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ABSTRACT

The Large Angle Spectrometric Coronagraph (LASCO) C1 coronagraph on board the Solar and
Heliospheric Observatory (SOHO) is designed to image the corona from 1.1 to 3.0 Ry. The resolution of
C1 is defined by the size of its CCD pixels, which correspond to 576, and not by the diffraction limit of
the optical system, which may be as small as 3”. The resolution of C1 can be improved using the tech-
nique of “dynamic imaging”—the process of acquiring successive images of the same scene using sub-
pixel displacements of the steerable primary mirror. We developed a technique we call the fractional
pixel restoration (FPR) algorithm that utilizes these observations to construct an image with improved
resolution. Simulations were used to test this algorithm and to explore its limitations. We also applied
the direct co-addition and FPR algorithms to laboratory preflight images of a wire mesh grid. These
results show that the resolution of the C1 coronagraph can be significantly enhanced, even in the pres-
ence of noise and modest differences between successive images. In some cases, the results can even reach

the diffraction limit of the telescope.

Subject headings: instrumentation: miscellaneous — space vehicles — Sun: corona —

techniques: image processing

1. INTRODUCTION

The Solar and Heliospheric Observatory (SOHO),
launched on 1995 December 2, is a scientific spacecraft col-
laboratively developed by ESA and NASA for exploring
solar phenomena. Its primary objectives are to perform
extensive helioseismology studies and to examine the pro-
cesses that drive the heating of the corona and acceleration
of the solar wind. These studies will be accomplished by
collecting and analyzing data obtained from a variety of
instruments on board the satellite. One such instrument is
the Large Angle Spectrometric Coronagraph (LASCO),
designed to observe the solar corona from 1.1 to 32 Rg
(Brueckner et al. 1995). LASCO contains three individual
coronagraphs, C1, C2, and C3, which produce overlapping
views of the corona. The highest spatial resolution will be
achieved with the C1 coronagraph, which will produce
images of the inner corona from 1.1 to 3.0 R,. These data
will provide a close link to the disk observations of other
instruments in the SOHO complement.

C1, which is described in detail in Brueckner et al. (1995),
is a mirror coronagraph unlike the conventional externally
occulted coronagraphs flown earlier on OSO-7, Skylab,
P78-1 (SOLWIND coronagraph), or SMM. This design
was chosen in order to view (unvignetted by an external
occulter) as close to the solar limb as possible. Figure 1
shows a conceptual diagram of the C1 coronagraph. Light
entering the aperture A0 is imaged by the objective mirror
M1 on the annular field mirror M2. The central circular
hole in M2 acts as an occulter for the solar disk. The
remaining optical path is comprised of a collimating mirror
M3; a Lyot stop Al; a Fabry-Perot filter for obtaining line

observations in Fe x, Fe x1v, Ca xv, and Hea, as well as
white-light images; and a telephoto lens.

The images are recorded using a Tektronix CCD detector
containing 1024 x 1024 pixels, each of which is 21 um or
576 on a side. Even though the diffraction limit of the C1
telescope is =~ 3", the nominal resolution of the C1 corona-
graph is limited by the angular size corresponding to 2
CCD pixels or ~11”. This results in images that are under-
sampled by a factor of approximately 4, since according to
the Nyquist criterion, a pixel size of 1?5 or smaller is needed
to obtain diffraction-limited observations. This limitation is
the result of a compromise between the desired field of view
and the size of available CCD detectors. Improved
resolution of C1 would be helpful in studying the spatial
characteristics of the fine structures in the lower corona and
their evolution.

The resolution of C1 may be improved using a technique
called “dynamic imaging ”—a process of acquiring and co-
adding multiple images of an identical scene separated by
fractions of a pixel. Dynamic imaging with the C1 chrono-
graph will be carried out by taking a series of images
separated by a fraction of a CCD pixel. These fractional
pixel steps will be introduced by moving the steerable
primary mirror M1 (see Fig. 1). The mirror’s orthogonal tip,
tilt, and fore-and-aft motions are driven by low-voltage
piezo-electric transducers. Typically, subpixel displace-
ments of one-half pixel will be used to produce four inde-
pendent images, and occasionally one-fourth pixel steps
may be used to acquire 16 observations. This is based on
the assumption that a given scene will remain relatively
stationary over the entire exposure and readout period for 4
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F1G. 1.—Conceptual diagram of the LASCO C1 coronagraph. The M1 objective mirror can be tilted at controlled subpixel angles in the two orthogonal

axes of the CCD to acquire a dynamic imaging sequence of observations.

images (approximately 10 minutes). In order to obtain 16
images, both the individual exposure and readout intervals
must be minimized to overcome the expected changes in the
scene from the evolution of coronal structures. Dynamic
imaging will be implemented in a limited number of the C1
observations and is not the default mode of operation.

In this paper, we present various methods for enhancing
the spatial resolution of C1 observations using dynamic
imaging. We provide an overview of co-addition techniques
and describe a method that we have developed for enhanc-
ing the resolution of LASCO C1 by combining substepped
images. Finally, we discuss the results of applying various
co-addition techniques to sets of simulated and preflight
laboratory observations.

2. METHODS FOR CONSTRUCTING SUBPIXEL ESTIMATES

Various algorithms have been developed to enhance the
resolution of undersampled systems by constructing com-
posite images from observations taken fractions of a pixel
apart (subpixel images). The simplest method is direct co-
addition. In this case, each of the undersampled images are
resampled on a finer grid, aligned with respect to a common
reference, and then added to estimate or reconstruct a sub-
pixel image of the desired scene. The resulting resolution of
these estimates is directly related to the number of co-added
images and the fractional displacement between each. In
most instances, each subpixel estimate contains the same
number of pixels as there are in the entire data set. An
obvious exception is when the input images are acquired
without any fractional displacements. In this case, the final
resolution can only equal that of the observed data.

Even though estimates constructed using direct co-
addition contain more spatial frequency information than
the subpixel images, they are not equivalent to a properly
sampled observation. They represent the desired image
degraded by the subsampling process. Various algorithms
have been developed to deal with this problem as well as
other aspects of undersampled data sets. In general, these
algorithms can be subdivided into two classes depending on
whether the input data are acquired at evenly spaced inter-
vals. In the case of evenly space observations, the data are

normally co-added, and the distortions due to under-
sampling are removed. Restorations based on data acquired
with arbitrary substeps are produced using various
methods for estimating the value at each subpixel position
in the newly formed space. Rigorous treatments of this
general problem and various solutions are presented in Tsai
& Huang (1984), Kim, Bose, & Valenzuela (1990), and Ur &
Gross (1992). A number of other techniques have been
developed and applied to Hubble Space Telescope (HST)
imagery (Dickinson & Fosbury 1995; Hook & Adorf 1995).
The algorithms that are currently being used in HST
research are the Richardson-Lucy co-addition algorithm
(Hook & Lucy 1992), the method of projections on convex
sets (POCS) (Adorf 1995a), and “subpixel dithering ” (Adorf
1995b). In this paper, we describe a method that we devel-
oped for constructing enhanced estimates from multiple
substepped images acquired with the C1 coronagraph. Our
technique, “fractional pixel restorations” (FPR), is similar
to those described by Ur & Gross (1992) and Adorf (1995b).

2.1. Fractional Pixel Restorations

The FPR algorithm is a two-step process. First, the
images are directly co-added and then the known distortion
due to the undersampling, and possibly the distortions
associated with the optics, are removed using a standard
deconvolution technique. The rationale for selecting this
algorithm over others is that the steerable mirror in the C1
telescope was designed so that a sequence of images
separated by multiples of one-fourth pixel (174) intervals
could be acquired of the same scene. This makes it simple to
obtain either four substepped images taken with one-half
pixel displacements or 16 images with one-fourth pixel dis-
placements. This procedure, unlike others, does not require
preprocessing of the data to align or coregister the images,
since the subpixel displacements are known and the space-
craft jitter is nominal.

The basic principles of the FPR algorithm can be
modeled by representing each observation as a function of
the desired result. In order to illustrate this process, we will
consider the one-dimensional case in which two overlap-
ping images are acquired one-half pixel apart. In this case,
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the diffraction-limited observation, f(x), represents the true
object convolved with the point-spread function (PSF) of
the optical system. It is assumed that the spatial frequency
content of f(x) is limited by the PSF and therefore can be
fully described by a discrete waveform sampled at the
Nyquist rate or twice the highest data frequency. The func-
tion f (k) is the discrete representation of f(x) sampled at this
rate. The change of indices indicate that f (k) is valid only for
k=0,..., N. The function f(k) also represents the desired
output of FPR in the case in which the PSF is unknown.
However, if the PSF is known, we would prefer to estimate
the true object itself.

In the one-half pixel case, two independent sets of
samples are acquired at half the Nyquist rate. Each sample
represents the integral of f(x) or the sum of f(k) over the
area defined by a given pixel. The only difference between
the two sequences is that their sampling periods have a
one-half pixel phase difference. The discrete elements in
each of the resulting waveforms are given by

i.(k) =fQk) +f(2k + 1)
and
Lk)=fCk+1)+f2k+2), )

where f(k) is the desired result. There are several schemes
for combining these two functions. The method that we
have chosen, based on a minimum distortion criteria, is as
follows: First, both i,(k) and i,(k) are upsampled by a factor
of 2 without interpolation. This produces two new images
that are represented by the original data elements in i,(k)
and i,(k) separated from their neighbors by single pixels
with values of 0. These upsampled results are then aligned
with respect to a common reference and are added to form
an enhanced representation. The result of this co-addition
procedure is

gk) =fk) +f(k + 1), )

where g(k) is an intermediate result containing 2M samples.
In this case, M is the number of samples in both i,(k) and
i,(k). Equation (2) represents the convolution in the spatial
domain of f (k) with a square two-sample PSF. In the spatial
frequency domain, it represents the multiplication of the
desired spectrum with a shifted sin (w)/w function. This
PSF produces an estimate with a degraded frequency
response and eliminates any information at the highest fre-
quencies because of the fact that sin (w)/w = 0 at — 7 and 7.

Similar models to that given by equation (2) can be
derived for both one-dimensional data containing four
images taken one-fourth pixel apart and two-dimensional
observations. The one-fourth pixel results are represented
by f(k) convolved with a square four-sample PSF. This
intermediate sequence is given by

gk)=fk) +fk+ D) +fk+2)+fk+3) Q)

in the spatial domain and is represented in the spatial fre-
quency domain by the multiplication of the discrete Fourier
transform of f (k) with sin (2w)/w. Multiplying by sin 2w)/w
eliminates any frequency information at w = +n/2 and
+x.

2.2. Two-dimensional Reconstructions

Direct co-addition of evenly spaced two-dimensional
data is performed by applying the one-dimensional models
described above to a two-dimensional array. In the two-
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dimensional case, each column is upsampled followed by
each newly formed row. The upsampled images are aligned
with respect to both x and y and are then added to form a
fractional pixel result. These results, as in the one-
dimensional cases, are also represented by the convolution
of the desired image, f(x, y), with a blurring function,
h(x, y), whose coefficients are given by the outer product
between two one-dimensional PSFs. In our simulations we
have assumed that an equal number of samples are acquired
in both the x- and y-directions. For example, in the one-half
pixel cases, four images are obtained by offsetting the input
by (0, 0), (0, 3), (3, 0) and (3, %) pixels in x and y, respectlvely
The corresponding two-dimensional PSF for this case is
then given by the outer product of the PSF described by
equation (2) with itself. Even though we have chosen to use
a symmetric sampling procedure, this does not preclude the
possibility of constructing an estimate with different x and y
spacings. As an example, one could acquire eight images
that are separated by one-fourth pixel in the x-direction and
one-half pixel in the y-direction. The resulting PSF would
then be represented by the outer product of a one-
dimensional one-fourth pixel PSF with a one-half pixel
blurring function.

In the above analysis, it has been assumed that the
observed scene is stationary during multiple exposures, that
the fractional pixel shifts are exact, and that the data collec-
tion environment is noiseless. Any deviations from these
conditions will result in less than optimal restorations.
Errors will be introduced by detector noise, any mis-
positioning of the mirror, satellite jitter, changes in the posi-
tion and intensities of the scene, and nonuniformities in the
pixels. The stationary effects associated with these pheno-
mena, such as the average variation in quantum efficiency
across a pixel, can be incorporated into the linear models
described above, whereas the nonstationary processes must
be analyzed on a pixel-by-pixel basis or treated like signal-
dependent noise sources.

Each of the estimates described above is degraded by the
subsampling process. These degraded observations can in
general be represented by

g(x, y) = h(x, y) * f(x, y) , @

where h(x, y) is once again the subsampling system function
and = is the convolution operator. Standard deconvolution
techniques can be used to minimize these effects. This
approach is outlined in the block diagram shown in Figure
2. The deconvolution technique that we have adopted is the
Richardson-Lucy (RL) algorithm (Richardson 1972; Lucy
1974). The RL algorithm is a nonlinear technique that pro-
duces positively constrained estimates, which have
maximum likelihood given that the noise statistics are
Poisson. Each new RL estimate is described by

d(i)
gae’
where d(i) is the data, §(i) is an estimate of g(i), n + 1 and n
denote the present and previous estimates, and the sum
represents a convolution. In essence, each new estimate is
simply a weighted version of the last set of values. We have
chosen to adopt this approach based on the superior per-
formance of the RL algorithm and the assumption that the
noise associated with the LASCO C1 data is dominated by
photon statistics.

f(k)"+ 1

= (k)”;oh(i — k) ©)
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F1G. 2—Block diagram of the fractional pixel restoration algorithm.
The two samples, i,(k) and i,(k), are upsampled, aligned, and added to form
the intermediate result, g(k). Any distortions introduced by the sampling
process or PSF are removed using the RL algorithm. The same approach
can be applied to one-dimensional samples taken one-fourth pixel apart or
two-dimensional images.

Deconvolution can be used to minimize not only the
effects of subsampling but also those associated with a
known PSF. Both sets of distortion terms can be dealt with
simultaneously by replacing h(x, y) in equation (4) with a
composite function given by the convolution of h(x, y) with
the optical PSF. The extent to which this technique will
improve the resolution depends on how well the optical
PSF can be described in the newly formed frequency space.
Little or no benefit will come from a PSF that is inade-
quately sampled. This may be the case for one-half pixel C1
data. However, using a PSF will most likely improve the
data taken at one-fourth pixel steps.

3. SIMULATIONS

We performed extensive simulations to assess the per-
formance of the FPR algorithm on two-dimensional data.
Each of these simulations was implemented using geometric
patterns to emulate the fine structure of the corona and a
Gaussian model to mimic the PSF of the telescope. Initially,
a simple geometric test image was used to validate the algo-
rithm. The same image was then used to explore the effects
of noise, non—equally spaced substeps, scene motion, and
changes in scene intensity. Finally, we applied the FPR
algorithm to a test object that was developed based on a
simplified model of the C1 CCD and an average model of
the corona.

The first set of simulations demonstrates the ability of the
FPR algorithm to construct subpixel estimates from data

SOLAR CORONAGRAPH OBSERVATIONS 1061

sampled at a rate similar to that set by the LASCO C1
CCD. In this case, it was assumed that the CCD under-
samples the diffraction limit of C1 by a factor of 4. Simu-
lated observations were constructed based on the test
pattern shown in Figure 3a. This image contains 256 x 256
pixels and represents a scene sampled at 4 times the
resolution of the CCD. Initially, a diffraction-limited view
was formed by convolving this test image with a two-
dimensional Gaussian PSF (full width half-maximum of 2
pixels) to mimic the effects of the C1 optics. Each obser-
vation was then constructed by shifting the diffraction-
limited result by an integer number of pixels in both the x-
and y-directions and subsampling it by a factor of 4. Shift-
ing the input image by 1 pixel produced a shift of one-fourth
pixel in the observations. Four observations separated by
one-half pixel were generated by moving the diffraction-
limited image by either (0, 0), (0, 2), (2, 0), and (2, 2) pixels in
the x- and y-directions. A similar set of 16 observations
separated by one-fourth pixel intervals was formed by shift-
ing the input to each of the 16 possible locations and down-
sampling the results. Figure 3b shows the diffraction-limited
input, and the image in Figure 3¢ represents a typical under-
sampled observation.

The FPR algorithm was applied to these undersampled
observations to form subpixel estimates of the original
scene. The one-half pixel observations were directly co-
added by upsampling the images by a factor of 2, aligning
each of them with respect to one another and adding them
to form a composite image. In the one-fourth pixel case, the
16 images were upsampled by a factor of 4, shifted back to
their original positions, and added. The result of co-adding
four images is shown in Figure 3d. The final subpixel esti-
mates were then formed by applying 25 iterations of the RL
algorithm to the co-added images. The PSFs used by the
RL algorithm were generated based on the known distor-
tion due to sampling and, in some cases, an estimate of the
optical PSF. Three sample restorations are illustrated in
Figure 4. Figure 4a shows the diffraction-limited obser-
vation and is provided as a reference. Figure 4b is a typical
one-half pixel restoration constructed using four images,
and Figure 4c is a one-fourth pixel restoration using 16
images. The example in Figure 4d is also a one-fourth pixel
estimate constructed using both the distortion due to sam-
pling and an estimate of the optical PSF. In this case, the
optical PSF was represented by the original two-
dimensional Gaussian plus 10% noise (Gaussian). The
expanded view in the center of Figure 4 illustrates the extent
to which each approach was able to reconstruct the
diffraction-limited observation. It demonstrates that the
one-half pixel restoration technique improves the
resolution, but it is unable to represent adequately the true
object. This is not unexpected since the resulting sampling
rate is still one-half that of the desired rate. The two one-
fourth pixel restorations show that one can not only
approach the optical diffraction limit but with some prior
knowledge of the PSF can, in a noiseless environment,
exceed it.

Figure 5 represents a set of slices taken through the
pointlike objects (impulses) shown in Figure 4. Figure 5a
describes the Gaussian-like profile of the diffraction-limited
data, and Figures 5b, 5c, and 5d are the corresponding slices
for each of the three estimates. Each of the estimates shown
in this figure was scaled so that they contained the same
number of counts as the diffraction-limited object. These
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Fic. 3—Two-dimensional simulated data and the results of direct co-addition. (a) Simulated test image. (b) Diffraction-limited observation described by
the convolution of (a) with a two-dimensional Gaussian PSF. (c) Typical undersampled observation. (d) Restoration formed by directly co-adding four

observations taken one-half pixel apart.

plots demonstrate that the one-half pixel estimate produces
a nonsymmetric result, while the two one-fourth pixel
estimates are either nearly identical to the diffraction-
limited observation or approach that of the true object, an
impulse.

We also used the same test pattern to assess the effects of
noise and various error conditions encountered during the
data collection process. Figure 6 illustrates the effects of
adding noise. In each case, varying amounts of Poisson or
Gaussian noise were added to the undersampled obser-
vations. The images in the upper row represent one of four
noisy observations used in each of the trials, and those in
the lower row depict the resulting one-half pixel reconstruc-
tions. Poisson noise was introduced by setting the
maximum intensity of each image and then replacing each
of its pixels with a Poisson random variable whose mean
was equal to that of its original intensity. Gaussian data
were generated by simply adding zero-mean Gaussian
random variables with variances equaling some fixed per-
centage of maximum pixel intensity. The percent noise
figures represent the minimum amount of additive noise in
each case. This figure demonstrates that either 1% Poisson
or 1% Gaussian noise has little effect on the fractional pixel
restorations, whereas 10% Poisson or 10% Gaussian noise
degrades the results. The most severe degradations occur
with 10% Gaussian noise. Even though the basic structures
are still visible, the pointlike objects and most of the details
are lost. Some of these simulations overestimate the

expected photon and detector noise but illustrate what
might happen if there were enough random variations in
intensity or motion between successive subpixel images.

Figure 7 illustrates the type of errors that occur due to
imperfectly positioned subpixel images, motion in the scene,
and changes in intensity in the scene over the observing
period. The effects of non—evenly spaced substeps were
explored by shifting the test pattern by an additional
amount in both the x and y-directions and then co-adding
the results as though they were sampled at exactly one-half
pixel intervals. Only one-eighth of the original test image
was used because of the amount of memory needed to
perform the additional shift operations. Small placement
errors on the order of 5% produced almost no visible differ-
ences, while 20% placement errors (Fig. 7b) produce notice-
able distortions. In the restoration shown in Figure 7b, the
pointlike objects are elongated and the rays not only start
to collapse but also exhibit a hashed pattern.

Figure 7c demonstrates the effects due to image motion.
This restoration was constructed using two subsampled
observations formed from the standard test pattern and a
second set based on the same image shifted by a fixed
amount in the x-direction. The estimate shown in Figure 7¢
represents the results of moving the test pattern by one-half
pixel. Small shifts on the order of one-eighth pixel seemed to
have no noticeable effects on the reconstruction process,
whereas larger shifts blurred the restoration in the direction
of predefined motion.
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FIG. 4—Two-dimensional fractional pixel restorations. (a) Diffraction-limited object. (b) Typical one-half pixel restoration derived from four observations
and the known distortion due to sampling. (c) One-fourth pixel restoration based on 16 observations and the sampling PSF. (d) One-fourth pixel restoration
formed by deconvolving the distortions due to sampling and an estimate of the optical PSF.

Two pairs of observations were also used to study the
effects of changes in intensity. The first pair was generated
using the standard test pattern, and the second was formed
by dividing each pixel value by a fixed constant. The recon-
structions shown in Figure 7d were generated using a differ-
ence in intensity of 50%. Changes in intensity have little
effect on the pointlike objects but decrease the amount of
modulation between the rays and introduce significant
variations in some of the larger structures.

Finally, we developed a more realistic set of simulations
in order to estimate the FPR algorithm’s ability to detect
fine structures in the presence of an average corona, instru-
mental stray light, and detector noise. This was accom-
plished using an analytical function to describe the average
background corona and both Poisson and Gaussian
random variables to represent the known noise sources. The
test pattern shown in Figure 8a (Plate 11) was constructed
using a radially symmetric function, whose intensity
decreased as r~ 35, to represent both the average back-
ground corona and the instrumental stray light intensity.
Based on preflight laboratory measurements, the stray light
component is roughly comparable in brightness and radial
decrease to the average background corona. Therefore, for
simplicity, we parameterize them similarly. Seven equally

spaced pairs of rays were used to depict the structures of
interest. The simulated corona at 1.1 Ry was assigned a
value of 100,000 counts or 60% of the estimated detector
full-well capacity, and each pair of lines, which decreased in
intensity radially as a function of r 2, were set to 1, 2, 5, 10,
20, 50, and 100% of this maximum. Four simulated obser-
vations were then constructed by subsampling this image
and adding the appropriate amount of both Poisson and
Gaussian noise. Poisson random variables based on the
intensity of each pixel were used to represent photon noise,
and Gaussian random variables with ¢ = 200 counts were
added to describe the noise due to the electronics, dark
current, and stray light variations. Finally, these sub-
sampled images were quantized to 16 bits, co-added, and
deconvolved. A typical observation is shown in Figure 8b,
and the resulting restoration is shown in Figures 8c. Figure
8d represents a difference image constructed by subtracting
the known corona from the reconstructed image. It demon-
strates that fine structures with intensities below 2% of the
average corona will most likely go undetected and that in
order to perform any rigorous analysis, the contrast should
excess 10%. This conclusion is valid only in the inner
regions of the corona or in regions in which the number of
observed photoelectric events is near the full-well capacity
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8

Fi1G. 8—Simulated C1 corona observations. (a) Original diffraction-limited image of an average corona plus seven equally spaced pairs of spokes with
maximum intensities of 1, 2, 5, 10, 20, and 100% of the corona at 1.1 R,. (b) Typical simulated C1 observation generated by subsampling (a) and adding both
Poisson and Gaussian noise. (c) Restoration based on four observations separated by one-half pixel. (d) Difference image of (c) minus the average corona. This
difference image was reversed for display purposes. The dark line along the edge of the corona illustrates that the restoration algorithm is unable to fully
recover all the high frequency information along the steep edge of the mask.

ZAcCHEO et al. (see 471, 1063)
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FiG. 5—Slices through the two-dimensional fractional pixel restorations. (a) Diffraction-limited object. (b) Typical one-half pixel restoration. (c) One-
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varying amounts of either Poisson or Gaussian noise. The lower set of images describes the corresponding reconstructions. The Poisson data were generated
based on images with maximum intensities of either 10,000 or 100 photons, respectively. The Gaussian data were formed by adding Gaussian random
variables with a fixed standard deviation equaling either 1% or 10% of the maximum pixel values.
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Fic. 7—Effects of substepping errors, object motion and changes in intensity on one-half pixel imaging. (a) Reference image constructed using four
observations separated by exactly one-half pixel. (b) Resulting reconstruction formed from four observations with 20% placement error. (c) Restoration based
on observations with one-half pixel of motion in the x-direction. (d) Results of a 50% change in intensity over the observing period.

of the CCD. Similar simulations predict that the contrast
ratio between the fine structures and the average back-
ground must be significantly higher in order to detect these
features in the outer corona (e.g, close to 3.0 Ry,), where the
pixel intensities are expected to be on the order of several
thousand counts.

4. APPLICATION TO LABORATORY OBSERVATIONS

A set of four dynamic C1 images was obtained during
laboratory tests conducted in early 1993. These images were
acquired by moving the M1 mirror of the flight instrument
(see Fig. 1). A CCD detector with 25 um pixels was used
instead of the flight CCD, whose pixels are 21 ym on a side.
The target was a fine wire mesh grid placed in front of a
piece of graph paper (which is noticeably out of focus in the
images). We used the FPR algorithm to improve the spatial
resolution of these laboratory images. These results are
shown in Figure 9 (Plate 12), which contains three
256 x 256 sections of the complete 1024 x 1024 images.
The upper rght-hand corner of each image shows a portion
of the circular hole in the M2 mirror. The wire grid is well
focused, while the out-of-focus graph paper can be seen in
squares of around half the size of the image dimension.
Figure 9a shows one of the four original dynamic imaging

the direct co-addition result (Fig. 9b) and the FPR estimate
(Fig. 9¢). The final panel shows a magnified view of identical
subsections of these three images.

While there is an improvement seen between the original
image and the directly co-added image, it is clear that the
FPR image contains more spatial information. Both the
apparent wire width and the nodes where wires cross are
better resolved in the FPR image than in the co-added
image.

5. SUMMARY

In this work, we explored various techniques for combin-
ing multiple substepped images and developed a suitable
algorithm (FPR) for use with LASCO C1 data. We describe
the results of numerous tests conducted using various simu-
lated data sets. These simulations not only demonstrate the
feasibility of the FPR algorithm but also illustrate its toler-
ance to known sources of errors and noise. They show that
the resolution of the C1 coronagraph can be enhanced, even
in the presence of significant noise and modest errors, and
provide an estimate of the amount of contrast required to
detect fine solar structures. The spatial resolution of the C1
coronagraph can be increased by almost a factor of 2 using
four one-half pixel substepped images and under special
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.—Laboratory LASCO C1 dynamic imaging observations of a fine wire mesh
co-adding the four original images. (c) The FPR estimate. The final image in the lower right-contains magnified views of identical subsections from the three
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previous images.
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C1 optics. Finally, we tested the FPR algorithm using pre-
flight laboratory images of a fine wire mesh grid. These
results show that the FPR algorithm, applied to actual data,
produces images with enhanced resolution that are superior
to the original data and to the directly co-added results.

The SOHO satellite is presently in its operational orbit
around the L1 Lagrangian point between the Sun and
Earth. In the coming months, the LASCO C1 coronagraph
will perform an observational program that should include
dynamic imaging sequences to observe the fine structures of
the inner corona. These images will yield new information
for determining, for example, the characteristic spatial
scales of the small structure in coronal holes and streamers,

the filling factors, and the morphology of various structures
as a function of their height above the limb.

This project is supported by a grant from the Naval
Research Laboratory to the Harvard-Smithsonian Center
for Astrophysics. M. K. is a member of the AXAF Science
Center and is partially supported by NASA, contract NAS
8-39073. J. W. C, R. A. H, G. E. B, and C. M. K. are
supported by NASA and by the Office of Naval Research.
M. K. and T. S. Z. would like to thank Hans-Martin Adorf
and Robert Fosbury of the Space Telescope—European
Coordinating Facility for their lists of references on sub-
pixel restoration techniques.

REFERENCES

Adorf, H.-M. 1995a, ST-ECF Newsletter, 22, 17

. 1995b, ST-ECF Newsletter, 23, 19

Brueckner, G. E,, et al. 1995, Sol. Phys., 162, 357

Dickinson, M., & Fosbury, B. 1995, ST-ECF Newsletter, 22, 14

Hook, R., & Adorf, H.-M. 1995, in Calibrating Hubble Space Telescope:
Post Servicing Mission, ed. A. Koratkar & C. Leitherer (Baltimore:
Space Telescope Science Institute), 341

Hook, R., & Lucy, L. B. 1992, ST-ECF Newsletter, 17, 10

Kim, S. P., Bose, N. K., & Valenzuela, H. M. 1990, IEEE Trans. on Acous-
tics, Speech, and Signal Processing, 38(4), 1013

Lucy, L. B. 1974, AJ, 79, 745

Richardson, W. H. 1972, J. Opt. Soc. Am., 62, 55

Tsai, R. Y., & Huang, T. S. 1984, in Advances in Computer Vision and
Image Processing, Vol. 1, ed. T. S. Huang (Greenwich: JAI Press), 317

Ur, H.,, & Gross, D. 1992, CVGIP, 54(2), 181

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...471.1058Z

