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ABSTRACT

We derive the metric for a simple class of isothermal inhomogeneous universes in which the nonzero
pressure balances gravity. These models are spherical and static. There exists a family of such models in
which the isothermal universe is a special case. These models may represent the ultimate state of an
Einstein—de Sitter universe that undergoes a phase transition caused by gravitational clustering.

Subject headings: cosmology: theory — galaxies: clusters: general — gravitation —
large-scale structure of the universe — methods: analytical

1. INTRODUCTION

Isothermal structures have a long history in astrophysics
as an equilibrium approximation to more complicated
systems that are close to a dynamically relaxed state. On the
smallest scale, they were applied first to stars (Emden 1907),
and then on increasing scales to globular clusters (Plummer
1911), galactic nuclei (e.g., Saslaw 1985), and clusters of gal-
axies (Zwicky 1957). In this paper we derive a model of an
isothermal sphere consistent with general relativity on the
largest possible scale, the universe itself.

The isothermal cosmological model turns out to have a
remarkably simple metric. In addition to its intrinsic inter-
est, it also has a possible (admittedly long-term) application.
It may represent the asymptotic state of the standard
Einstein—de Sitter (2, = 1, k = 0) cosmological model after
an infinite expansion where a hierarchial distribution of
matter has clustered over the largest scales.

Although gravitational clustering of galaxies occurs in all
expanding Einstein—Friedmann cosmological models, only
in the Einstein—de Sitter model does it grow continuously.
This is because the expansion timescale is essentially the
same as the clustering timescale (e.g., Saslaw 1992). More-
over, there is no contracting phase to destroy the clustering.
Essentially the Einstein—de Sitter model becomes static as
R — o0. As this limit is approached, any local perturbation
will cluster faster than the residual global expansion. This
can lead to the growth of a centrally concentrated global
distribution of matter. The universe would then undergo a
phase transition from a statistically homogeneous state of
translational and rotational symmetry around every point,
to a state of rotational symmetry around one point only,
and translational symmetry nowhere.

Since this phase transition is discontinuous and occurs
only in the limit R — co, we would not expect the isother-
mal model to match continuously onto the Robertson-
Walker metric, and indeed we find that there is no
hypersurface on which this matching holds. Another reason
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for this lack of matching is that at the transition, pressure
becomes cosmologically significant.

Other models for spherical inhomogeneous cosmologies
have been developed (see Kramer et al. 1980), particularly
by Tolman (1934, 1939) and Bondi (1947). These models
generally consist of pressure-free dust and are not static, or
have complicated nonphysical equations of state.

In § 2 we derive the isothermal metric and then discuss its
relation to a more general class of similar models and to the
Robertson-Walker and Tolman-Bondi models. Section 3
discusses its applicability to the final state of a universe in
the static limit as the Hubble parameter H(tf) = R/R — 0.

2. THE ISOTHERMAL UNIVERSE

Isothermal metrics are characterized by a pressure gra-
dient that balances the mutual self-gravity of its constituent
particles (considered here to be idealized point galaxies).
The dispersion of the particles’ peculiar velocities is inde-
pendent of position, with a simple equation of state

p=ap, )

for the pressure p and density p. This is independent of
temperature, and o is a constant satisfying 0 < « < 1. The
resulting configuration neither expands nor contracts, so
the global solution is stationary. In the cosmological case,
we take the particle motions to be nonrelativistic and p to
be the total energy density including the rest mass energy.
Thus we may be guided by the well-known Newtonian solu-
tion (e.g., Chandrasekhar 1939) for which p is finite in the
core but decreases as r~ 2 throughout most of the configu-
ration. The total mass and the extent of the isothermal
sphere are infinite. To obtain the cosmological metric, we
will make the simplifying approximation that p ocr~2
throughout the entire sphere. Although this implies a
formal density singularity at the center, the mass interior to
any radius r, which is the physically important quantity,
remains finite,and M - O0asr — 0.

Unlike the spherical, homogeneous Robertson-Walker
models, which have no center (or equivalently where every
spatial point can be considered to be the center), the isother-
mal model singles out the point with highest density at its
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center. Therefore, we start with the general static, spher-
ically symmetric line element

ds? = e’ dt* — e*dr* — r*(d6* + sin® d¢?) )
where v = v(r) and A = A(r). The Einstein field equations are
R, — 5Rg, = — 82T, , ()

where
To =(p + p)usupy — g and w'u, =1, @

is the usual energy-momentum tensor for a perfect fluid.
From equations (2){4), the field equations take the
general form

Ao 1 _
87tp=?e ‘+r—2(1—e Y, 5
8np = Y et + 1 (e*-1 (6)
r r? ’
” 1 2 1 191 1’ £ 3 A —
v +2v zvl . r+r2(e H=0. (7

The energy density and pressure are measured relative to
the comoving 4-velocity

ut=e V27 . ®)

Substituting the isothermal equation of state and the
density distribution p oc r~2 into the field equations, we
obtain the exact solution

ev = Ar4a/(1 +a) , (9)
4o
=14+ m , (10)

where A is an arbitrary constant, for the metric. The corre-
sponding solutions for the energy density and pressure are

4o 1

= At an

and
gmp 42 1
p_4cx+(1+oc)2r2'

This is a remarkably simple result and is related to the
solutions found by Tolman (1939) and Chandrasekhar
(1972). More complicated isothermal solutions for different
energy density distributions p(r) can also be found, although
they involve integrating Abel equations of the second kind,
which are highly nonlinear. Thus, an isothermal sphere has
a consistent interpretation as a cosmological model.

The spherically symmetric static field equations (5)7)
also have the more general class of exact solutions with o
now an arbitrary positive nonzero constant (so that p/p > 0
asr—0):

12)

e’ = Ar4a/(1 +a) , (13)
et =a(l —c®)t, (14)
87p = # [a—1+ 0+ Der'], (15)
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where
4o
a=1+ m s (17)
2
_2[(1 + a)® + 4o] (18)

T (4 ad +30

and c is the arbitrary constant. These models reduce to the
previous isothermal model in the special case ¢ =0.
However, their equations of state are more complicated
than the isothermal case. They make the important point
that departures from isothermality also lead to self-
consistent static cosmological models. It is interesting to
observe that solutions of the type (13){18) also arise in the
analysis of fluid spheres in spacetime dimensions greater
than 4, which are important in superstring theory and
supergravity (Maharaj & Patel 1996).

The question of the stability of these models now arises,
and we consider several possibilities. First, in an isothermal
sphere of galaxies the pressure gradient adjusts itself to
hydrostatic equilibrium with the gravitational force, and so
any Jeans type of instability caused by local linear pertur-
bations would damp. The critical Jeans length is essentially
the size of the sphere—in this case infinite. If local insta-
bilities were to develop, their nonlinear interactions with
surrounding galaxies would ultimately thermalize. This
could change the value of « in equation (1), but the result
would still be an isothermal sphere. The density distribution
pocr? need not change significantly if the temperature
changes.

Second, consider whether the isothermal models are
stable relative to the more general class of models in equa-
tions (15)-(18). For this more general class of models to be
mechanically stable requires (0p/dp)r > 0 at all radii, r. In
equations (15) and (16) we may eliminate cr® to obtain
poc —p for large r, and therefore these models are not
mechanically stable. In the isothermal limit ¢ — 0, or equiv-
alently 8mapr? — 4a/(1 + «)?, these models become mech-
anically stable everywhere. Therefore, the isothermal
models are the mechanically stable subset of this more
general class.

Third, consider a detailed dynamical instability that has
long been known to apply to an isothermal sphere. This is
its tendency to form a core halo type of structure (reviewed,
e.g., Saslaw 1985). In a finite system such as a globular
cluster containing N stars, the timescale for this density
redistribution is approximately of order N(Gp)~ /2, where p
is the average mass density. In an infinite universe, for any
reasonable value of N, this global timescale is much longer
than the Hubble expansion timescale ~(Gp)~ /2, which
itself becomes infinite for the Einstein—de Sitter universe as
p — 0. (However, smaller clusters of galaxies will tend to
evaporate.) In the central part of the isothermal universe,
galaxies may redistribute energy and alter the density by
forming binaries that exchange energy with their neighbors.
This process is self-limiting for two reasons. First, as the
binaries become smaller and more deeply bound, their effec-
tive interaction cross section with their neighbors decreases.
Second, after the separation of the binary decreases to the
radius of its larger member, the binary merges and ceases to
transfer energy to its neighbors. This creates some very
massive galaxies at the center, perhaps forming black holes.
The resulting departures from an r~2 density profile,
however, would be relatively local.
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Fourth, even though detailed galaxy interactions may
alter the density profile, the result may still belong to the
class of isothermal static solutions, albeit without p oc r~2.
It is reasonable to assume that changes in the density profile
will not change the form of the equation of state of the
universe, p = ap. As mentioned earlier, one can, however,
find an even more general and complicated class of solu-
tions than those given by equations (13) and (14) by solving
the (formidable) nonlinear Abel equations of the second
kind. As long as equation (1) holds, these solutions will
remain in the isothermal class of models.

Fifth, since the particle horizon of the Finstein—de Sitter
universe expands as 3ct (here c is the velocity of light, not to
be confused with ¢ in egs. [14]-[16]), and the universe itself
expands as t2/3, all the galaxies will have been able to inter-
act in the limit ¢t - oo (and p — 0), so new instabilities
cannot enter the horizons.

Sixth, could perturbations in the density or equation of
state cause the type of instability found in the Einstein or
the Lemaitre models? The important point to appreciate is
that in both these other models equilibrium is attained
because the cosmological constant provides a repulsive
force. This equilibrium depends crucially on a constant that
cannot respond to perturbations. This is the cause of their
instability. That is, however, not the case for the isothermal
models we consider here. Because they are in hydrostatic
equilibrium (independent of a global property like the
cosmological constant), any perturbations in density will
produce corresponding changes in pressure so as to main-
tain the equilibrium. Thus, the isothermal models will be
stable in this respect as well.

Since the isothermal equilibrium state forms only asymp-
totically, even if these instabilities were important they
would need an infinite time to develop. However, the stabil-
ity of the isothermal state strengthens the tendency towards
its establishment.

3. DISCUSSION

We have shown that there is a remarkably simple consis-
tent solution of the Einstein field equations that represents a
spherical static isothermal cosmological model in which
pressure is important. We have also found a larger family of
models with different equations of state or density distribu-
tions to which the isothermal model belongs. Thus, changes
in the model’s density or equation of state also give consis-
tent solutions. Isothermal spherically symmetric models can
also be obtained (Dadhich 1996) by considering a metric
that is conformal to a “minimally ” curved spacetime rather
than to flat spacetime.

As our universe expands, higher amplitude structures can
form gravitationally on larger and larger scales. It is inter-
esting to ask what the long-term outcome of this growth
may be. If the universe is closed and recollapses (2, > 1,
k= +1), any large-scale structure will eventually be
destroyed in the big crunch. If the universe is open and
expands forever (Q, < 1, k = —1), it will expand so rapidly
after redshifts z < Q, ! that significantly larger structures
will generally cease to form and the structure at z ~ Q!
will be frozen in (e.g., Saslaw 1992).

The flat universe (Q, = 1, k = 0), which has zero total
energy and reaches R — oo asymptotically with R = 0, is
the most interesting in this regard. Its gravitational clus-
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tering can continue forever. The largest linear perturbation
or inhomogeneity at any time begins to grow on a timescale
slightly less than the Hubble timescale 7;; = 2R(t)/3R(t) at
that time. Given enough time, all the inhomogeneities are
accreted around the region of maximum density in the uni-
verse. Then discrete and collective dynamical relaxation
processes among the galaxies redistribute their orbital
energy until the system becomes approximately isothermal.
(Here we do not consider even more speculative possibilities
concerning the final end state of matter itself.)

One may consider whether the Einstein—de Sitter uni-
verse can evolve into the isothermal end state continuously.
We have the following three stages: first, the Einstein—de
Sitter expansion, which tends asymptotically to station-
arity; second, the condensing state that leads to the devel-
opment of cosmologically significant pressure; and finally
the isothermal sphere with p = ap oc r~ 2. Note that the first
two stages are taken to be pressure free, while the third has
a nonzero cosmological pressure. For matching of space-
times, continuity of pressure across a specific hypersurface
r = constant is required by the junction conditions. This
obviously cannot be achieved in our case. Rather, we
should treat the discontinuous changes as phase transitions,
first from the uniform expanding phase to the centrally con-
densed inhomogeneous state, and later from the pressure-
free condensation to isothermal equilibrium with nonzero
pressure.

Bonnor & Vickers (1981) have discussed the different sets
of junction conditions in general relativity. They considered
matching of a condensing region to a Friedmann
Robertson-Walker model with vanishing pressure. Bonnor
& Chamorro (1990) have shown that Tolman-Bondi models
tend asymptotically to a Friedmann universe. However,
these are all situations of vanishing pressure. In our situ-
ation, it is envisaged that the Einstein—de Sitter model at
time ¢t —» oo tends to an expansion-free state, and then the
universe condenses into an isothermal static sphere which is
described by the metric of equations (2), (9), and (10). It is
clear that isothermal universes with nonzero pressure
cannot be matched to the pressure-free Einstein—de Sitter
model across a specific r = constant hypersurface.
However, this is not inconsistent with our model because
we require a phase transition for condensation via galaxy
clustering in the late universe that leads to the isothermal
model. This phase transition is marked by developing a
nonzero cosmologically significant pressure from an earlier
model in which the cosmological importance of galaxy
motions (pressure) could be neglected.

In conclusion, it appears that an isothermal universe is
likely to be a good approximation to the distribution of
galaxies in an Einstein—de Sitter universe after an infinite
time has elapsed. The application of the isothermal model
to our own universe is admittedly speculative. If our uni-
verse were to evolve into this isothermal cosmology, it
would represent the ultimate astrophysical prediction.
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