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ABSTRACT

We present the results of a study of the scaling properties of solar photospheric motions. We use time
series of Doppler images obtained in good seeing conditions with the San Fernando Observatory 28 cm
vacuum telescope and vacuum spectroheliograph in video spectra—spectroheliograph mode. Sixty line-of-
sight Doppler images of an area of the quiet Sun near disk center are investigated. They were taken at

60 s intervals over a 1 hr time span at ~2" resolution.

After filtering to remove 5 minute acoustic oscillations, the time-spatial spectrum of the velocity is
calculated. To study the turbulence of photospheric flows in the mesogranulation scale range, we esti-
mate two scaling parameters in the spectrum: the exponent of the spatial part of the power spectrum
and the exponent governing the scaling of time correlations of each spatial mode. These parameters
characterize the type of diffusion involved and the fractal dimension of the diffusion front. Our results
indicate that the turbulent diffusion produced by motions in this scale range is not normal diffusion but

superdiffusion.

Subject headings: convection — diffusion — methods: data analysis — Sun: interior

1. INTRODUCTION

It is generally agreed that the motions observed on the
solar surface have a convective nature. Intensive studies of
solar velocity spectra have been conducted in the past in
order to identify characteristic structures in the solar con-
vection, such as granules, mesogranules, and supergranules
(Leighton, Noyes, & Simon 1962; November et al. 1981).
Knowledge of the underlying continuous velocity spectrum
also is important for the study of basic solar phenomena,
such as turbulent diffusion of magnetic fields or chaotic
excitation of solar oscillations. For these purposes, we need
the spacetime background spectrum, i.e., the distribution of
energy over both scales and time intervals. The basic
problem is that the convection, at least at some scales, is
turbulent because of a very high Reynolds number. The
character of the turbulence in the solar photosphere has not
yet been fully established. However, we can cite the result by
Muller (1989), who obtained the spatial spectrum of the
solar line-of-sight velocity field in the scale range between
granulation and supergranulation and found it to be consis-
tent with the spectrum in Kolmogorov turbulence.

The present paper suggests a simple new tool for the
study the solar turbulence by the use of observed time series
of Doppler images. We present estimates of two key param-
eters of spacetime spectra of the solar velocity field over the
range in which the spectra have power-law form. The first
parameter is the well-known spectral exponent (¢ < 3) of
the spatial correlation function. This measures the range of
the spatial correlation of the velocity field. The second, less
familiar exponent (z > 0) of the time correlation function
for spatial Fourier modes measures the degree to which
structures on larger spatial scales remain correlated longer
than do those on smaller scales. Our investigation is made
especially interesting by the discovery by Avellaneda &
Majda (1992a) that different regions of a two-dimensional
“ua-z diagram ” contain very different kinds of turbulent dif-
fusion. For example, when o < 1 — z (called region I), the
long-range spatial correlation is weak and the normal
Fickian diffusion occurs. On the other hand, when
o >3 —2z (called region III), long-range spatial corre-

lations are very strong. Here the diffusion is independent of
the temporal correlation but it is nonstationary and super-
diffusive, with an effective diffusion coefficient growing lin-
early in time. Region II, with 1 —z<a<3—2z is
intermediate and characterized by superdiffusive but sta-
tionary transport. The special case of Kolmogorov turbu-
lence with « = 5/3 and z = 2/3 lies exactly on the boundary
between regions II and III. Thus, when they are known, the
parameters o and z can be used to characterize the turbu-
lent diffusion of passive contaminants on the Sun and allow
definition of the appropriate diffusivity. This turbulent dif-
fusivity can also be used in the study of the magnetic field
diffusion in the kinematic approximation, i.., when the
back action of the magnetic field on the velocity field is
neglected. In this paper, an area of quiet-Sun network near
the solar disk center is examined. Some preliminary results
of a similar analysis of magnetic images of active regions
can be found in Ruzmaikin et al. (1995).

As we shall see below, our observations are consistent
with the conclusion that the solar velocity field has a power
law from 2 Mm to scales of at least 30 Mm and that it lies in
the a-z diagram near the Kolmogorov point on the bound-
ary between regions II and III. Because it includes two
independent parameters rather than one, this refines and
strengthens the result by Muller (1989). Region I, which
represents the normal, Fickian diffusion, is quite strongly
excluded. Confirmation of such a result would have impor-
tant implications for the evolution of solar surface magnetic
fields over the applicable range of scales. It might also
clarify why previous estimates of the magnetic turbulent
diffusivity are so different

The paper is organized as follows. In § 2, we define the
two spectral exponents of the solar velocity field, « and z,
and estimate their values from the observed series of
Doppler images of the line-of-sight velocity. In § 3, we use
these exponents to examine the nature of solar turbulent
diffusion in the framework of the Avellaneda & Majda
model. Section 4 presents another approach to the diffusion
problem: the observational study of the geometrical proper-
ties of diffusion front. In particular, the fractal dimension of
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a diffusion front is defined by the same two spectral expo-
nents, although here we are dealing directly with the hori-
zontal fluid motions, the relationship of which to the
line-of-sight motions is not precisely known. The relation of
our results to the solar turbulent diffusion problem is dis-
cussed in § 5.

2. SPECTRUM OF THE TURBULENT VELOCITY FIELD

Let a velocity field v(x, t) be a random function of spatial
coordinates and of time—in other words, a turbulent field.
In the solar case, this approach appears to be valid for the
scales smaller than supergranulation (Muller 1989; Chou et
al. 1991). The supergranulation is also considered to be a
random process over time intervals exceeding 15-30 hr
supergranule cell lifetimes (Simon, Title, & Weiss 1995). An
essential property of turbulence is the existence of an iner-
tial range of scales or wavenumbers (k, < k < k;) located
between the basic energy input scale k, ! and the dissipation
scale k; . In this range, the spatial spectrum of the velocity
field is scale independent and therefore has a power-law
form k~* (Monin & Yaglom 1975). Consider the Fourier
modes of the line-of-sight velocity observed on the solar
surface:  o(x, y, t) = | exp (wt — k - r)dv(k, 1), k = (k,, k,).
Then the correlation function corresponding to the power-
law spectrum can be written in the form

(i, ¢ + D)dv*(k, £)> = <u2>(k—’z>_?<l) d’;; ‘Z‘y . ()

where f'is a function [ f(0) = 1] that determines the tempo-
ral correlation properties of a Fourier mode with a given £.
It is assumed that, as in standard turbulence (Monin &
Yaglom 1975; Avellaneda & Majda 1992a), f is a decaying
function and the characteristic time of its decay has a

power-law form
k z
vk = ro<;°) : @

Thus, the exponent z > 0 defines the dependence of decor-
relation times on the spatial scale. In particular, the long-
wavelength modes have longer decorrelation times.

Although scale-frequency studies of Doppler images have
been conducted previously (Title et al. 1989; Chou et al.
1991), the parameter z has not been explicitly determined.
This definition of the time parameter, together with the
attempt to characterize the turbulent transport (as opposite
to simply evaluating the turbulent diffusivity), is the essen-
tial difference between these earlier studies and the present
one. In the previous studies, the characteristic time was
defined to be the correlation lifetime determined by measur-
ing the 1/e width of the temporal autocorrelation function
averaged over space. We will use the exponent z, defining
the correlation time for every Fourier mode (see eq. [2]). As
we shall see in the application to the turbulent diffusion
problem, this characteristic time carries important informa-
tion about the velocity field.

In this work, we analyze 60 Doppler images of the line-of-
sight velocity for a quiet-Sun region near disk center. A
description of the instrumentation can be found in
Chapman & Walton (1989). The observations were made
on 1994 September 14, at 1 minute intervals within 1 hr,
starting at 20:25:00 UT. The images are composed of
470 x 216 pixels at 075 pixel ~'. An interpolation technique
is used to cover a small number of bad records in three of

Tc

the images (numbers 10, 45, and 52 in the sequence of
images). A velocity image averaged over two cycles of the 5
minute oscillations is shown in Figure 1.

The images are aligned, and a fourth-order polynomial fit
is used as a detrending technique. Because of the alignment
process, and after eliminating bad pixels at the edges, the
images used have a dimension of 450 x 182 pixels. We
perform a two-plus-one—dimensional fast Fourier transform
(FFT) on image sections of 128 x 128 x 60 pixels, and we
calculate the average energy spectrum from 20 such samples
with random spatial locations. A Hanning spectral window
is used in each case. To eliminate the p-mode oscillations,
we use a subsonic filter, w/k < 7 km s~ ! (Title et al. 1989;
Chou et al. 1991). Then we calculate the energy spectrum as
a function of w and k. The energy spectrum of the velocity
fields (Fig. 2) is defined from equation (2) as

E(k)d*k = fk(dv(k, t + t)dv¥(k, t)ydt , (3)

where v(k, t) is the spatial FFT of the velocity, and the
integral is taken over the whole 60 minute time interval. The
exponent « is found by the fitting to E(k) oc k™% in the self-
similar part of the spectrum. An estimate for the decorrela-
tion time exponent z is found by use of the relation

E(k, o = 0) oc k<o(k, 0)*(k, 0) oc k== . )

Note that the spacetime spectrum at w = 0 is indepen-
dent of the form of unknown function f(z/z,). This spectrum
is shown in Figure 3 in our approximation to w = 0. The
lowest frequency we can reach is, of course, 1/(60
minutes) = 1/(3600 s). To check to what extent the spectral
exponents may be sensitive to this low cutoff of the fre-
quency spectrum, we have made the same analysis for 180
Doppler images, also at 1 minute intervals. For this
purpose, we have used a quiet region near the Sun’s disk
center, observed on 1994 September 23. We have found,
within observational uncertainty, values of « and z equiva-
lent to those found for the 60 minute interval.

We estimate that the scaling range in Figures 2 and 3
extends up to the smallest frequency permitted by our
sample sizes. (A feature appears superimposed on the power
spectrum at ~0.75 rad Mm™!, or at scale ~8 Mm;
however, we find it is not statistically significant.) The
parameters found by the linear fits to 15 data points in the
spectra of Figures 2 and 3 in the range 0.19 rad
Mm™! < k < 2.84 rad Mm ™! are

o =176{3838} , z=038{30:3%}.

These values exclude the possibility that we are in region I
(normal diffusion) of the a-z phase diagram, but their uncer-
tainties are large enough that they cannot tell us whether we
are in region II or III (see Fig. 4).

The « and z parameters have been calculated by linear fits
to the plots shown in Figures 2 and 3. The uncertainties in
the spectral data points are derived from averaging the
spectra of 20 128 x 128 x 60 spacetime samples of our full
data set. Individual linear fits are weighted according to
these uncertainties (Bevington & Robinson 1992). The
asymmetric uncertainties given above for a« and z are
derived from the “bootstrap ” resampling scheme (Efron &
Tibshirani 1993), which gives a histogram (distribution
function) for each parameter instead of just one value. Here
we randomly choose a sample of 15 data points from the full
set with replacement, so that some data points may be
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Fi1G. 1.—Doppler image from a series of 1994 September images obtained at San Fernando Observatory
repeated and others omitted. Then the weighted linear fit is 10 ¢ T T T

computed. This procedure is repeated a large number of
times (8192 in the present case). The value given for o or z is
the most frequently occurring value. The upper and lower
uncertainties are chosen to exclude the upper and lower
16% of cases, and therefore they are analogous to the tradi-
tional 1 ¢ uncertainties. The asymmetry of the derived
uncertainties indicates that a small number (~ 1) of possibly
outlying data points are extremely influential in the fits. The
bootstrap procedure gives a kind of hedge against that
possibility. The values of « and z given above are the most
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0.1 1 10 Fic. 4—Diffusion diagram by Avellaneda & Majda (1992a). Region I
k (rad/Mm) corresponds to normal Fickian diffusion. Regions IT and III correspond to
faster diffusion (“superdiffusion”). In region II, the temporal fluctuations
FiG. 2—Spatial spectrum obtained with 60 images. Slope of this spec- are faster than the spatial fluctuations. In region III, the spatial fluctua-
trum is —o«. Wavenumber is measured in rad Mm ~ 1. Power is measured in tions are the most important; this is a region of “frozen-in” turbulence.
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the granulation (0.7-2 Mm) and extends beyond the meso-
granulation (2-11 Mm, with a peak at about 7 Mm). Note
that the natural unit of measuring k in our numerical calcu-
lations is the inverse size of a pixel. We convert this dimen-
sionless k into a wavenumber with the dimension of
“radians per megameter,” as is standard in solar physics.
Our pixel size corresponds to 0751, and 1” subtends 0.72
Mm on the Sun. Thus, the conversion formula from the
dimensionless k to k measured in rad Mm ! has the form:

rad 2rn 1 1 k
Mm N 0751 pixel " 0.72 Mm arcsec ™!

where N x N is the number of pixels in the image. The
energy spectra presented in Figures 2 and 3 are measured in
units of (m s~ *)? (rad Mm %)~ 1.

3. APPLICATION TO SOLAR TURBULENT DIFFUSION

Turbulent diffusion is an important concept in the study
of the transport of scalar quantities, such as temperature,
and vector quantities, such as the large-scale solar magnetic
field. It is a necessary element of the solar dynamo, which is
the driving mechanism of solar activity (Parker 1979). Turb-
ulent diffusion results from the presence of a wide spectrum
of scales of motion. If the advected quantity is passive—i.e.,
does not affect the turbulence—then the character of the
turbulent diffusion is defined by this motion. The advected
quantity is assumed to have a characteristic scale exceeding
the basic scale of turbulence.

It has become customary in solar studies of turbulent
diffusion to use the dependence of the mean square distance
on time in the form {r?) oc Dt, where D is the turbulent
diffusivity assumed to be constant. Although this is true for
the normal, Fickian diffusion, there is no mathematical
proof that shows that this dependence is valid in the turbu-
lent case. Modern studies show that one must be careful
when using the traditional mean square dependence of dis-
tance on time in the turbulent case. Here we discuss the
model by Avellaneda & Majda (1992a), in which the trans-
port of a passive scalar T in a given incompressible turbu-
lent velocity field is considered:

0T (x, 1)
ot

This equation contains the random functions v(x, t). To
reduce it to the regular diffusion equation, we must average
over the turbulent motion. In this reduction, the action of
the random velocity field is parameterized by an effective
diffusivity. By means of a renormalization technique, Avel-
laneda & Majda showed that the mean scalar (T) will
evolve according to an effective diffusion equation if the
coordinates and time are rescaled as x — x/5, t — t/6'/%,
where the scaling factor é is inversely proportional to the
largest scale of the velocity spectrum. The parameter h,
which defines the dependence of the mean square distance
on time {r?)!/2 oc t*, can be derived from the spectral expo-
nents o and z. (In Avellaneda & Majda 1992a, the exponent
€ =1 + ais used instead of «.) In region II, the diffusion law
has the exponent & = 1/(3 — a — z). In region III, the diffu-
sion law has the exponent h = 2/(3 — «).

Thus, these two spectral exponents define the character of
turbulent diffusion. Two basic regimes are identified
depending on values of a and z: h = % (normal diffusion),
and h > } (superdiffusion) (see Fig. 4).

+o(x, )VT =0.
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Figure 4 shows the diffusion diagram by Avellaneda &
Majda (1992a), on which the Kolomogorov point (K) and
the point found from our Doppler images are indicated. The
observational point is close to or on the boundary between
regions II and III. The turbulent diffusion in both regions II
and III is “superdiffusive.” The difference is that region II
corresponds to the statistical regime in which time-
decorrelation effects are dominant, whereas in region III
time-decorrelation effects are negligible (the parameter z
does not come into play). In other words, region III is the
regime of “frozen-in” turbulence in which temporal and
spatial spectra are equivalent (the “ Taylor hypothesis ).

The concept of the superdiffusive turbulent diffusion is
not new in hydrodynamics. Already in 1926, L. Richardson
showed that in a turbulent fluid the mean square distance
between two fluid particles grows as t3'2 (Monin & Yaglom
1975). However, Richardson had interpreted this diffusion
as the ordinary diffusion, r* = D(r)t, with a scale-dependent
turbulent diffusivity D oc r*/3. We can interpret the Avella-
neda & Majda results in the same way by writing the turbu-
lent diffusivity as D(r) = D(r/r,)*>~ *". The Richardson case
corresponds to h = 3/2. The coefficient D, the value of the
turbulent diffusivity at the basic scale r,,, can be calculated
using of the values of the correlation time t, and the charac-
teristic ~ velocity  <v3>'*> at this scale (see
§ 5). A fundamental reason for the “superdiffusivity ” is the
non-Gaussian character of the random walk induced by
turbulence—in particular, the significant probability of
occasional very long steps (Schlesinger, West, & Klafter
1987).

4. LEVEL-SET DIMENSION

The two parameters « and z enter into many aspects of
the transport of quantities advected by the turbulent
motions. One such aspect is the fractal dimension d of turb-
ulent diffusion fronts or material interfaces—in other
words, of surfaces advected by the small-scale motions of
the fluid (Avellaneda & Majda 1992b). In our case, since we
are looking at two-dimensional cuts across the field dis-
tributions, we are interested in advected line elements. In
region I, a Fickian diffusion front in a plane has dimension
d; = 2. In region II and on the boundary between regions II
and III, the fractal dimension of such a line element is given
by dy = (5 — a — 2)/2. In region 111, the fractal dimension is
given by dy; = (5 — «)/2. These are discontinuous by an
amount z/2 across the boundary between regions II and III.
Note that at the Kolmogorov point on the boundary, we
expect dy = 4/3.

Based on our estimated values for « and z, the predicted
diffusion front dimensions in the two cases are dy=
1.43{38:53} and dy = 1.62{30:23}.

By assuming that the values of « and z—determined
directly from line-of-sight motions—apply also to the corre-
sponding horizontal motions (see, however, § 5), we can try
to determine the value of d directly and therefore choose
between regions IT and III. Although the magnetic field is
not a simple scalar contaminant, it is frozen to the high
magnetic Reynolds number solar plasma and in the photo-
sphere should be structured by the plasma motions. We
have estimated the dimension of the interface between areas
with line-of-sight field above and below a critical threshold,
defined as follows. A histogram of the number of pixels in
an image that have a given field value (in, for example, 1 G
bins) shows a Gaussian shape with standard deviation ¢ for
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F1G. 5—Frequency histogram of line-of-sighit magnetic field values, in
1 G bins for a San Fernando Observatory magnetic image made of NOAA
active regions 6850 and 6853 on 1991 October 3 at UT 20:03:30. Spatial
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the distribution wings representing the active region fields.
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weak fields. This Gaussian distribution may represent
image noise, small-scale turbulent fields, or both, with field
strength up to ~3 o. The observed distribution for a San
Fernando Observatory active region image with o = 15 G
is shown in Figure 5. For magnetic fields | B| > 3 o, the
Gaussian shape disappears and is replaced by broad wings
representing the larger scale fields of both polarities. We
define our interface to be comprised of those pixels with at
least one pair of opposite nearest neighbors bracketing the
value B =3 ¢ (or, equivalently, —3 o). The collection of
such pixels comprise what is known as a “level set.” Figure
6 shows both the positive and the negative level sets for the
magnetic image of Figure 5.

In order to increase confidence that the level-set geome-
tries are characteristic of the local nature of the fluid
motions and not characteristic of the sources of the mag-
netic flux, we have examined a range of images. We have
looked at images in which the field polarities are relatively
segregated, as well as those in which they are more mixed.
More importantly, we have studied images both of active
regions and of network fields away from active regions. No
systematic differences have been found. The main effect is
that the network images contain less field and have a lower
signal-to-noise ratio. Their level-set dimensions are there-
fore more widely scattered, though the average value is
stable. This indicates that the level-set geometries are not

300 400

WEST - EAST PX

Fi1G. 6.—Map of the B = +45 G (white) and B = —45 G (black) level sets in a San Fernando Observatory magnetic image made of NOAA active regions
6850 and 6853 on 1991 October 3 at UT 20:03:30. Spatial scale is 0751 pixel ~!; north is up, east is right.
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F1G. 7—Log-log plot of the numbers N(r) of pairs of points in level sets
within a distance r of one another. Slopes represent the fractal dimension
of the set. Squares represent the positive polarity set in Fig. 6 and give
d, = 1.44; circles, which have been shifted up by a factor of 10 for clarity,
represent the negative polarity and gived_ = 1.46.

significantly affected by the distribution of the field sources
or by cancellation between opposite polarities. It is known
that strong fields affect convective motions, and obser-
vations of random walks of magnetic flux elements
(Schrijver & Martin 1995) have given an effective diffusion
coefficient in strong plage of 120 and 280 km? s~ ! in
enhanced network. However, this difference need not char-
acterize the basic geometry of the diffusion. Further study of
the above data (Lawrence & Schrijver 1993) showed that
the random walks were characterized by a fractal dimension
(different from the level-set dimension) that was the same in
both cases.

2.0 T T T T T
1.8} -
Q1.6 -
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1.2 l I I I !
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Fi1G. 8.—Fractal dimension of level sets vs. line-of-sight field level nor-
malized to image noise amplitude. Squares represent the image described
in Figs. 5 and 6. Circles represent a Lockheed—La Palma image of active
region plage made on 1990 June 6 with a spatial scale of 0714 pixel ~*.
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The fractal dimensions of our level sets, including the two
in Figure 6, were computed by a two-point correlation pro-
cedure in which the number of pairs of points of the set
within a distance r of one another scales as N(r) ~ r. Figure
7 shows log-log plots of N(r) versus r for the two level sets of
Figure 6. For the positive level set we find d, = 1.44, and
for the negative level set we find d_ = 1.46. The horizontal
scaling range over which these dimensions are seen to hold
extends over more than a decade from the limit of
resolution up to about 20 Mm, matching the top of the
linear scaling range of the velocity power spectra from
which « and z were determined. In order to test the stability
of the result, we have calculated the dimensions of several
level sets for —6 ¢ < B S + 6 o in some images. The result
is shown in Figure 8 for the San Fernando Observatory
image of Figures 5 and 6 (open squares) and also for a
Lockheed—La Palma magnetogram (open circles). This indi-
cates that for the range 3 ¢ < | B| < 6 o, the fractal dimen-
sions are relatively insensitive to the exact value of the level
chosen. Note that the abscissae are normalized to the noise
level o, which corresponded to different field values in the
two images: 15 G for the San Fernando image, and 40 G for
the Lockheed—La Palma image.

Altogether, we have obtained estimates of 19 level sets
from five San Fernando and two Lockheed—La Palma
active region images, as well as from four San Fernando
quiet-Sun images. The dimensions ranged from d,;, = 1.22
to d,,., = 1.66. The overall mean value was d = 1.43 + 0.02.
The values for network fields away from active regions
showed a much higher scatter. They included both extreme
values and gave a mean d,., = 1.42 + 0.08. These results
lead to the conclusion that we are dealing with plasma
motions near the Kolmogorov point in region II of the
phase diagram. Therefore, it is apparent that observations
of relative motions of fluid markers—such as magnetic field
elements—on the Sun can be valuable in characterizing the
photospheric turbulence.

5. DISCUSSION

We have found estimates for two basic parameters of the
background random velocity field in the wavenumber range
0.19 rad Mm ™! < k < 2.84 rad Mm ™!, which corresponds
to the range of scales from 3 x 103 to 10.6 x 10° km. These
two parameters, « and z, can be used in a number of appli-
cations in which turbulence is present. As an example, we
have evaluated the character of turbulent diffusion of a
large-scale scalar or one-component quantity, such as the
line-of-sight magnetic field. Because of the limited number
of images, however, our spectral estimates have to be
treated as preliminary.

The solar case is more complicated than the ideal model
by Avellaneda & Majda (1992a) in at least three aspects.
First, the model is based on the assumption that the power-
law behavior of the spectrum extends over a very wide
range of scales. (Mathematically, they studied the asymp-
totics of very long inertial intervals at a large time intervals.)
The inertial interval identified in the solar spectrum is finite;
in fact, it is rather short (see Fig. 1). (Some reasons are the
acoustic noise and low resolution at small scales, as well as
the limited field of view.) Thus, any quantitative estimates
we obtained—in particular, the values for the diffusion coef-
ficient (see below)—must be considered as very approx-
imate. However, the conclusion about the superdiffusive
character of turbulent diffusion on the Sun based on the
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estimated values of the spectral parameters is probably
correct because the normal diffusion requires a very small a.

Second, the solar plasma is not an incompressible fluid.
We have already removed one effect of compressibility,
namely the acoustic noise. However, the effect of the density
gradient on the velocity field was not taken into account in
the model by Avellaneda & Majda (1992a, 1992b). In
incompressible flow, the spectral slopes of all components of
the velocity vector are the same, so that characterizing the
diffusion requires only one component of the velocity. The
density gradient in the solar convective zone leads to a
different scale dependence for the vertical and horizontal
components of the velocity. If, in accordance with theoreti-
cal speculations, the ratio of vertical-to-horizontal velocities
is defined by the mass conservation in a stratified convec-
tion, then v,/v, varies from 0.6 for granulation to 0.03 for
supergranulation (Chou et al. 1991). This means that the
spectral slope for the horizontal component is expected to
be even larger than the slope for the vertical component,
found from our Dopplergrams. Thus, our basic conclusion
about the “superdiffusive ” character of the solar turbulent
diffusion is expected to be valid when the effect of the
density gradient is taken into account. Our study of hori-
zontal level-set dimensions also supports this conclusion.

Third, solar turbulence is not hydrodynamic, it is magne-
tohydrodynamic. The large-scale magnetic field is a vector,
and the magnetic force may well affect the turbulent
motions. Thus, formally, we have no right to use passive
scalar transport theory. However, passive scalar diffusion
can be a good first approximation to the diffusion of the
magnetic field (Parker 1979) or, at least, the line-of-sight
component of the solar magnetic field. The back action of
the magnetic field on the velocity requires additional
studies.

The model by Avellaneda & Majda (1992a, 1992b) allows
also the calculation of the turbulent diffusivity D,. For
example, in region II, D, is given by D, = {v3>t,/n(x + z
— 1), where v,, 7, are the characteristic velocity and corre-
lation time at the basic scale of the inertial interval, respec-
tively. Thus, to estimate the value of the turbulent diffusivity
we need to know the characteristic parameters at the basic
scale. In fact, we need to know the basic scale and the value
of velocity at this scale because {v2)1, = rov,. The basic
scale has to be determined independently. Thus, Komm,
Howard, & Harvey (1995), analyzing the motions of mag-
netic elements on the solar surface, have found a character-
istic scale of about 17 Mm, which is less than the
supergranulation size. The velocity amplitude must include
both the vertical and horizontal components, and from our
Dopplergrams we know only the vertical component of the
velocity. At the upper end of the inertial range, the horizon-
tal velocity, which is poorly known, is dominant. For
example, in the study of the turbulent diffusion produced by
supergranulation, Simon et al. (1995) consider horizontal
velocities in the range 0.2-1 km s~ . Using the end of our
inertial interval I, &~ 10* km, which is close to the scale
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found by Komm et al. (1995), and v, = 0.2 km s~ at this
scale, we obtain D, ~ 400 km? s~ 1. This value, of course,
depends on the estimate of the horizontal component of the
velocity.

The known empirical estimates of the solar turbulent dif-
fusivity are uncertain They depend on the methods and the
parameters different authors use and vary between 10? and
103 km? s~ ! (Spruit, Norlund, & Title 1994). For example,
the value of the diffusivity estimated from studies of super-
granulation is about 600 km? s~ ! (Wang & Sheeley 1993;
Simon et al. 1995). The value is found to be 120-250 km?
s~! from the study of motions of magnetic elements
(Schrijver & Martin 1995; Komm et al. 1995). In the latter
paper, t, was estimated as the lifetime of the magnetic ele-
ments. Taking into account the fact that magnetic elements
live longer than the characteristic time of the random
motions would obviously shorten the gap between the dif-
ferent estimates. It is not, however, a goal of the present
paper to give a better estimate of the diffusivity. Instead, we
want to attract attention to the fact that the solar turbulent
diffusion is different from the normal Fickian diffusion. As a
consequence, two quantities have to found from the obser-
vations: the exponent h that defines the behavior of the
mean square distance, and the turbulent diffusivity at the
basic scale. At scales larger than the supergranulation, the
supergranulation itself is random and acts diffusively with
its own turbulent diffusivity. The type of this diffusion
(normal or otherwise) must also be determined by future
studies. All these factors have to be taken into account in
the interpretation of the observations aimed at the study of
turbulent diffusion.

The extension of the observational range is needed, espe-
cially to strengthen our knowledge of the temporal corre-
lations of the line-of-sight and transverse photospheric
velocity fields. A good way to expand the present study
would be the use of space-based observations. The space
measurements avoid the atmospheric distortions intrinsic
to ground-based observations and therefore facilitate
coregistration of images taken over time. In addition, accu-
rate measurement of the temporal correlation exponent z
requires reliable observations of the decorrelation of veloc-
ity features over the longest possible time span. In the case
of ground observations, this time span will be limited by the
duration of intervals of good seeing—typically a few hours
at best. Space-based observations eliminate this restriction.
A unique opportunity is offered by the SOHO-MDI experi-
ment (Scherrer 1995) that will provide a series of line-of-
sight velocity images at 60 s intervals for up to 8 hr, com-
plemented by measurements of the transverse velocity com-
ponents.
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