmodes
Additional insight into the spatial structure of the corre-
sponding eigensolutions X, can be gained by rewriting
equation (35) as a Schrodinger type of equation
02(I> 1
TR0
where we have deﬁned the “wave function” ® = r'/2X (r),
the “energy” E = w?2, and the “ potential

[E-V({@)]®=0, (41)

0 20 40 60 80

FIG. 1.—w, as a function of n, for q ranging from 1 (bottom curve) up to
40 (top curve). Body modes are possible between the two dashed lines (see
eq. [42]). Note that the eigenfrequencies correspond to discrete n only. We
have drawn lines through these discrete points for clarity.
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V(r) d’=50 d’=100
leaky
10— [ — =
8
body
6
r;10 r;20

F1G. 2—Potential V(r) for n = 25 as a function of r (left-hand side) and
corresponding “energy *-levels E = o (right-hand side).

Vi) = i) () + 2.

which is shown on the left of Figure 2 (for the case n = 25).

The eigenfunction X, is oscillating in regions where
E—V(r)>0, but is evanescent in regions where
E—V(r) <0. Figure 2 shows that the stepwise profile of
v3(r) creates a potential well inside the tube so that bound
states are possible in the range

nt\2 3 nt\2> 3
Uil[(f) + W:I < CO,? < Die[<f) + 4d'2:| . (42)

In this range, the solutions have oscillatory behavior inside
the loop and are evanescent outside the loop. This type of
solution has been called “body modes.” The interval (42) is
depicted in Figures 1 and 2 as two dashed lines. As the
height of the edge of the potential well

2

lim V(r) — lim V) = 0, — vi»("f) @3
r>d r<d

is proportional to n?, we expect that the number of possible

bound states increases when n? is increased. This is indeed

observed in Figure 1, where we can see eigenvalues entering

the region (42) for increasing n.

No solutions exist for w? < v3,[(nm/L)* + (3/4d%)], since
this would correspond to a solution with exponential
behavior inside and outside the loop (a so-called surface
wave). Since the solution has to be zero at the boundaries, it
is unavoidable that the solution peaks at r = d [unless the
solution is zero everywhere, which corresponds to co,f =
vz {nn/L)*]. Peaking, however, is in contradiction with con-
tinuity of total pressure [ ~ o(r&,)/0r].

Solutions with v [(nn/L)* + (3/4d'*)] < w? oscillate not
only internally, but also externally. In contrast to the body
modes, which confine the wave energy inside the loop, these
types of solutions radiate their energy in the surrounding
coronal medium. These eigenmodes have been called leaky
modes.

4.2. The Infinite Corona Limit

Let us investigate now what happens when taking the
limit for d' — o0, so as to simulate an isolated coronal loop
in an infinite medium. In the right-hand side of Figure 2 we
show the effect of increasing d’ on the eigenvalues. As can be
expected from the analogy of our potential with those in
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quantum mechanical problems, the leaky mode eigen-
frequencies become increasingly densely spaced, to form a
continuum of radiating modes for a truly open system. The
body modes, however, are hardly affected by this limit, since
they vanish anyway somewhat outside the loop. These
statements are of course only speculative. A proper treat-
ment of the open system would involve a Green function
approach (e.g, as in Sedlacek, Adam, & Roberts 1986), with
carefully chosen contour integration around the poles and
branch cuts of the Green function, which then form the
discrete (body modes) and continuous spectrum (leaky
modes), respectively. Doing this would take us to far, but
the following can be made plausible. It turns out that the
analytical structure of the Green function is completely
determined by its denominator, which is the same as the
d’ — oo limit of our dispersion function (eq. [38]):

z(@))J 1 [z{w7)d]K o[2(])d]
- Zi(“’ﬁ Yo [Zi(wlf )1K [Ze(w; ] . (44)

It can be checked that this function has, apart from a dis-
crete number of simple zeros (corresponding to the poles of
the Green function), also a logarithmic branch point at
w} = v3(nn/L)* (i, z, = 0)due to

1

Kl(zed) = d + ln(zed)ll(zed) + Kl(zed) H

KO(Zed) = ln (ze d)IO(Zed) + KO(Zed) H (45)

where k, and k, are entire functions (Erdélyi & Bateman
1953). This branch point, together with the choice of the
physical Riemann sheet, dictates that the branch cut should
extend from v3.(nn/L)* upwards along the real axis. Inte-
grating along this branch cut yields the continuous spec-
trum contribution. The corresponding solutions for the
discrete spectrum are in the limit d’ — oo given by

X3(r) = H(d — 1)J [z{0g)r]1K [z ()]
+ Hr — d)J,[z{03)d]K, [z(@3)r] ,  (46)

while for the continuous spectrum, the argument of the K,
Bessel function becomes imaginary and we can write

Xqr) = H(d — n)J[z{g)r 1H[ | 2(]) | 4]
+ Hr — d)J,[z{0)d]HVL | z{0) 1], (47)

where the Hankel function H{" takes care of the outgoing
wave behavior.

4

4.3. Minimal Vertical Wavenumber and Frequency for
Trapped Modes

As a last item in this eigenproblem subsection, we want to
derive an expression for the lowest n for which an eigen-
mode is trapped into the loop. That is, for each g, we want
to find the n for which the corresponding eigenmode
switches from leaky mode to body mode by crossing the
w? = v} (nn/L)* dashed line (ie., z, = 0) in Figure 1. Note-
that we neglect the factor (3/4d'?), since the precise value of
d’ has only a minor influence on body modes. For the same
reason, we start from the simplified dispersion relation (eq.
[44]) for d’ — oo. Using equation (45) to determine the dom-
inant behavior when z, — 0, we get

(z:d)o[z:d] = J,[z:d)(z.d)* In(z,d) >0 as z,. >0 . (48)
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Since (z;d) # 0, we get Jo,[z;d] = 0 or
d [Z—\7) =i, “9)

where j§ is the gth zero of Bessel function J,. Substituting
w? = v} (nn/L)* and solving for n yields an estimate n,(g) of
the n-value for which the gth eigenmode becomes trapped:

n(@) = {5 ’—] . (50)

d JwRe/vk) — 1

A related expression for a loop of infinite length but without
making the low-f approximation was derived by Roberts,
Edwin, & Benz (1984). We can also eliminate n from
equation (49) and z, = 0 and solve for the minimal eigen-
frequency that corresponds to a body mode:

Jo
wy(g) = . (1
d/(1/v3) — (1/v3.)
For the typical coronal values specified in equation (10), we
find n,(g = 1) = 9 and w,(q = 1) = 1.124. These results will
beusedin § 7.

5. GENERAL SOLUTION

5.1. The Resolvent

In this section we will solve the inhomogeneous differen-
tial equation (26). To simplify the notation, we will take the
eigenfunction X, from now on as being normalized. Using
the Dirac notation
p

|X,> =X, and <X,| -=J

0

r
dr% Xq,

we can write the operator A4 as

A=Y 02| X XX,I|, (52)
q
and define an arbitrary function of the operator A4 as
f() =Y f(03)| X, )<X,] . (53)
q
Specifically, by employing the function
1
fO=——s,
we define the “resolvent ” of the operator A4 as
1 1
RmZEA_w2=Zw2_w2|Xq><Xq|' (54)

q q

It is easy to check that this resolvent operator inverts the
operator (A — w?). Solving equation (26) is now straightfor-
ward. By operating R . on both sides of this equation, we
obtain

x= sz[vi(r)<%)f r w)] - (5)

By recalling the definition of f(r, t) (eq. [14]), one can
rewrite this as

X, n 0)= (:—n> Y a,;r(_wiﬁ X (r,n)

X JWX o n){vi(r) % |} 6%5)] + a)zR(r)}r dr. (56)

0
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In a lengthy but straightforward derivation, the r deriv-
atives on R(r) can be removed by partial integration. This
simplifies the expression to

fem )= — ()o@ + () 5
X I:JWX 41, mWR(@)r dr:IX Jrmn). (57)

5.2. Inversion of Transformations

We now want to invert the Laplace transform with
respect to time and the sine transform with respect to z. The
Laplace inversion of the first term of equation (57) is
straightforward:

- <rf'—n>R(r) T(w) - — (f—n>R(r) T() .

To perform the Laplace inversion of the second term of
equation (57), we first note that the complete w-dependence
is contained in the factor

T(w)

2 2"
a)q—w

(58)

Second, one should remember the well-known inversions

i (@) fow) - J:fl(t —)fa(t)de . (60)
Combining these two results allows us to invert
Tw) 1 [ ot — )T . 61)

2 2
w; — o o, )

Plugging this result into equation (57) yields

X, n,t)= —('f—n>R(r)T(t) + i::l (X, |vA(R@))

x [a:"‘L sin (o, 1), T(t):IXq(r, n, (62)

q
where we used the scalar product

(X, VAR = JWX (1, WR(@)rdr (63)

and the time convolution

nw . nt [*.
|:co 7 sin (o, 1), T(t):l = o,L Lsm ot —1)T(x)dr. (64)

q

By recalling the definition of y and the transform
equation (17), we can now reconstruct the displacement &,
as a function of r, z, and t:

Er, 2, 8) = 1(r, 2, £) + (1 - %)R(r)T(t) ,

+ ( = %)R(r)T(t) : 65)
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This gives
Gnzg= 3 3 CXIRORD

X I:a:mL sin (o, 1), T(t)]Sq,,,(r, z) + ROT({)

[0-3) 155w

where we defined the sausage elgenmode

Sy, 2) = %sm < ) Jrn). (67)

As a result of equation (18), the second term of equation (66)
equals zero for all values of z > 0. However, when z = 0, the
second term equals R(r)T(¢), which is indeed the imposed
footpoint motion, while the first term of equation (66)
[being a superposition of terms proportional to sin (nnz/
L)] becomes zero. The solution can thus be written as

X 8,41, 2) + ROT(£)d, - (68)

Equation (68) gives a description of the generation by foot-
point motions of sausage waves in a coronal loop as it was
modeled in § 2. The solution is written as a superposition of
sausage eigenmodes S, ,(r, z) whose excitation is deter-
mined by the time dependence T'(¢) of the footpoint motion
through convolution (64) and by the spatial dependence of
the footpoint motion through the scalar product (63). In
addition, a term R(r)T(¢)0,, appears for reasons of con-
vergence, which is only nonzero at z = 0. It is important to
note that the procedure that led to the solution (68) is inde-
pendent of the precise choice of the Alfvén profile v,(r).
Indeed, any other profile would still lead to a self-adjoint
operator (27), which is the basis of our analysis. Our choice
of a step profile has the advantage of being analytically
tractable, while other profiles would require a numerical
procedure to determine the eigenfunctions.

Lrnn=3 3 (X, |vA(r)R(r>>[

n=1g=1

6. KINETIC ENERGY
From the solution (68), one can construct the total kinetic

energy E(t) in the system:
Po( )[ag,(r, % t)T . (69)

E@t)=2= J dz J‘ o

L d’
J' dZJ\ pO(r)r dqu,n(r, Z)SII'rn’(r, Z) =
0 (]

one can rewrite equation (69) as

E@)=C Z Z E,. ) (7)

n=1g=1

Since
2

2B
L_ﬂo 6q,q' 6n,n’ ’ (70)

where

Equ(t) = | <X, |03 R) |("L—“> {Lt‘m [o(t — 7)] T(r)dr} :
(72)
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and C = 4nB2/uL. Of course, each term of equation (71) is
just the kinetic energy contribution E, ,(t) of each eigen-
mode S, ,(r, z) (scaled by a constant factor C). In what
follows, we will also use the time-averaged kinetic energy
contributions

1 2P
<Eq,n> = F f Eq,n(t)dt ’ (73)

P

where P is a period longer than any period of the system or
of the footpoint motion.

Although we took d’ > d, the wave behavior in the loop
might be influenced by the outer boundary d’ for times later
than (&' — d)/v,,, which is the time to travel from the
boundary to the loop. In general, this influence is small
since the amplitude of a wave expanding in two dimensions
decreases as R~ '/, where R is the distance traveled. As
mentioned above, the reflections on d’' can be seen as the
influence of nearby loops. Howeyver, if one wants to investi-
gate the asymptotic state t — oo, these contributions might
accumulate, leading to spurious standing waves in the r-
direction. These complications can be avoided by retaining
only those terms in equation (71) that correspond to body
modes. Indeed, for a truly infinite medium (see § 4.2), the
leaky modes will radiate most of their energy in a finite
time, leaving only the contribution of the body modes as
t — co. In this sense, we can estimate the energy confine-
ment of the loop in an infinite corona by the ratio

Zbody <Eq,n>

ECR = .
Zbody+leaky <Eq,n>

(74

7. APPLICATIONS

In this section we will use equation (68) to visualize the
behavior of the sausage wave under varying conditions. We
again take the typical parameter set (eq. [10]) and look at
the influence of the functions R(r) and T (¢), which character-
ize the footpoint motion (eq. [11]). Because of the imposed
axial symmetry (m = 0), the footpoint motion always has
the topology of a ring. This is not a shortcoming or
restriction of our analysis. It is a direct consequence of the
fact that a ringlike footpoint motion (i.e., m = 0) is the only
Fourier component [exp (imf)] generating the sausage
waves. In this sense, an external excitation that is concen-
trated near a point rather than a ring will have a m =0
component that excites sausage waves.

For the numerical calculations, we replace the double
infinite sum in equation (68) by

N Q

2 X - (75)

n=1 g=1
The consequence of this approximation is that features in
the solution with a typical scale of O(L/N) in the z-direction
and a typical scale of O(d'/Q) in the x-direction might not
be adequately represented. For example, in the initial stage
(small ¢), the solution is zero everywhere except in a narrow
region z € [0, tv,]. This causes spurious oscillations until
t > O(L/v,N). To minimize these problems, we took N and
Q typically as large as 250 and 75, respectively. The solution
(68) together with the approximation (75) was used to
produce a time sequence of pictures in the following situ-
ations.
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7.1. Pulsewise Driving

In a first approach, we want to study footpoint motions
with a time dependence

() = H(t)l} (i) exp (2 - é)] , (76)

which is chosen in order to simulate giving an instant
“kick” (e.g., an exploding granule) at the loop’s feet. This
time dependence is in agreement with the absence of initial
conditions (23). The maximum amplitude 1 is reached when
t = 2t,. In what follows, we (arbitrarily) take ¢, = 0.25.

7.1.1. An External Pulse

As a kind of a test case, we first want to consider driving
outside the loop:

R(r) = H(r — 15HQ20 — 1) . (77)

In Figure 3 we have drawn the lower part (up to z = 35)
of the corona. In Figure 3a we show the wave frontat ¢ = 1.
We can see that the wave front has expanded spherically
over distance: v,,t = 4. At t = 2.5 (Fig. 3b), a negative wake
(region 2) has developed behind the expanding positive
front (region 1). Such a negative wake is typical for wave

c) 5.5 s

FOOTPOINT-DRIVEN CORONAL SAUSAGE WAVE 405

fronts expanding in two dimensions (see, e.g, Morse &
Feshbach, 1953). At t = 5.5 (Fig. 3c), the wave front has
encountered the loop edge and is partially refracted into the
loop (region 3), while the rest is reflected back into the
corona with reversed amplitude (region 4). In Figure 3d we
see the original spherically expanding wave front (1) and its
wake (2), the reflected wave front (4), the reflected wake (5),
the refracted wave front (3), and the refracted wake (6). The
remaining two regions (7 and 8) are coming “from the other
side” of the loop axis and need some explanation. Because
of the cylindrical symmetry, we have actually perturbed the
photosphere at a ring around the loop axis. The wave front
that originated at the opposite side of this ring was orig-
inally pointing outward (¢, > 0), but when crossing the loop
axis, this became pointing inward (¢, < 0) and thus gave rise
to the negative wave front (7). The region (8) is just the
companion wake to the wave front (7). Equivalently, the
regions (7) and (8) can be seen as the reflections of (3) and (6)
on the loop axis r = 0, which needs to remain unperturbed
in a cylindrically symmetric situation.

As the wave front (7) and its wake (8) travel almost per-
pendicularly to the loop edge, they reescape into the outer
corona rather than traveling along the loop. The effect in
the long run is that almost nothing of the original pulse

b) 2.5 s

d) 8.5 s

0 5 10 15 20 25 0 5 10 15 20 25

FiG. 3—Contour plots at different times of the wave amplitude due to an external pulse as a function of height (vertical axis) and radius (horizontal axis).
The contours are chosen at {+0.5, £0.05, +0.005}, where light regions are positive (radially outward, expansion) and dark regions are negative (radially
inward@ogpression% The X, jcal line at 7, = SIrg)resents the loop edge, .
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energy is captured by the loop. This can also be understood
from the following argument. As we stated above, the only
modes that can confine energy to the loop for t — oo are the
body modes. Since these modes are evanescent for r > d, the
corresponding scalar products (63) [with R(r) which is only
nonzero for r > d] are very small. This is indeed confirmed
in Figures 4 and 5, where we plotted the time-averaged
kinetic energy (up to a factor C) of the body modes and the
leaky modes, respectively, as a function of the correspond-
ing eigenfrequency. By far the largest contribution comes
from the leaky modes, while the body modes are (almost)
not excited. This means that the loop is unable to capture
any significant amount of energy. We find an energy con-
finement ratio of only ECR = 1%.

We also calculated the contribution from the lowest
n-modes to the total kinetic energy. As stated in § 3, these
modes, which have a vertical wavelength comparable to the
loop length, might be heavily influenced by the assumption
of a straight loop instead of a curved one. It turns out,
however, that in the present case the lowest n-modes (say
n = 1 to 4) contribute only 6.41% of the total kinetic energy
such that the “rectification ” of the loop seems a posteriori a
reasonable approach.

7.1.2. An Internal Pulse

A completely different picture is obtained if we impose as
footpoint motion a pulse inside the loop,

R(r) = H(r — 2)H@S5 — 1), (78)

while keeping the same “kick ” time dependence (eq. [76]).
Figure 6a shows the wave front at t = 1.2. At this time,
the footpoint motion is already beyond its maximal ampli-
tude (which occurs at t = 0.5) and is exponentially decaying
again. Therefore, the brightest region in Figure 6a is
detached from the bottom. Because of a change in the hori-

body modes
<Eq,n>
0.0015
0.001
0.0005
| o
0 1 2 3 4 5 6

Fic. 4—Time-averaged kinetic energy contribution <E, ,> of the body
modes due to an external pulse.

Leaky modes

<Eq,n>
0.015
0.01
0.005
(0]
) 1 2 3 4 5 6

F1G. 5—Time-averaged kinetic energy contribution <E, > of the leaky
modes due to an external pulse.
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zontal scale, the wave front appears as a flat dish rather
than a sphere. In particular, one sees the wave front that
propagates straight up with a speed v,; = 2 (labeled 1) and
the wave front that has left the loop and therefore expands
rapidly with a speed v,, = 4 (labeled 2).

In Figure 6b (t = 1.8) a new dark (i.e., negative amplitude)
spot emerges at the bottom of the loop. This spot is the
wake of wave front 1, as encountered in the previous case.
In Figure 6¢ (t = 2.4) we can see that this negative region
has grown quickly. This is because the wake is reinforced by
the initially positive wave front “ coming from the other side
of the loop axis,” which became negative on crossing the
axis. To trace the motion in subsequent pictures of the
negative wave front that is bursting out of the loop, we have
added a point labeled 3. The upward rising wave front 1 has
reached a height z = 2.4v,; = 4.8. Nevertheless, one can see
that around r = 4.5 some perturbation is reentering the
loop at greater heights. In fact, the wave front 2 is turning
back into the loop. This behavior is caused by the imposed
boundary conditions at the loop edge, which demand a
smooth transition of the wave fronts inside and outside the
loop.

In Figure 6d (t = 3.4) the directly uprising wave front 1 is
being caught up by the reentry wave front 2. Meanwhile, a
new positive region emerges (Fig. 6d, bottom left corner),
because of the wake originating at the other side of the loop.
After some time (at t = 6), this region becomes the large
positive wave front that we labeled 4 in Figure 6e. In this
figure one can see that the negative wave front 3 in its turn
is turning back into the loop, thereby eating the preceding
positive region from the back.

The result is in Figure 6f (¢t = 8.8). Ahead of the directly
uprising wave front 1, there is an oscillating pattern caused
by the reentry of the wave fronts 2 and 3. Behind the
directly uprising wave front 1, one gets a complicated
picture of alternating positive and negative regions of
increasing vertical wavelength, caused by multiple reflec-
tions of the wave front and its wake. As time progresses, the
reentry effect ahead of wave front 1 and the multiple reflec-
tion behind it go on for some time until the first pertur-
bation reaches the other side z = L.

An analytical investigation of this behavior is impeded by
the finite sine transform (eq. [17]) that enabled us to study
the excitation of eigenmodes, but which is less convenient to
study the evolution in terms of propagating wave fronts.
However, Roberts, Edwin, & Benz (1984) noted the close
analogy between sausage modes in coronal loops and
Pekeris waves in oceanography. This was very fortunate
since it allowed them to use the analytical work for Pekeris
waves to explain the typical signature of an impulsively
generated sausage wave in an infinite loop in terms of a
frequency-dependent group velocity. It turns out that this
close analogy persists in our line-tied loop with footpoint-
driven sausage waves. To show this, we let the perturbation
evolve from t = 8.6 (i.e., Fig. 6f) up tot = L/v,, = 25 (time
at which z = L is reached). In Figure 7 we show a crosscut
of this situation for a fixed radius (r = 4.4), which yields the
amplitude as a function of height.

The result is a typical signature of an impulsively gener-
ated wave as it was derived by Pekeris (1948) for a two-layer
ocean model. The reentry wave fronts form what Pekeris
called the periodic phase, while the subsequent oscillations
due to multiple reflections were called the quasi-periodic
phase. The final decay was called the Airy phase. The small
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a) 1.2 s
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b) 1.8 s

FiG. 6—Contour plots (as in Fig. 3) of the amplitude due to an internal pulse

oscillation superposed on the periodic phase is a numerical
artifact caused by the truncation of the sum in equation (68).
The spikes seen in the decay phase are probably due to
ongoing reflections.

Once the periodic phase has reached z = L, reflection
occurs and the “head” of the Pekeris wave is reflected
downwards, superposed on its tail. The following pictures in
the time series of Figure 6 therefore quickly become unin-
terpretable. Thanks to the equations (71) and (74), however,
we can still draw some conclusions for large ¢. In Figures 8
and 9 we depict the time-averaged kinetic energy contribu-
tions (up to a constant factor C) of the leaky and body
modes du to the,inte ulse. Co.ntr

to.the fornigr cas?i
merlcan S ronomlca 0c1e y rovi

ed by the NAS ARt sphyses B

of an external pulse, the largest contributions are now
clearly coming from the body modes, which start at the
lowest body mode eigenfrequency derived in § 4.3 [w,(q =
1) = 1.124, which corresponds to ny(g =1)=9]. Only
below this frequency w,(q = 1) are there significant leaky
mode contributions. This means that in the long run, when
leaky modes have died out, the perturbation has at least
nine nodes in the z-direction.

The largest kinetic energies for the body modes are seen
in the frequency range 1.1-4.5, which corresponds to time-
scales (half a period) of 0.7-2.9 s. It is interesting to note that
fluctuation timescales of 0.5-3. 0 s have indeed been
geys mber of authors
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decay quasi-periodic periodic
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Fic. 7—Wave amplitude at ¢ = 25 due to an internal pulse as a func-
tion of height z for a fixed radius r = 44.

in solar radio bursts, microwave bursts, and hard X-ray
bursts (see, e.g., Ren-Yang, Sheng-Zhen, & Xiao-Cong 1990
and references therein). It thus seems that, as instrumen-
tation is refined, it might become possible to link the
observations with the theoretical framework presented here.
If successful, this might lead to MHD spectroscopy of
coronal loops.

Since predominantly body modes are excited, we can
expect a large energy confinement ratio, which turns out to
be ECR = 94%.

7.2. Periodic Driving

In this subsection we want to turn to the case of driving
the loop’s feet with a periodic oscillation. Such a footpoint
motion could be generated, for example, by a sub-
photospheric wave. We consider a harmonic footpoint

Body modes
<Eg,n>
0.003
0.002
0.001
J L 0)
0 1 2 3 4 5 6

Fic. 8.—Time-averaged kinetic energy contribution <E, ,> of the body
modes due to an internal pulse.

Leaky modes
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0.0004
0.0003
0.0002
0.0001
Lk, el ©
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FI1G. 9.—Time-averaged kinetic energy contribution <E, ,> of the leaky
modes due to an internal pulse.
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motion sin (w,t) that is preceded by a t*> growth as in
equation (76), to remain consistent with the initial condi-
tions (23), and that dies out after a time <. :

Lao(L) exp(2-2), ife<2
4 to p to s 0>

sin (w,t) , if2ty <t<r,,
0, ifr,<t,

T(t) =

(79

where ¢, is taken to be n/2w, to guarantee a smooth fitting
(continuous amplitude [ =1] and continuous first derivative
[=0]). We also assume that w,z, is an integer multiple of
2=n (ie., 1, = m2n/w,) to avoid an abrupt end of the foot-
point driving. The radial dependence is kept the same as in
the previous case:

R(r) = Hor — 2H@.5—7) . (80)

From what we have seen above, it should be no surprise
that driving at the loop’s feet with a periodically oscillating
footpoint motion (which can be seen as a sequence of alter-
nating pulses) results in a complicated wave pattern that is
hard to interpret. To keep things tractable, we split the
discussion into the following time intervals.

7.2.1. Initial Stage:t < L/v,,

In Figure 10 we show a time sequence of pictures for
driving with a frequency w, = 1, which is close to the leaky
mode w,_,(n = 7) = 1.0003. Instead of trying to interpret
the whole evolution in terms of propagating and reflecting
wave fronts and trailing wakes, we want to focus on two
observations:

1. The first outward (light) and inward (dark) phases
reach a height of z ~ 6, 10, 12, respectively, before they
detach from the bottom z = 0. For later times, this number
goes up to z ~ 16, which is much more than what can be
expected (z = v,; At = 2x) from the time between two nodes
of the footpoint oscillation (At = ).

2. Once detached from the bottom, the leading wave
front decays while propagating upwards. For longer time
sequences, the same narrowing of the following waves up to
disappearance is observed.

As far as the first observation stated is concerned, we
hypothesize that, for example, the first negative phase in
Figure 10b apparently reaches a height z = 10, instead of
z = 2m, because it is headed by the wake of the first positive
phase and the “reflection” of the first positive phase on the
loop axis (as in Fig. 6¢). The same mechanism is probably
operating for later phases as well.

Concerning the second observation, one could argue that
this is due to the two-dimensional expansion of the wave
front. We think that a more wave-destructive mechanism is
at work inside the loop. Let us look at the upward propa-
gating train of alternating inward or outward phases as a
series of pulses. As in the case of pulsewise driving, a part of
a specific pulse bursts through the loop edge and reenters
somewhat ahead of the directly uprising wave front super-
posed on the preceding pulse, which has the opposite sign.
This preceding pulse therefore diminishes in amplitude.
Analogously, our specific pulse is hit from the back by the
reentry wave front of the trailing pulse and thus also dimin-
ishes in amplitude. Since each of the pulses is somewhat

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...472..398B

No. 1, 1996

a) 3 s

100

80

60

40

20

c) 9 s

100

80

60

40

2018

e) 16 s

100

80

60

40

20

0 10 20 30 40 50

FOOTPOINT-DRIVEN CORONAL SAUSAGE WAVE 409

b) 6 s
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Fic. 10—Wave amplitude as a function of height (vertical axis) and radius (horizontal axis) due to harmonic footpoint driving with a frequency w, = 1

larger than its predecessor pulse (since this pulse has been
expanding for a longer time), one pulse after the other is
effectively destroyed. In Figure 11 we show a crosscut for a
fixed radius r =4 of the situation in Figure 10, at time
t = 25. At this time, the rising wave train has reached a
height z = 50. Since we drive with a frequency w; = 1, one
would expect to see 25/n ~ 8 alternating positive and nega-
tive phases between z = 0 and z = 50. Instead, one sees only
four phases and a small hump on its way to disappear.
Although oscillations are disappearing one after the other,
the eigenmode g = 2, n = 7, whose frequency we are driving

first three “pulses” reach from z = 0 to z = 42, giving an
average pulse width of Az = 13, which means that seven of
these pulses would fit in the length of the loop (L = 100).
This is indeed the n-number of the eigenmode whose fre-
quency we are driving with.

7.2.2. Ongoing Driving:t < t,

Let us investigate the influence of the frequency w, on the
excitation of each sausage eigenmode S, , in more detail.
The driving frequency w, enters equation (72) via the inte-
gral over t, which for the present case of T'(f) = sin (w,?)
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FiG. 11—Wave amplitude at t =25 due to periodic driving with
o, = 1 as a function of height, for a fixed radius r = 4.

integrated analytically. This results in
nm\?
E,®) = KX,| v,iR>|2<f)
y |:w cos (o, t) — cos (@, t):l ,

wd_w

2
= KX, |vAR>|2( ) ( <°°“>)

x [%;’tm] sin (Co)1)? , @1)

where {w) = (w; + »,)/2 and Aw = (w, — w,). Equation
(81) tells us that driving with a frequency w, close to an
eigenfrequency w, results in a large (due to the factor 1/Aw)
kinetic energy contribution oscillating with a mean fre-
quency {w). The amplitude of this oscillation is modulated
with a low frequency Aw. This causes a beat effect in the
time dependence of the kinetic energy of modes whose
eigenfrequency lie close to the driving frequency: for t < n/
(2 Aw), the footpoint motion pumps energy in the eigen-
mode, while for #/(2Aw) <t < n/(Aw), this energy is
extracted again and the cycle can start again. Such a beat
effect was noted before (Berghmans & De Bruyne 1995) for
torsional Alfvén waves and observed by Poedts & Kerner
(1992) in numerical experiments. One can expect that for
Aw — 0, energy is pumped constantly into the eigenmode.
Indeed, for driving at exactly an eigenfrequency it turns out
that since

sin (Awt/2) Aot
Atz L 50

we obtain

E, ()~ |<X| AR>|2<" )

x [sin (w,)]* when o, > o, . (82)

This means that driving at an eigenfrequency results in a
quadratic growth of the kinetic energy contribution (and
thus a linear growth of the amplitude) of the corresponding
eigenmode. Modes whose eigenfrequency lie close enough
to the driving frequency (Aw < m/2t,) also absorb energy
during the whole driving time t, but their growth will be
slower than quadratic. The excitation of modes with Aw >
n/2z, will depend on the phase in the beat period at the time
t =1, when the driving stops. This is investigated more
carefully in the following paragraph.

Vol. 472

7.2.3. Asymptotic Time Evolution:t, <t — o0

We again start from equation (72), taking into account
that T(t) vanishes for ¢ > 7, such that the upper limit of the
integral over t becomes now 7. Simple analytic integration
(we forget again about the initial stage) results in

Eol®) = KX, | viR>|2("{)
y |:wd cos (w,t) — cos @, (1, — t):l2

0] — o}
2[sin (Aawr,/2) ]2
- xiane(E) (G ) [ 0]
x {sin [w,(t — t,) + {w)7 ]}?, 83)

where our previous assumption T, = m2n/w, has led to con-
siderable simplification. It can be checked that at t = 7,
equations (81) and (83) are identical. For t > z,, the inter-
pretation of equation (83) is straightforward: each eigen-
mode oscillates with its own eigenfrequency and maintains
the amplitude corresponding to the phase in the beat cycle
at the time the driving stopped.

As far as the influence of the time dependence of the
periodic footpoint motion is concerned, we can summarize
by stating that only those eigenmodes whose eigen-
frequency lies within an interval Aw = /27, from the
driving frequency w, are significantly excited. Whether the
resulting oscillation is sustained in the loop or radiated
away by the leaky modes thus depends on the relative
number of leaky and body modes in this interval. In order
to excite a sustained oscillation in the loop with a periodic
footpoint motion, it seems therefore necessary that the
driving frequency be above the eigenfrequency w,(q = 1) of
the first body mode.

8. CONCLUSIONS AND DISCUSSION

In this paper we looked at the excitation of sausage eigen-
modes by photospheric footpoint motions. Thanks to the
assumed cylindrical symmetry (m = 0), the radial com-
ponent of displacement vector (fast waves) decouples from
the torsional component (Alfvén waves), which allows for a
fully analytical treatment of the sausage waves in real (r, z,
t)-space.

We wrote the general solution as a superposition of line-
tied sausage eigenmodes S, ,, which were identified by an
equivalent Schrodinger approach as being body modes or
leaky modes. The excitation of each of these sausage eigen-
modes S, , is determined by the time dependence of the
footpoint motion (through convolution eq. [64]) and by the
radial dependence of the footpoint motion (through the
scalar product eq. [63]). In addition, we derived an expres-
sion for the kinetic energy contributed by each sausage
eigenmode to the kinetic energy of the total sausage wave.

We then used the analytical solution for the footpoint-
driven sausage wave to generate animated computer
graphics in (r, z, t)-space for different types of footpoint
motions. For each case, we tried to answer the following
questions. What is the typical signature of the generated
wave? Is wave energy being accumulated in the loop or
does it leak away? What does the wave dynamics look like
fort - 0?

In a first step, we looked at an impulsively driven sausage
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wave as it can be generated, for example, by an exploding
granule at some distance of the loop. As could be expected,
we observed a spherically expanding wave front followed by
a wake. This behavior is typical for waves expanding in two
dimensions. When the wave front hits the loop, part of it
reflects back into the ambient corona, while the rest refracts
into the loop. This situation is analogous to a sideways
impinging fast wave, as it has often been assumed in the
literature. For the case of the sausage wave that we investi-
gated, we found however that only 1% of the incident wave
energy is captured by the loop, while the rest is reemitted
again.

In a following step, we investigated the effect of the same
pulse but now applied at the footpoint (z = 0) of the loop. It
is fascinating to see the completely different behavior from
the previous case. Initially, the wave front expands spher-
ically again but when reaching the loop edge a fast outburst
occurs because of the enhanced Alfvén velocity in the
exterior of the loop. However, it turns out that because of
the continuity imposed at the loop edge, this outburst
returns back into the loop. Combined with the wave front
that remains in the loop, we obtain a typical behavior as it
was first derived by Pekeris (1948) for ocean waves and later
used in the context of sausage waves by Roberts, Edwin, &
Benz (1984). The reentry outbursting wave fronts form what
has been called the periodic phase, while the wave front that
propagates straight up followed by multiple reflections
forms the quasi-periodic phase. Finally the Airy phase cor-
responds to the final decay. We think that our explanation
of the formation of this typical behavior in terms of propa-
gating wave fronts is complementary to the explanation
given by Roberts, Edwin, & Benz (1984) in terms of the
group velocity. Since we drive from within the loop, and a
part of the perturbation that escapes from the loop reenters
somewhat later, it should be no surprise that 94% of the
energy is indeed permanently captured by the loop.

Finally, we considered a harmonic driving at the loop’s
footpoint with a single frequency w,. As the generated wave
pattern was rather complicated, we discussed the time evol-
ution in three stages. In the initial stage, i.e., before the
perturbation reaches the other side, we observed that the
wavelength of the generated wave is initially larger than
expected (2m/w,v,) but later decreases down to zero. We
were able to explain this behavior by making the analogy
with what we learned from the pulsewise driving. In the
following stage, we demonstrated, that as long as the har-
monic footpoint driving goes on, interference of the driving
frequency with the eigenfrequencies, causes a beat modula-
tion in the excitation of the eigenmodes: energy is first

FOOTPOINT-DRIVEN CORONAL SAUSAGE WAVE 411

absorbed and later reemitted. If the driving frequency coin-
cides with a specific eigenfrequency, then the amplitude of
the corresponding eigenmode grows linearly. In a last stage
we looked at the resulting excitation when the driving foot-
point motion has died out. Each eigenmode oscillates now
with its own eigenfrequency, and its amplitude is deter-
mined by the phase it had in the beat cycle when the driving
stopped. The largest excitation occurs for those eigenmodes
whose eigenfrequency lies less than a distance Aw = 7/27,
from the driving frequency. These modes have been absorb-
ing energy during the whole lifetime of the footpoint
motion. The fraction of the energy that is permanently cap-
tured by the loop is determined by the number of body
modes within this interval. Consequently, driving the loop’s
feet with a frequency below the eigenfrequency of the lowest
body mode results in a persisting outflow of energy into the
coronal environment.

In this context, it is important to observe that the typical
frequency of the photospheric motions (w; = 0.02 rad s™*;
see Fig. 2.19 in Bray, Loughhead, & Durrant 1984) is much
smaller than the eigenfrequency of the lowest body mode
[wy(g = 1) = 1.124 rad s~ ! for our parameter set] and even
smaller than the frequency of the lowest leaky mode
[w,-1(n = 1) ~ n/t, = 0.13 rad s, where we took d’ — oo
and t, is the Alfvénic transit time from photosphere to
photosphere]. We want to argue, however, that eigen-
frequencies of coronal loops are possibly systematically
overestimated by modeling the photosphere, transition
region, and chromosphere as a boundary plane. Although
this transition from photosphere to corona constitutes only
a few percent of the total loop length, it might well be that
back and forth bouncing waves spend most of their time in
these transition regions because of the drastic decrease in
Alfvén speed there. Taking into account this effect will
strongly increase Alfvénic transit times along the loop and
thus significantly decrease the eigenfrequencies.

Apart from explaining the physics of the coronal sausage
wave, this case study can be a guide when studying oscil-
lations in more realistically modeled coronal loops (e.g., by
including the longitudinal dependence of the Alfvén speed)
that are excited by general footpoint motions. In particular,
since the sausage wave is a member of the fast waves family,
our results can be a reference point for numerical studies of
the “global modes” known in MHD resonant absorption
theory.

The authors want to thank the anonymous referee for
useful suggestions. P. D. B.’s participation was supported
by the Onderzoeksfonds K. U. Leuven, OT/92/8.
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