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ABSTRACT

Slow resonant MHD waves are studied in a compressible plasma with strongly anisotropic viscosity
and thermal conductivity. It is shown that anisotropic viscosity and/or thermal conductivity removes the
slow singularity which is present in the linear ideal MHD equations. Simple analytical solutions to the
linear dissipative MHD equations are obtained which are valid in the dissipative layer and in two
overlap regions to the left and the right of the dissipative layer. Asymptotic analysis of the dissipative
solutions enables us to obtain connection formulae specifying the variations or jumps of the different
wave quantities across the dissipative layer. These connection formulae coincide with those obtained pre-
viously for plasmas with isotropic viscosity and finite electrical conductivity. The thickness of the dissi-
pative layer is inversely proportional to the Reynolds number, in contrast to the case of isotropic
dissipative coefficients, where it is inversely proportional to the cube root of the Reynolds number. The
behavior of the perturbations in the dissipative layer is described in terms of elementary functions of

complex argument.

Subject heading: conduction — MHD — plasmas — Sun: corona — waves

1. INTRODUCTION

Resonances are an intrinsic property of magnetohydro-
dynamic (MHD) waves propagating in inhomogeneous
ideal plasmas. Dissipation (e.g., viscosity, finite electrical
conductivity, and thermal conductivity) removes these reso-
nances. However, in many solar and astrophysical situ-
ations dissipation is weak and the behavior of the resonant
MHD waves deviates from that described by ideal MHD
only in a narrow dissipative layer that embraces the ideal
resonant position. In the dissipative layer the spatial gra-
dients of the wave quantities are very large. This creates the
possibility of strong damping of resonant MHD waves even
in weakly dissipative plasmas. As a matter of fact, the
damping rate of the resonant MHD waves is independent of
the actual values of the dissipative coefficients in the limit of
weak dissipation.

The property that resonant MHD waves are strongly
damped in weakly dissipative plasmas has attracted a lot of
attention in plasma physics and solar physics. Resonant
MHD waves were first studied as a means for the supple-
mentary heating of fusion plasmas (see, e.g., Uberoi 1972;
Tataronis & Grossmann 1973; Grossmann & Tataronis
1973; Chen & Hasegawa 1974a; Hasegawa & Chen 1976).
In the Earth’s magnetosphere resonant MHD wave cou-
pling is believed to establish low-frequency pulsations. In
magnetospheric physics resonant MHD waves were con-
sidered by Lanzerotti et al. (1973), Southwood (1974), Chen
& Hasegawa (1974b, 1974c), Southwood & Hughes (1983),
Inhester (1986), Kivelson & Southwood (1986), Southwood
& Kivelson (1986), and Smith, Goertz, & Grossmann
(1986). Ionson (1978) proposed resonant MHD waves as a
means to heat magnetic loops in the solar corona. After the
original suggestion by Ionson, resonant MHD waves were
extensively studied as a means to heat the solar corona (see,
e.g., Kuperus, Ionson, & Spicer 1981; Ionson 1985; Davila
1987; Hollweg 1990, 1991; Goossens 1991). Recently,
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damping of resonant MHD waves was also suggested as a
possible explanation of the observed loss of power of acous-
tic oscillations in the vicinity of sunspots (see, e.g., Hollweg
1988; Lou 1990; Sakurai, Goossens, & Hollweg 1991b;
Goossens & Poedts 1992; Goossens & Hollweg 1993;
Stenuit, Poedts, & Goossens 1993).

In the present paper we consider the driven problem for
resonant MHD waves. This problem is concerned with an
external source of energy that excites plasma oscillations.
After a transitional time the system attains a steady state in
which all perturbed quantities oscillate with the same fre-
quency w. The driven problem for one-dimensional mag-
netic configurations was studied by Hollweg (1987), Davila
(1987), and Hollweg & Yang (1988, hereafter HY) for planar
geometry, and by Sakurai, Goossens, & Hollweg (1991a,
hereafter SGH) and Goossens, Ruderman, & Hollweg
(1995, hereafter GRH) for cylindrical geometry. The studies
by Hollweg (1987) and HY were based on the ad hoc
assumption that the Eulerian perturbation of total pressure
does not change across the thin dissipative layer which is
present near the ideal resonant position when the dissi-
pative coefficients are small. SGH developed this idea and
introduced the concept of connection formulae. The con-
nection formulae specify the jumps in normal velocity and
Eulerian perturbation of total pressure across the dissi-
pative layer. They enable us to avoid solving the dissipative
MHD equations when studying resonant waves. The dissi-
pative layer can be considered as a surface of discontinuity.
The ideal MHD equations are used to describe the waves to
the left and the right of this surface of discontinuity. The
connection formulae provide the boundary conditions
necessary to connect the ideal solutions at the two sides of
the discontinuity.

When deriving the connection formulae, SGH used a
conservation law obtained in ideal MHD and assumed that
this conservation law, which is essentially a generalization
of Hollweg’s constancy of the Eulerian perturbation of total
pressure, remained valid in dissipative MHD. This conser-
vation law was adopted by SGH ad hoc. GRH gave a
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rigorous mathematical derivation of the conservation law in
dissipative MHD and obtained compact analytical solu-
tions to the dissipative MHD equations that describe the
waves in the dissipative layer.

Most papers on driven resonant MHD waves use iso-
tropic viscosity and/or electrical resistivity. However, the
solar corona is a well-known example of a plasma where
viscosity is strongly anisotropic (see, e.g., Hollweg 1985).
Hollweg (1987) studied resonant MHD waves in an incom-
pressible plasma in the presence of anisotropic viscosity. He
found that anisotropic viscosity only removes the singu-
larity that is present in the ideal solution for resonant MHD
waves that propagate along the equilibrium magnetic field.
Subsequently, HY considered resonant MHD waves in a
compressible plasma with anisotropic viscosity. They
showed that anisotropic viscosity does not remove the
Alfvén singularity. In addition, they found that anisotropic
viscosity only slightly modifies the behavior of the resonant
waves in the vicinity of the Alfvén resonant position for
plasma parameters typical for the solar corona. Ofman,
Davila, & Steinolfson (1994) and Erdélyi & Goossens (1995)
numerically verified this result. HY pointed out that aniso-
tropic viscosity might be important for slow resonant
waves. However, the main emphasis of HY was on a cold
plasma in which slow waves are absent. Therefore, they did
not study the behavior of slow resonant waves in a plasma
with anisotropic viscosity.

The aim of the present paper is to study the behavior of
resonant MHD waves in the vicinity of the slow resonance
in a compressible plasma with anisotropic viscosity. The
most obvious and important question in this context is
whether anisotropic viscosity removes the slow singularity
or not. This is indeed an important question in the context
of solar physics, since the first term in Braginskii’s tensorial
expression for viscosity is at least 5 orders of magnitude
larger than the other terms for typical conditions in the
solar corona. As a result, viscosity in the solar corona is
strongly anisotropic. Estimations based on dimensional
arguments lead us to expect that anisotropic thermal con-
ductivity is of the same importance as anisotropic viscosity
under conditions such as those in the solar corona, and that
all other dissipative mechanisms can be neglected (see, e.g.,
discussion in Ruderman et al. 1996). Therefore, we also take
anisotropic thermal conductivity into account.

The paper is organized as follows. In the next section we
present the set of linear dissipative MHD equations and the
equilibrium state. In § 3 we obtain the solution to the sim-
plified dissipative MHD equations that describe the waves
in the dissipative layer and in the two overlap regions to the
left and the right of the dissipative layer. In § 4 we discuss
our results.

2. GOVERNING EQUATIONS

We consider a collision-dominated infinitely conducting
plasma. Having in mind applications to the solar corona,
we assume that the plasma is strongly magnetized, so that
w;1; > 1, where o, is the ion cyclotron frequency and t, is
the mean free collisional time of the ions. Under this condi-
tion it is a good first approximation to retain only the first
term in Braginskii’s expression for the viscosity tensor 7 (see
Braginskii 1965; Hollweg 1985). As a result we have the
following linear expression for #:

= pb®b—3D[3b- VB ) -V 01, ()
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where p is the density, v = (u, v, w) is the velocity, and B =
(B,, B,, B,) is the magnetic field; v is the kinematic coeffi-
cient of viscosity, and b = B,/B, is the unit vector in the
direction of the equilibrium magnetic field. I is the unit
tensor, and the symbol ® denotes the tensorial product of
vectors. The subscript zero refers to the equilibrium quan-
tities, and a prime denotes an Eulerian perturbation.

In a strongly magnetized plasma thermal conductivity in
the planes perpendicular to the magnetic field lines can be
neglected in comparison with thermal conductivity along
the magnetic field lines. As a result we arrive at the follow-
ing linear expression for the heat flux ¢ (see, e.g., Priest
1982):

qg=—ybb-VT'). 2

Here T is the temperature and j is the coefficient of thermal
conductivity.

From a physical point of view the viscosity tensor (eq.
[1]) is characterized by the property that at any magnetic
surface the viscous stresses are normal to the surface. The
expression in equation (2) means that the heat flux is
directed along the magnetic field.

In what follows we adopt the Cartesian coordinates x, y,
and z. We consider a static one-dimensional equilibrium
state and assume that the equilibrium quantities only
depend on x and that there is no equilibrium flow. For the
sake of mathematical simplicity we consider a unidirec-
tional equilibrium field B, that has y and z components. In
particular, b is constant. Note that v and ¥ can also depend
on x. The equilibrium variables satisfy the condition of
magnetostatics which requires total pressure to be constant,

2

B
Do + 2—; = constant , 3)

where p is the plasma pressure and u is the magnetic per-
meability.

With the aid of equations (1) and (2), the linear equations
of viscous thermal conductive MHD can be written as

ap’ ,, dpo

at+p0V v+udx—0, @)
ov 1 B, dB,
— = _VP +=(B.-V)B +—=-—"2

+|:b(b V) — % V]{pov[sb Vo v)—V-v1}, 5

OB . dB, )
a—t—(Bo V)v—udx —B\V-v, (6)
op' , . dpo _ 2rpw
at+vpoV v+udx—(v D - v>°1T, (7)
pl pl TI
= . 8
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Here P = p + B%/2u is the total (plasma plus magnetic)
pressure, and y is the adiabatic index. As there is not any
equilibrium velocity, we can omit primes when writing the
components of the perturbed velocity. Equation (8) is the
perturbed ideal gas law. The unperturbed ideal gas law
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takes the form

2kg
=—poTo, 9
Do m, Po Lo O
where kg is the Boltzmann constant and m, is the proton
mass.

The present paper focuses on the steady state of driven
MHD waves. In this steady state all the linear wave vari-
ables are proportional to exp (—iwt). As the equilibrium
state only depends on x, we can Fourier-analyze equa-
tions (4)(8), taking all perturbed variables proportional
to exp (ik,y + ik, z). This enables us to rewrite equations

(4)-(®) as

. d
(DP'_Pok'”pl'Fla(Pou):O > (10)
.dpl BO(k.b) ’
wPo"——la—TBx, (11)
Bk - b ib dB ,
WPV, = kP — M B, + ; d_xo B, —ipov(k - b)bQ ,
12)
B, = —By(k - bu , (13)

wB, = By[b(k - v,) — (k * b)v, ] — ib % (Bow) , (14)

, . cdul  .dpe .
wp —vpo[(k vy) — i dx]+m o ix(k - b)*S .

15)

In these equations k = (0, k,, k,) is the wavevector, and
we have introduced the components of the velocity v, =
(0, v, w) and the Eulerian perturbation of the magnetic field
B, = (0, B}, B)) that are parallel to the y-z plane. The quan-
tities @ and S, and the Eulerian perturbation of the total
pressure modified by viscosity, P, are determined by

d
Q=3(k-b)(b-vpl)—k-vp1+id—z, (16)
_ Yo P’ — PoP)
SRS )
P'=P'+”’T°"Q. (18)

The Eulerian perturbation of the total pressure, P, is
related to the Eulerian perturbation of pressure, p’, and to
the Eulerian perturbation of magnetic field, B’, by

B
P'=p’+7°(b-B;,,). (19)
The coefficient y is given by
mp('y — 1)22_C
=2 2 20
2ykg po 20)
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When deriving equation (15) from equation (7), we have
used equations (8) and (9). The set of equations (10)-(19) will
be used in the next section to study the behavior of the
driven slow resonant waves in the vicinity of the ideal reso-
nant position.

3. SOLUTIONS IN THE DISSIPATIVE LAYER

The object of the paper is to determine the behavior of
MHD waves that are driven at a frequency in the ideal slow
continuum. In ideal MHD these driven waves are charac-
terized by singular spatial solutions. The slow resonant
position x, is determined by the condition

0? = 0¥(x,) . 1)

The squares of the Alfvén and slow frequencies are given
by

k - By 2
P ERLAL L) A S S 22)
u Cs + Va

The squares of the Alfvén, sound, and cusp velocities are
determined by

civx
cz+1v3

2
B gt g
Upo Po

In ideal MHD the resonant slow waves are dominated by
density and pressure perturbations, and by the dynamics in
the magnetic surfaces parallel to the magnetic field lines. It
is very likely that this behavior will persist in nonideal
MHD when dissipation is weak. Results from ideal MHD
provide us with a guideline for choosing the wave variables.
It is convenient to introduce the components of v, and B,
that are parallel and perpendicular to the equilibrium mag-
netic field. We denote these components as v, B, and v,
B',, respectively. Indeed, in ideal MHD slow resonant waves
are characterized by singular spatial solutions. The domi-
nant singular behavior resides in p’, p/, vw, and B/, which
have a singularity of the form (x — x.)™" at x, esee, e.g.,
SGH). The variables u and B are also singular, but the
singularity is of the form In|x — x_|. The quantities v, , B,
and the Eulerian perturbation of the total pressure P’ are
continuous at x,.

We eliminate all variables but u and P’ from equations
(10)(15), to obtain a system of two differential equations,

23)

v =

% = % u, (24)

du ioD ,

dx  polci +v3)4
w? — 3ci(k - b)* w?(k * b)?
R~ Uy e L
where
A= —wi, C=o0®—-o0? D=o0*—/(c+v3)k’C.

(26)

In what follows we also use an expression for v, since
this is one of the most singular variables in ideal MHD:
i3 du

kb [(0*—vik* ,
( poff P,+EE_WQ>‘ 27

Il ="
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The nonideal effects in the equations are characterized by
the Reynolds number, Re = w/vk?, and the Peclet number,
Pe = w/yk?. These two numbers measure the importance of
viscosity and thermal conductivity, respectively. As we
assume that both viscosity and thermal conductivity are
small, we have Re > 1 and Pe > 1. Consequently, when cal-
culating Q and S, we can use results obtained on the basis of
ideal MHD. As a result we arrive at the following approx-
imate expressions:

iAd du
Q= [0 — 3}k 1 T 28)

ipowcz A du ipou dc?

§= D dx oy—1 dx’

(29)

Substitution of equations (28) and (29) in equations (25)
and (27) yields

2 4 2y 4
|l:(cs + v3)C D

x {% [w? — 3c2(k - b)*]? + yor*c2(k - b)Z}]l Z—';

ioD B iwy(k - b)* dcg

T poA y—1 ax (30)
o _kb[o?—0ik g,
= poA

w3 vA d
+ {%“ + 2 [* — 3k - b)zj} d—Z]l ET)

In order to study the behavior of the waves in the vicinity
of the ideal slow resonant point x,, we follow GRH and
introduce a new variable s = x — x,. The analysis of equa-
tions (24), (30), and (31) is then restricted to the interval
[—s., s.], where s, is determined by the condition that a
linear Taylor polynomial is a good approximation to the
function w? — w?(x). This leads to the restriction that s, is
much smaller than the characteristic scale of the inhomoge-
neity. The coefficient functions in equations (24), (30), and
(31) are expanded in Taylor series with respect to s, and
only the first nonzero terms are retained in these expan-
sions. As a result we obtain the simplified versions of equa-
tions (24), (30), and (31) that are valid in the vicinity of x,:

dd—lj = — % u, (32

(s 350) % it ©

O L
where

1o (2v§ ;?; 35)2 cs :g vA (36)
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In equations (32)-(34) and (36) all equilibrium quantities
are calculated at x = x,. We have neglected the term pro-
portional to y(dc?/dx)u in equation (33) because of the in-
equality |(dcZ/dx)u| < | c3(du/ds)|. When deriving equation
(34), we have used equations (32) and (33), and neglected
terms proportional to v, x, and s on the right-hand side. The
quantity A is a dissipative coefficient that describes the com-
bined effect of viscosity and thermal conductivity.

In ideal MHD (4 = 0) the system of equations (32) and
(33) possesses a regular singular point at s =0 (x = x,)
because the coefficient of du/ds in equation (33) is equal to
zero there. Dissipation (4 # 0) removes this singularity. Dis-
sipation is only important in a thin dissipative layer which
embraces the slow resonant position x = x,, where the first
and second terms in parentheses on the right-hand side of
equation (33) are of the same order. This results in a dissi-
pative layer with a thickness measured by the quantity d,:

CO4

* = ARG + D)’ D
where the total Reynolds number R is defined as
()
R=—5. (38)

The thickness of the dissipative layer is inversely pro-
portional to R, in contrast to the case of isotropic viscosity,
where the thickness of the dissipative layer is inversely pro-
portional to the cube root of the Reynolds number (see, e.g.,
SGH and GRH).

As has already been stated in the Introduction, aniso-
tropic viscosity does not remove the Alfvénic singularity.
The Alfvénic singularity is only removed by the isotropic
part of Braginskii’s viscosity tensor (see, e.g., HY). Results
by HY, Ofman et al. (1994), and Erdélyi & Goossens (1995)
show that for typical conditions in the solar corona it is
sufficient to retain the isotropic part of Braginskii’s viscosity
tensor when studying resonant Alfvén waves. For typical
coronal conditions the Reynolds number calculated with
the use of the coefficient of isotropic viscosity is of the order
of 1014-10'6 (see, e.g., Ofman et al. 1994; Erdélyi & Goos-
sens 1995). Since the ratio of the wavelength L to the
thickness of the Alfvénic dissipative layer d, is of the order
of the cube root of the Reynolds number, we obtain /L ~
2 x 1075-5 x 107°.

In the case of slow resonant waves the ideal singularity is
removed by viscosity described by the first term of Bragin-
skii’s tensorial expression, so that the Reynolds number has
to be calculated with the use of Braginskii’s first coefficient
of viscosity, 5, = pov. For typical coronal conditions the
Reynolds number related to 7, is of the order of 5 x 10*>-
10* (see, e.g., Hollweg 1985; Ofman et al. 1994; Erdélyi &
Goossens 1995), and the estimate of the thickness of the
slow dissipative layer is §,/L ~ 2 x 10~3-10~*. Hence slow
dissipative layers are much thicker than the Alfvénic dissi-
pative layers (6, > 0,).

In ideal MHD the most singular variables posses a singu-
larity of the form (x — x.) ™! for slow resonant waves and of
the form (x — x,)~ ! for Alfvén resonant waves, where x, is
an Alfvénic resonant position. Therefore, the ratio of the
amplitude of the most singular variables in the dissipative
layer to their amplitude far away from the dissipative layer
is of the order of L/§, for slow resonant waves, and of the
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order of L/d, for Alfvén resonant waves. The direct conse-
quence of the inequality J, > d, is that the amplitudes of
the most singular variables in a slow dissipative layer are
much smaller than the amplitudes of the most singular vari-
ables in an Alfvénic dissipative layer when resonant slow
and Alfvén waves have amplitudes of the same order far
away from the dissipative layers.

The order of the system of ideal equations for u and P’ is
equal to 2. Let us recall the method for obtaining solutions
to the dissipative MHD equations when the dissipative
coefficients were isotropic. Dissipation with isotropic dissi-
pative coefficients increases the order of the system of differ-
ential equations for 4 and P’ from 2 to 6 (see, e.g,, GRH).
The determination of the solution to this system of dissi-
pative equations for the resonant waves in the dissipative
layer requires additional boundary conditions. The pro-
cedure for obtaining these boundary conditions is as
follows: It is assumed that d, < s, so that the simplified
versions of ideal MHD equations are valid for 6, < |s| < s..
This makes it possible to use the method of matched asymp-
totic expansions. In accordance with this method the ideal
solution in the region §, < | s| < s, has to be matched to the
dissipative solution in the region |s| < 6.. The matching
conditions require that the ideal and dissipative solutions
coincide in the intermediate region 6, < |s| <s,. They
provide the additional boundary conditions for the dissi-
pative system of equations for u and P'.

In the case of anisotropic viscosity and thermal conduc-
tivity the mathematical analysis is much simpler. The
system of dissipative equations (32) and (33) for u and P’ has
the same order as its ideal counterpart. Obtaining the solu-
tion to the dissipative system is not more difficult than
solving the ideal system. In particular, no additional bound-
ary conditions are needed in comparison with the ideal
system, and there is no need to use the method of matched
asymptotic expansions. Instead we simply look for the solu-
tion of the dissipative equations (32) and (33) in the whole
region | s| < s.. This enables us to reduce the restriction on
0. in comparison with the case of isotropic dissipative coef-
ficients and assume that 6, < s..

The system of equations (32) and (33) differs from its ideal
counterpart only in that the singular position is shifted from
s =0 to s = —id sign(A). Therefore, we can look for the
solution in the form of a Frobenius series in the same way as

Fi1G. la
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in ideal MHD. The solution to equations (32) and (33) is
obtained by simple substitution of s + id sign(A) for s in the
ideal solution. The result is

P = constant + O(|s + i, |In|s + i, |) , (39)

iw3c: P .
= —-——— i A
u o2 + 0DA In[s + i, sign (A)]
+ constant + O(|s + id,|In|s +i5.|) .  (40)

The approximate constancy of the total pressure modi-
fied by viscosity, P, in the dissipative layer parallels the
approximate constancy of the total pressure, P’, found in
dissipative MHD with isotropic dissipative coefficients (see,
e.g., HY; SGH; GRH). Equation (34) shows that dissipation
removes the singularity in v, present in ideal MHD.
However, v, is very large for weak dissipation (R > 1). The
perpendicular component of v, v, , is nonsingular in ideal
MHD. With the use of equations (10)<15) we can express v,
in terms of P’. With the use of this expression and equations
(34) and (40), we obtain estimates valid in a slow dissipative
layer:

vy o ROy
u IR’ v, R. “41)

These estimates show that in the case of weak dissipation
the dominant dynamics in a slow dissipative layer resides in
motions that are in magnetic surfaces and parallel to the
equilibrium magnetic field.

The quantity P, which is constant in the dissipative layer,
is determined by matching it to the ideal solution far away
from the dissipative layer. In order to plot u and v as
functions of o, we assume that P’ is real. The quantity u is
given up to an arbitrary additive constant, which is once
again determined by matching conditions. Here we choose
this constant so that u = 0 at ¢ = 0. The real and imaginary
parts of u/U and v /V versus ¢ are shown in Figures 1 and
2, where the quantities U and V are given by

o3P wci(b - k)P

= , v=—25C"0" 4
po VAR + oD A poon@ + oA

Note the similarity of the graphs shown in Figures 1 and
2 to the graphs of the real and imaginary parts of functions

FiG. 1b

F1G. 1—a)Re (4/U) and (b) sign (A) Im (u/U) are shown
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iG(r) and —iF(z) that describe the behavior of u and v in
dissipative layers in plasmas with isotropic resistivity (see,
e.g., GRH).

Let us now find the connection formulae that determine
the jumps in P’ and u across the dissipative layer. In order
to do this, we assume that J, < s, and introduce a new
dimensionless variable ¢ = s/d,, where 6 ~ 1 in the dissi-
pative layer, and s —» +s, correspond to ¢ - +oo. The
jump in a function f(o) across the dissipative layer is defined
as

[f1=lim {f(o) —f(—0)} . 43)

From equations (39) and (40) we obtain

[P]1=0, 44)

_ no’G P
PovA(cE + vR)|Al

The right-hand side of equation (45) is evaluated at x =
X.. When deriving equation (44), we use the fact that
lim, |-, P = P. The connection formula (44) coincides
Witil that obtained in nonthermal conductive MHD with
isotropic electrical conductivity, and the connection
formula (45) only differs from its counterpart in that P’ is
replaced by P (see, e.g., SGH). This supports the statement
that the connection formulae are independent of the dissi-
pative processes taken into account.

The connection formulae enable us to avoid solving the
dissipative MHD equations when studying resonant MHD
waves. We consider the dissipative layer as a surface of
discontinuity. We use linear ideal MHD to describe the
behavior of resonant MHD waves to the left and right of
this surface of discontinuity. The connection formulae are
used as boundary conditions at the surface of discontinuity.

Let us now clarify a result obtained by Hollweg (1987).
This author showed that in an incompressible plasma
anisotropic viscosity only removes the ideal singularity for
waves that propagate along the equilibrium magnetic field.
For waves that propagate obliquely to the equilibrium
magnetic field, anisotropic viscosity removes the singularity
in the component of the velocity parallel to the equilibrium
magnetic field, v, and does not remove the singularity in
the component of the velocity perpendicular to both the
equilibrium magnetic field and the direction of inhomoge-
neity, v,. The singularity that is present in the linear ideal

[u] = 45)

MHD equations for incompressible plasmas is often called
the Alfvén singularity. However, this name disguises its
physical nature. The approximation of an incompressible
plasma corresponds to the mathematical limit of infinite
sound speed. In this limit the cusp speed is equal to the
Alfvén speed (c; = v,), and the slow and Alfvén singularities
which are present in the linear ideal MHD equations for
compressible plasmas are merged into one singularity in
incompressible plasmas. For waves that propagate along
the equilibrium magnetic field only the slow singularity is
present in the linear ideal MHD equations for compressible
plasmas. Therefore, in the case of a purely longitudinally
propagating wave, the singularity in an incompressible
plasma is the slow singularity. In the case of an obliquely
propagating wave the singularity in an incompressible
plasma is a mixture of the slow and Alfvén singularities. In
a compressible plasma the dominant dynamics resides in
v in the vicinity of the slow resonant point and in v, in
the vicinity of the Alfvén resonant point. Hence, for an
obliquely propagating wave in an incompressible plasma,
v, corresponds to the slow part of the singularity, while v,
corresponds to the Alfvénic part of the singularity. We have
shown in the present paper that anisotropic viscosity
and/or thermal conductivity removes the slow singularity,
and HY showed that anisotropic viscosity does not remove
the Alfvén singularity. In view of these results, the results
obtained by Hollweg (1987) are no longer surprising. Aniso-
tropic viscosity in an incompressible plasma removes the
slow part of the singularity, which resides in v, and does
not remove the Alfvén part of the singularity, which resides
in v,. In the case of longitudinally propagating waves the
singularity is purely slow, and therefore it is completely
removed by anisotropic viscosity.

4. CONCLUSIONS

We have studied the dissipation of driven slow resonant
MHD waves in plasmas by strongly anisotropic viscosity
and thermal conductivity in a planar one-dimensional mag-
netic configuration. We have shown that anisotropic vis-
cosity and/or thermal conductivity removes the slow
singularity from the linear MHD equations. The situation
differs from that in the case of the driven Alfvén waves. As
shown by HY, anisotropic viscosity does not remove the
ideal Alfvén singularity.

We have obtained the complete solution to the dissi-
pative MHD equations in the slow dissipative layer. With
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the use of asymptotic analysis of this solution, we have
calculated the connection formulae that determine the
jumps in the Eulerian perturbation of the total pressure and
in the component of the velocity in the direction of the
inhomogeneity. These formulae are the same as in the case
of inviscid nonthermal conducting plasmas with isotropic
finite electrical conductivity. This result supports the intu-
itive assumption that the connection formulae are indepen-
dent of the type of dissipation as long as it removes the
singularity. However, the behavior of the waves in the dissi-
pative layer and the thickness of the dissipative layer
depend on the nature of the dissipative mechanism. The
mathematical description of the resonant waves in the dissi-
pative layer is much simpler in the case of strongly aniso-
tropic viscosity and thermal conductivity than in the case of
isotropic viscosity and/or finite electrical conductivity. In
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particular, in the first case the behavior of the x component
of the velocity, u, is described in terms of the logarithmic
function of a complex argument, while in the second case it
is described in terms of an integral function related to the
Airy function (see, e.g., GRH). The thickness of the dissi-
pative layer is inversely proportional to the Reynolds
number in the first case, and inversely proportional to the
cube root of the Reynolds number in the second.
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