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ABSTRACT

Quasi-modes, which are important for understanding the MHD wave behavior of solar and astro-
physical magnetic plasmas, are computed as eigenmodes of the linear dissipative MHD equations. This
eigenmode computation is carried out with a simple numerical scheme, which is based on analytical
solutions to the dissipative MHD equations in the quasi-singular resonance layer. Nonuniformity in
magnetic field and plasma density gives rise to a continuous spectrum of resonant frequencies. Global
discrete eigenmodes with characteristic frequencies lying within the range of the continuous spectrum
may couple to localized resonant Alfvén waves. In ideal MHD, these modes are not eigenmodes of the
Hermitian ideal MHD operator, but are found as a temporal dominant, global, exponentially decaying
response to an initial perturbation. In dissipative MHD, they are really eigenmodes with damping
becoming independent of the dissipation mechanism in the limit of vanishing dissipation. An analytical
solution of these global modes is found in the dissipative layer around the resonant Alfvénic position.
Using the analytical solution to cross the quasi-singular resonance layer, the required numerical effort of
the eigenvalue scheme is limited to the integration of the ideal MHD equations in regions away from
any singularity. The presented scheme allows for a straightforward parametric study. The method is
checked with known ideal quasi-mode frequencies found for a one-dimensional box model for the
Earth’s magnetosphere (Zhu & Kivelson). The agreement is excellent. The dependence of the oscillation
frequency on the wavenumbers for a one-dimensional slab model for coronal loops found by Ofman,

Davila, & Steinolfson is also easily recovered.

Subject headings: MHD — Sun: corona — Sun: magnetic fields — waves

1. INTRODUCTION

In ideal MHD, the quasi-mode (global mode, collective
mode, virtual eigenmode, etc.,) corresponds to a singularity
of the Green’s function that has to be constructed during
the solution of the initial-value problem with the Laplace-
transform approach (Sedlacek 1971; Goedbloed 1983; Zhu
& Kivelson 1988). This singularity gives rise to a pole in the
complex frequency plane that is independent of the spatial
coordinate. Therefore, it represents an orderly “collective ”
mode. The collective mode is exponentially damped in time
and therefore cannot correspond to a eigenmode of the
Hermitian differential operator of ideal MHD. The
damping of these modes is due to the resonant coupling to
localized Alfvén waves. This phenomenon is analogous to
the Landau damping in the Vlasov description of plasmas,
where the wave energy goes into the acceleration of reso-
nant particles. Laplace-transform approach has the advan-
tage that causality is naturally built in, but is very
complicated mathematically, and physically not always
transparent.

Knowing that there is a collective response exponentially
damped because of resonant absorption in ideal MHD, one
can expect the existence of a resistive eigenmode that has
quasi-singular behavior (resonance) around the point at
which the oscillating part of the eigenfrequency matches to
the local Alfvén frequency. This is shown numerically by
Poedts & Kerner (1991). In the limit of vanishing plasma
resistivity, the eigenfrequency converges to the ideal quasi-
mode frequency, but the eigenfunction does not.

The coupling of different MHD wave modes in nonuni-
form media is a fundamental problem that is of interest to

all plasma physicists. We discuss briefly the role of the
quasi-mode in four main areas of research: CTFR, solar
physics, astrophysics, and magnetospheric physics. The
objective of the thermonuclear fusion research program is
to confine a sufficiently hot and dense plasma for a long
enough time so that the power produced by the fusion reac-
tions exceeds the power necessary to heat the plasma. Since
the Joule heating resulting from the toroidal plasma current
in a tokamak is insufficient to bring the plasma into the
ignition regime, supplementary heating is necessary. Reso-
nant excitation of shear Alfvén waves has been proposed as
a possible candidate. (Currently, it is not believed to be a
viable mechanism.) Numerical results (Poedts, Kerner, &
Goossens 1989) show that resonant absorption is extremely
efficient when the plasma is excited with a frequency near
that of a quasi-mode. In this case, all the energy supplied by
the external source is dissipated and there is no energy
circulating in the system.

In the context of solar physics, resonant absorption could
be an important heating mechanism for coronal loops.
Again, the fractional absorption coefficient reaches a
maximum at the frequency of the global mode (Poedts,
Goossens, & Kerner 1989; Steinolfson & Davila 1993).
Recently, Ofman, Davila, & Steinolfson (1995) investigated
the parametric dependence of the global mode frequency
and the corresponding heating rate in coronal loops with
the numerical solution of the linearized time-dependent
MHD equations for a full compressible, low-f, resistive
plasma using an implicit integration scheme. Mullan &
Johnson (1995) have put these theoretical results in an
astrophysical context. They argue that the occurrence of
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periodicity in coronal emission is consistent with the
heating process, where global MHD waves are absorbed
resonantly in a coronal loop in M dwarfs. Hence, resonant
absorption models would be subject to an important test if
periodicities could be identified, since other proposed
heating mechanisms (like MHD turbulence, magnetic
reconnection, etc.,) are not expected to manifest any obvi-
ously periodic properties (on short timescales). Resonance
on the contrary implies the existence of a preferred fre-
quency.

The work of Mullan & Johnson is an attempt to use
theoretical results on MHD waves to study the outer atmo-
spheres of stars other than the Sun. In essence, it is the first
application of MHD wave spectroscopy to stellar atmo-
spheres with the quasi-modes as the key tool. The solar
atmosphere is the ideal place to use MHD wave spectros-
copy. The various magnetic structures can support MHD
waves. The observed frequencies can be used to obtain
information on the distributions of density and magnetic
fields inside these magnetic structures. This requires a good
theoretical understanding of the relationship between the
frequencies and the physical quantities. Since quasi-modes
turn out to be global natural oscillations of the magnetic
structures, they will probably be most easily observed.
Therefore, it is important to know how the frequencies of
the quasi-modes are related to the distribution of the physi-
cal quantities and the geometry of the structure.

Numerical simulations in a coronal loop model by
Ofman & Davila (1996) show that quasi-modes are excited
by a broadband driver in the nonlinear regime and reso-
nantly heat the loop with a time-varying heating rate.

In the context of magnetospheric physics, ultra-low fre-
quency waves are believed to be standing Alfvén waves on
dipolar field lines, coupled to a global compressional eigen-
mode (Kivelson & Southwood 1985). These modes could be
excited throughout the entire magnetospheric cavity in
response to sudden impulses in the solar wind.

Thus, in the four areas, the quasi-mode is of fundamental
importance. The quasi-mode is nothing more than a global
mode (natural coherent oscillation of the system; discrete
eigenmode), in which frequency lies in the continuous spec-
trum and therefore damped because of resonant absorption.
In ideal MHD, these natural coherent oscillations can be
found by solving the initial value problem with the Laplace
transform approach. In resistive MHD, the quasi-modes are
eigenmodes. Therefore, in this paper, the terms global mode
and quasi-mode refer to the same object. Since the global
mode is a natural oscillation of the inhomogeneous plasma,
it is easily understood why maximum absorption occurs
when driving with a global mode frequency (Balet, Appert,
& Vaclavik 1982; Poedts & Kerner 1992; Steinolfson &
Davila 1993), as well as why driving with a broadband spec-
trum gives rise to discrete Alfvén resonances in the magne-
tospheric cavity (Wright & Rickard 1995). It should also be
noted that because of the origin of the global modes, these
modes are not essentially resistive eigenmodes. The mode
should also be recovered in the spectrum of other dissi-
pative MHD operators.

In view of the obvious importance of quasi-modes for
solar physics, astrophysics, and terrestrial magnetophysics,
it would be very helpful to have a simple and easy to use
numerical scheme for their computation. Such a scheme
would make it possible to relate the frequency of the quasi-
mode to the distributions of the physical quantities and the
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geometry of the equilibrium state. In addition, it will help to
demystify the quasi-mode by identifying it as a eigenmode
of the linear dissipative MHD operator. In this paper, we
present a numerically easy and physically straightforward
method to determine the complex frequencies of the global
modes. Since the global modes are irreversibly coupled to
localized Alfvén waves, dissipation (in this paper, resistivity)
is taken into account to remove the singularity in ideal
MHD associated with the resonance. First, the discrete
eigenmode frequencies are calculated, solving an ordinary
eigenvalue problem with parameter values so that there is
no resonance. When a frequency is lying in the Alfvén con-
tinuum, a change in the parameters will cause resonance.
This resonance gives rise to damping and a change in oscil-
lation frequency. Assuming the imaginary part of the fre-
quency (damping) to be small, the solution in the dissipative
layer can be found analytically. This solution is used to
cross the quasi-singular layer around the resonant position.

In § 2, the solution of the quasi-mode in the dissipative
layer is derived. Section 3 presents a simple numerical
scheme using the solutions of § 2 to determine the complex
eigenfrequencies of the global modes. In § 4, the current of
thought and the numerical scheme is checked with known
ideal quasi-mode frequencies of a one-dimensional box
model for the Earth’s magnetosphere, employed by Zhu &
Kivelson (1988). The dependence of the oscillation fre-
quency on the wavenumbers in a one-dimensional slab
model for coronal loops found by Ofman et al. (1995) is
recovered in § 5. Section 6 gives a summary.

2. ANALYTICAL SOLUTION IN THE DISSIPATIVE LAYER

The present numerical scheme for determining the
complex eigenfrequencies, @ = wy + iw;, of the global
eigenmodes (quasi-modes) is inspired by the analysis of
Sakurai, Goossens, & Hollweg (1991) and Goossens, Ruder-
man, & Hollweg (1995) of driven resonant MHD waves in
nonuniform plasmas. The analysis of Goossens et al. is
based on the observation that the large values of the viscous
and magnetic Reynolds numbers in solar and astrophysical
plasmas imply that dissipation is very weak and can be
neglected altogether except in narrow layers of steep gra-
dients. In the case of the global modes, the dissipative terms
in the MHD equations are only important in a narrow layer
around the resonance position, where the real part of the
eigenfrequency equals the local Alfvén frequency. Outside
this narrow layer, the eigenmode is accurately described by
the equations of ideal MHD.

The numerical method we use for obtaining the global
eigenmodes does not require the numerical solution of the
dissipative MHD equations. For our purposes, it suffices to
obtain numerical (or, for a simple equilibrium state,
analytical) solutions to the eigenmode equations of ideal
MHD to the left and the right of the dissipative (resonance)
layer. Hence, the equations of the dissipative MHD have to
be solved analytically in the dissipative layer and in two
overlap regions (to the left and the right of the dissipative
layer), where ideal MHD is valid too. The combination of
the dissipative layer and the overlap region is only a tiny
fraction of the equilibrium state; hence, it is possible to use
simplified versions of the dissipative MHD equations that
allow analytical solutions. These analytical solutions to the
dissipative MHD equations, combined with the numerical
solutions to the ideal MHD, can be used to design a simple
eigenvalue code for the quasi-modes.
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The method can even be taken a step further. Asymptotic
analysis of these analytic solutions inside the dissipative
layer give connection formulae that can be used to connect
the ideal solutions over the dissipative layer. This allows us
to forget about the dissipative layer. The object of this
section is to obtain the analytical solution in the dissipative
layer and in the two overlap regions to cross the quasi-
singular layer, while integrating the linearized resistive
MHD equations:

0%¢ , 1 1
p67=—Vp+—(VxB)xB’+;(VxB’)xB, 1)
=—¢-Vp—ypV-¢, ()]
OB'_ 6_6 2
o V x (ath>+erB', 3)

where € is the displacement vector, and p’ and B’ are the
Eulerian variations of the pressure and the magnetic field,
respectively. The coefficient of magnetic diffusivity is 5, and
y is the ratio of specific heats. Both are assumed to be
uniform. Note that the ohmic heating term in equation (2) is
neglected. The approximation by the adiabatic equation is
justified by numerical results of Poedts, Belién, & Goed-
bloed (1994).

We consider plasmas of which the equilibrium quantities
vary in only one direction. For such a kind of configu-
rations, jump conditions are already derived for the driven
problem in the asymptotic state (Sakurai et al. 1991;
Goossens et al. 1995). For the eigenvalue problem for global
modes, the frequencies to be determined are complex.
Therefore, the dissipative solutions these authors found are
no longer valid and their derivation has to be redone in
order to see the effect of nonstationarity (w; # 0). To illus-
trate the analysis, we take a cylindrical configuration with
the equilibrium quantities varying only in radial direction.

As noted, we assume the resistivity to be small so that the
resistive terms are only important in a narrow layer around
the resonance point, , [the position at which the oscillating
part, wg, of the eigenfrequency is equal to the local Alfvén
frequency w,(ra)]. Then in the vicinity of the resonance
point, equations (1), (2), and (3) reduce (after Fourier analyz-
ing with respect to the two homogeneous directions) to two
differential equations of the third order. In cylindrical
geometry, they are

d(’é ) _core —CyrP,
dP’ '
D";=C36r_C1Pa (4)

where D, = p(c? + v3)(0* — w)[w® — of — ina(d*/dr’)].
The coefﬁments C,, C,, and C; are functions of the equi-
librium quantities and , and they can be found in the
paper by Sakurai et al. (1991). Series expansions around
s=r—r,=00fD,, C,,C,,and C, give simplified versions
of equation (4) that are valid in the interval [ —s,, s,],
where the linear Taylor polynomial is a valid approx-
imation of w? — w3.
Hence, s, has to satisfy

21
2wy

miﬂ

SA<

b

QUASI-MODES AS DISSIPATIVE MHD EIGENMODES 503

where the prime denotes the derivative with respect to r.
Hence, close to the Alfvén resonance point, equation (4)
reduces to

) d
<2m>Aw, + SA —iw,n 1 ) d_és = —“gz CA(s) )
) a’>\ dpP _ 2B, B,
<2lwAwI+sA iwpn 72 ) ds  ppra or B2 - Cals) (6)
) d*\ dc
(2za)A o; + SA —iw,n I ) _dsA =0, )]

where the equilibrium quantities are evaluated at the ideal
resonance position, and

L P L
d

”rA r r=ra
mB,

Ca=0s

mB
fB=T¢+sza g =

It is important to note that we assume that the damping
caused by resonant absorption is weak: | ;| < | w, |, what
has to be checked a posteriori.

The highest derivative terms are multiplied with the elec-
trical resistivity. Thus, for very high Reynolds numbers,
equations (5), (6), and (7) represent a singular perturbation
problem. Resistivity is only important in a narrow layer

that is of the order
1/3
wn
O =|— R
* <| A |>

where 0, < s, because of the high Reynolds number con-
sidered here.

Now it is convenient to introduce a new scaled variable,
T = s/6,, which is of the order 1 in the dissipative layer.
With this new variable, equations (5), (6), and (7) for &,, P,
and C,, respectively, take the following form:

d2 . . dfr . gB
[P + i sign (A)yr — A] 7 = Cas (®

pB|A|
d> dP' 2fz B, B
A — I ZB7d 7z
[d 2 + l Slgl'l( )T ] d’C lszﬂrA|A| CA ] (9)
d> dc,
|:d2+151gn(A)r— ]d_r_ , (10

where A = 2w; w,/0, | A|. In the Appendix, analytical solu-
tions to these equations are derived using a Fourier trans-
form technique. C, is a conserved quantity across the
resonant layer. The solutions for the global modes in the
dissipative layer are then given by

gsC
E(r) = —,,Zz X G(r) + cte;, ,

2fg By B, Cy
pBur, A

Pt)= — G(7) + ctep (11)

where
) eiusign(A)t-Au -1
Gr)=| —————— By,
0 u

The same kind of solution has been found by Ruderman,
Tirry, & Goossens (1995) for resonant damped Alfvén
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FiG. 1.—Real (left-hand column) and imaginary (right-hand column) part of the G(z) function for different values of A (0.5, 1, 2, 4)

surface waves in a resistive and viscous plasma with incom-
pressible motions. The V - v = 0 assumption implies that
the Alfvén and cusp singularities in ideal MHD coincide.
Therefore, the surface wave is damped becaue of Alfvén and
cusp resonances. In this paper, we will consider the coupling
between global compressional modes and localized Alfvén
waves.

Putting A = 0 gives the solution in the vicinity of the
resonance point for the driven problem in the asymptotic
state. A # 0 shows us the effect of nonstationarity (e, # 0)
on the decaying normal modes. In order to explain what we
mean by nonstationarity, let us assume that we are in a
coordinate system moving with the wave-phase velocity.
Then, in the driven problem, the solution that describes
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resonant absorption of MHD waves is independent of time.
Consequently, the dissipative layer in the driven problem
can be called a stationary dissipative layer. In studying
solutions of the MHD equations in the form of normal
decaying modes, we deal with a nonstationary situation,
even in a coordinate system moving with the wave-phase
velocity. The reason is, of course, the exponential decrease
of the wave amplitude owing to resonant absorption.

When the effect of dissipation is steadily decreased in
comparison to the effect of nonstationarity (the value of A
becomes larger), the solutions become more and more oscil-
latory and their amplitudes grow very rapidly in the dissi-
pative layer. This is clearly shown in Figure 1, in which the
real and imaginary part of the function, G(z), are plotted for
different values of A. This kind of oscillatory behavior for
the resistive global mode was found numerically by Poedts
& Kerner (1991). This picture completes the temporal evo-
lution for a plasma system that is externally driven at the
real part of the frequency of the ideal quasi-mode. In an
initial phase, the plasma response yields phase mixing and
the amplitudes of the fields grow. After a while, the system
has attained a stationary state in which all physical quan-
tities oscillate harmonically at the frequency imposed by the
external driver. The energy supplied by the external source
is balanced exactly by the Ohmic dissipation in the resonant
layer. The behavior in the dissipative layer is analytically
described by Goossens et al. (1995), and their solutions are
presented in this section with A = 0. When the driver is
switched off, the global mode damps out. In this final phase,
the plasma response phase mixes essentially to the form of
the resistive eigenmode with the oscillatory behavior in the
resistive layer, where the finest perturbation scales are
limited by the resistivity: the smaller the resistivity, the finer
the radial length scales in the resonance layer and the higher
the amplitudes. Hence, kinetic effects or effects caused by
finite electron inertia could become important (Rankin,
Samson, & Frycz 1993; Mann, Wright, & Cally 1995,
Wright & Allan 1996) accompanied with the breakdown of
the one fluid MHD, unless nonlinear effects can broaden
the resonance (Rankin et al. 1993; Poedts & Boynton 1996)

3. A SIMPLE NUMERICAL SCHEME

To determine the complex eigenfrequencies of global
modes (corresponding to the ideal quasi-modes) in resistive
MHD, there are several possibilities. The first, but probably
the most difficult one, is to use a numerical code that inte-
grates the resistive MHD equations in the whole volume of
the equilibrium state to resolve the resistive spectrum of the
system. This is done, for example, by Poedts & Kerner
(1991) for a one-dimensional cylindrical configuration. Such
a code should be pollution free, which means that it does
not generate any spurious eigenfrequencies. In addition, it
also has to be able to handle steep gradients and narrow
layers. Poedts & Kerner calculated the resistive spectrum of
a plasma column surrounded by a perfectly conducting wall
with vacuum in between (as model for a tokamak). The
quasi-mode that they found originates from an external
kink instability that is stabilized by the perfectly conducting
wall with oscillation frequency in the ideal Alfvén contin-
uous spectrum.

A second method, which was introduced by Balet et al.
(1982) in the study of MHD waves also in fusion plasmas,
makes use of the observation that the global mode is a
natural oscillation mode of the system. In their MHD study
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on Alfvén wave heating of low-f plasmas, Balet et al. con-
sidered the situation in which they imposed an initial dis-
placement of the plasma column and then let it oscillate
freely. They made a Fourier analysis of the radial displace-
ment at different radii. For each radius, a maximum of the
amplitude was found; and this maximum occurs around the
same frequency (with an uncertainty of about 1%). Balet et
al. viewed this as an indication of a global motion of the
plasma column. They also noted that their (ideal MHD)
spectral code does not show any evidence of an eigenmode
corresponding to this frequency.

In this way, Steinolfson & Davila (1993) and Ofman et al.
(1995) determined the oscillation frequencies of global
modes in a one-dimensional slab model for coronal loops.
This method is rather involved from a computational point
of view and does not give any information on the accuracy
of the eigenvalue and the eigenvector. In addition, it uses a
property of the quasi-mode that has to be proven a priori.
The logical way is to compute the quasi-mode as an eigen-
mode of the dissipative system (and then to identify the
dominant contribution in the response in time as the quasi-
mode). The numerical scheme that we present is mostly
based on the two main characteristics of the quasi-mode.
First, the quasi-mode is a global eigenmode of the resistive
MHD operator (or other dissipative MHD operators).
Second, it is a global discrete eigenmode coupled to a local-
ized Alfvén wave, where the oscillating part of the frequency
matches the local Alfvén frequency. At this position, there
will be a quasi-singular layer where we know the behavior
analytically.

Hence, the scheme searches for complex frequencies in
such a way that the boundary conditions are satisfied when
integrating the ideal counterparts of equation (4), while the
resonance layer is crossed with the known analytical solu-
tion given in § 2.

A good starting value is given by the real eigenfrequency
of the discrete eigenmode in the case that parameters are set
in such a way that there is no resonance. A change in the
parameter values may cause resonance whenever the fre-
quency of the global discrete eigenmode lies within the
range of the continuous spectrum; the eigenfrequency will
shift into the lower half of the complex frequency plane. In
this way, an easy general parametric study is possible. In
what follows, we will illustrate our reasoning for cold
plasmas and compare with known results.

As a first example, we consider a cold (p = 0) cylindrical
configuration (as model for a coronal loop) with a straight
uniform magnetic field. The density profile is given in
dimensionless form by

p(r) =01 + 09e" .

Steinolfson & Davila (1993) and Wright & Rickard (1995)
employed the same variation in density in their MHD
cavity (in Cartesian coordinates). The latter authors
explained very well the physical origin of the quasi-mode,
which has been the guidance for our numerical scheme to
determine the quasi-mode frequencies. At the axis r = 0, the
displacement &, should remain finite. Since we are looking
for trapped fast body waves, we require that £, =0 atr =5
(note that there are two turning points; the resonance lies in
the evanescent tail).

In the case that the poloidal wavenumber m equals zero,
there is no singularity in the ideal counterparts of equation
(4). The frequencies of the trapped fast body waves are real.
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0 0.5 1 1.5 2 2.5 3

FiG. 2— Eigenfrequencies of the first three fast body waves (dotted
lines) in a cylindrical cold plasma, and the lower and upper bound of the
Alfvén continuum (full lines) in function of the axial wavenumber k,, in
case of no resonance.

They are shown in Figure 2 for the first three harmonics in
function of the axial wavenumber k,, together with the
upper and lower bound of the Alfvén continuum. Note that
the modes above the continuum are not trapped (but they
are not of our interest). For k, = 1.5, the fundamental fast
body wave has its frequency in the continuum. Hence, for
m =1 the resonance will damp the fast body wave and
change its oscillation frequency. In order to find the
damping and the change in oscillation frequency, we have
steadily increased m from O to 1. Physically, this has no
meaning but it is a mathematically straightforward manner
to determine the complex eigenfrequency for the case in
which m = 1. The shift into the complex frequency plane is
shown in Figure 3 for different values of magnetic Reynolds
number (107, 108, 10°, 10'°). This picture shows that the
eigenfrequency of the global mode tends to a limiting value
in the limit of vanishing resistivity. This is in agreement with
the results of Poedts & Kerner (1991). Our a priori assump-
tion that the damping due to resonant absorption is weak,
is also confirmed.

Let us note that we could not increase m much further
beyond 1. The reason is that for larger values of m, the
resonance position shifts toward the interval at which the
Alfvén frequency is almost constant (A — 0). Here the
theory stops to be valid because the resonance layer is not
localized anymore.

-0.001

-0.002

-0.003

-0.004

-0.005

F1G. 3.—When m goes from O to 1, the frequency of the global mode
shifts into the lower half plane. Different lines corresponding with different
values of magnetic Reynolds number (107, 108, 10°, 10*°) tend to a limit-
ing line.
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The present paper extends part of the results obtained by
Cally (1986). Cally derived numerically dispersion relations
for leaky and nonleaky oscillations in magnetic flux tubes
(photospheric flux tubes, Hu fibrils, and coronal loops) with
uniform internal and external media. When the discontin-
uity between the coronal loop and the external medium is
replaced by a continuous transition, the nonleaky fast body
waves (corresponding with Cally’s BY modes) can reso-
nantly couple to localized Alfvén waves. This will drasti-
cally change their dispersion relations. This change in
eigenfrequency can easily be found with the method pre-
sented in this paper, as shown in the above described model
for a coronal loop.

4. THE CORRESPONDENCE WITH THE IDEAL QUASI-MODE

In ideal MHD, the quasi-mode corresponds to a tempo-
ral dominant, global, exponentially decaying response to an
initial perturbation. The frequency is found as a zero of the
conjunct (which is independent of the space coordinate) in
the unphysical lower half plane while solving the initial
value problem with the Laplace transform approach. This
technique is explained in an excellent paper by Sedlacek
(1971) about small amplitude electrostatic oscillations in a
cold plasma with continuously varying density. The dis-
advantage of this method is that one has to be able to solve
the differential equation analytically for the whole spatial
region. Zhu & Kivelson (1988) modified the method in such
a way that it requires an analytic expression only in the
vicinity of the singularity of the differential equation.

To be sure of the validity of our current of thought and
numerical scheme, the frequencies that we find should cor-
respond to the zeros of the conjunct constructed by Zhu &
Kivelson (1988). They considered a one-dimensional box
model for the terrestrial magnetosphere: a cold plasma con-
tained in a rectangular box embedded in a uniform mag-
netic field. One can take a fixed boundary condition for the
plasma displacement normal to the magnetopause. For the
inner boundary condition (in the inner magnetosphere),
Zhu & Kivelson also took fixed boundary conditions. We
consider the same Alfvén velocity profile in the x-direction
viz.,

02(x) ~ i , with x € [0.1, 10] .

The z-direction is along the magnetic field, and the y-
direction represents the azimuthal direction.

When the azimuthal wavenumber k, equals zero, there is
no resonance and the frequencies of the global compres-
sional eigenmodes are real. They are shown in Figure 4 in
function of the axial wavenumber k,, together with the
lower and upper bound of the Alfvén continuum for the first
five global mode harmonics. For k, = 1, these harmonics
(and a lot more) have their frequency within the range of the
Alfvén continuum. Hence, for k, # 0 they will couple to
localized Alfvén waves. Their behavior in the resonance
layer is described by

di¢,) ,
D, == -CiP,
P’
D, ——=Ct¢., (12)
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FiG. 4—Eigenfrequencies of the first five global mode harmonics
(dotted lines) in a one-dimensional box model for the terrestrial magneto-
sphere and the lower and upper bound of the Alfvén continuum in function
of the axial wavenumber k,, in case of no resonance.

where C% and C% are the Cartesian counterparts of C, and
C,, respectively.

Figure 5 shows the shift into the lower half of the fre-
quency plane (full line) along with the results of Zhu &
Kivelson (dots) for the first two global harmonics when k, is
steadily increased from 0 to 1. For small k, there is a
discrepancy. This is owing to the fact that, while doing
the local analysis around x = x,, a term proportional to
As + 2iw, w; is neglected in comparison with the term
proportional to k? in the right-hand side of equation (12),
as described in § 2. In the case of cylindrical geometry, we
did not take care of this problem because the azimuthal
wavenumber m should be integer.

Fic. 5—Shift of the eigenfrequencies of the first two global mode har-
monics into the lower half plane (full line) when k, goes from 0 to 1. For
small k, there is a discrepancy with the results of Zhu & Kivelson (filled
circles) because of the neglect of a term proportional to 2iw, w; + sA, in
comparison with a term proportional to k? in the analysis presented in § 2.
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When keeping this term, equation (12) reduces close to
the resonance point to

d2
<2iwA o; + SA —iw,n F)

a6, 1 . 2.
X = ond (2iwp f + sA — k; vx)P" (13)
dP
e (14

In function of the stretched variable t = s/é,, the behavior
in the dissipative layer is governed by

|:d—2 + i sign (A)t — A:I

dt?
dé,

_— e — 7, _ 12 ,2\p’
X T ALY (2iws op + 1o, A — ky vx)P' (15)
dpP’
T 0 (16)

With the aid of the Appendix it is easy to verify that the
solutions in the dissipative layer remain unaltered except
for an additional linear term, which is proportional to d,.
Hence, for small k, this term has to be taken into account.
As a result, we obtain

k2
yA CXG(t) — 0, CX1 + cte;_, 17
A

éx=_

P =C*. (18)

With the use of this solution to cross the quasi-singular
layer, the agreement with the frequencies of the global
modes found by Zhu & Kivelson is excellent, as shown in
Figure 6.

5. DEPENDENCE ON THE WAVENUMBERS

Since the importance of global modes in coronal loop
heating is well established (Ofman, Davila, & Shimizu 1996,
and references therein), Ofman et al. (1995) investigated the
scaling of the global mode resonant heating rate with the
wavenumbers and the parametric dependence of the global
mode frequency. They used a time-dependent code with an
implicit integration scheme for the (full compressible,
zero-f) resistive MHD equations. To determine the oscil-
lation frequency of the quasi-mode, they used the physical
fact that the quasi-mode manifests itself as a natural oscil-
lation of the system: the frequency response to an initial
disturbance with an arbitrary frequency spectrum will be
sharply peaked at the frequency of the quasi-mode. By fast
Fourier transforming the results from the time-dependent
code at selected spatial locations, they could calculate the
oscillating part of the frequency.

Ofman et al. (1995) considered a one-dimensional slab
model for a coronal loop as follows: cold plasma (p = 0),
straight uniform magnetic field in the z-direction, and a
density profile symmetric with respect to x = 0:

po(x) = 0.1 + 09>,

with zero boundary conditions. The boundaries were taken
far enough (from the center, x = 0) so that they do not
influence the trapped waves inside the loop. They had to use
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FiG. 6.—Shift of the eigenfrequencies of the first two global mode har-
monics into the lower half plane (full line) when k, goes from 0 to 1. Using
the corrected solution in the dissipative layer to cross the quasi-singular
layer in the numerical scheme the agreement with the results of Zhu &
Kivelson ( filled circles) is excellent.

a nonuniform grid spacing in order to well resolve the dissi-
pative layer for rather low magnetic Reynolds numbers.
Figure 7 shows the results of our eigenfrequency calcu-
lations for the same set of parameters as used by Ofman et
al. (1995) in their Figure 7. If we compare these with their
numerical values, we see an amazing maximal difference of
only 0.4%. Therefore, there is no doubt that the global
modes that Ofman et al. found in their fast Fourier trans-
forms of the free oscillations are eigenmodes of linear dissi-
pative MHD. It also indicates how dominantly the
quasi-mode is present.

Ofman et al. (1995) compared their results for the varia-
tion of frequency as a function of the wavenumbers with the

k=0.75

0.4} \_____ k,=0.20
0.2f T —___ =010
ky

0 0.2 0.4 0.6 0.8 1 1.2

Fic. 7—Dependence of the oscillation frequency of the global mode on
the wavenumbers in the one-dimensional slab model for a coronal loop.
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analytic expression obtained by Ionson (1978). For a fixed
k,, the oscillation frequency of the quasi-mode depends
approximately linearly on k,. Ionson’s analytic expression
gives a good representation of the numerical results for
k, = 0.75 by Ofman et al. A careful reader might be sur-
prised by this agreement, since Ionson derived his result for
a decaying surface mode on a “thin” interface with two
uniform plasmas on both sides, while Ofman et al. con-
sidered trapped fast body waves in an Alfvén speed well.
Since both the mathematical equation (in the limit of a cold
plasma) and the Alfvén speed profile are similar, one can
expect that there would be agreement for a certain value of
k,. The linear dependence of the oscillation frequency on k,
can also be seen in Figure 2, where the eigenfrequencies of
the fast waves are plotted in function of k,. This linear
dependence was found in a cylindrical geometry (see § 3), so
that we can state that this scaling law found in a Cartesian
one-dimensional slab model for a coronal loop by Ofman et
al. remains valid in the corresponding cylindrical model.
But if we compare Figure 7 (for the slab model) and Figure
3 (for the cylindrical model) concerning the azimuthal
dependence, we see that the oscillation frequency of the
quasi-mode in the slab model decreases with increasing k,,
while in the cylindrical model it increases with increasing m
(remember that in Fig. 3, m increases from 0 to 1 along the
line). We have to note that Figure 7 is produced with values
of k, <0.75, whereas Figure 3 has k, = 1.5. But even for
k, = 1.5 in the slab model, the quasi-mode oscillation fre-
quency decreases (very slowly) with increasing k,. For
higher values of k, (>2) it becomes a very slowly increasing
function. Hence, the geometry can play a fundamental role
in the scaling laws, so that we can conclude that one has to
be careful when comparing scaling laws found in simplified
models with observations.

6. SUMMARY

In this paper, quasi-modes are computed in models for
solar coronal loops and the terrestrial magnetosphere as
eigenmodes of the linear dissipative MHD equations. In
this way, we demystify the “global mode calculations” of
Steinolfson & Davila (1993) and Ofman et al. (1995). The
eigenmode computation is carried out with a simple
numerical scheme, which is based on analytical solutions to
the dissipative MHD equations in the quasi-singular reso-
nance layer.

The scheme is mostly based on two main characteristics
of the global mode. The global mode manifests itself as a
natural coherent oscillation: it is a eigenmode of the
resistive MHD operator. The global mode is a discrete
eigenmode, weakly damped due to resonant absorption.
Hence, it is a good starting point to determine the real
eigenfrequencies of the discrete eigenmodes in the case in
which there is no resonance, but in which they are lying
within the range of the continuous spectrum. When the
parameters are changed in such a way that resonance
appears, one can easily follow the change in oscillation fre-
quency and the damping of the global eigenmode due to
resonant absorption.

For small values of the resistivity, the dissipation layer
around the resonance point will be narrow. The behavior in
this narrow resonance layer is found analytically. The ana-
Iytical solution shows clearly the effect of nonstationarity
(w; # 0) and is used in the numerical scheme to cross the
quasi-singular layer around the resonance point where the
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oscillating part of the frequency matches the local Alfvén
frequency.

We have illustrated the current of thought and the
numerical scheme with two different geometries of cold
plasmas. Those illustrations show clearly the correspon-
dence of the resistive global eigenmode damped by resonant
absorption with the ideal quasi-mode. The ideal quasi-
mode is found as a temporal dominant but exponentially
decaying response while solving the initial value problem
with the Laplace transform approach. In the limit of van-
ishing resistivity, the eigenfrequency tends to a limiting
value: the quasi-mode frequency, which cannot be an eigen-
frequency of the Hermitian ideal MHD operator. By stead-
ily increasing the value of the azimuthal wavenumber
starting off from zero (which in the configurations we have
used corresponds to no resonance), the shift of the eigen-
frequency of the global mode into the lower half plane is
clearly demonstrated. The damping rate reaches a
maximum at a certain azimuthal wavenumber and then
decreases again, which is in agreement with results by Zhu
& Kivelson (1988) and Allan, White, & Poulter (1986). It is
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also shown that the oscillation frequency of the quasi-
modes in coronal loop models depends linearly on k,
(wavenumber parallel to the magnetic field), and that the
dependence on the azimuthal wavenumber is totally differ-
ent for slab models and cylindrical models.

In keeping with the underlying unity of resonant absorp-
tion in all areas of plasma physics, a parametric study is not
done in this paper, but the dependence of the global mode
frequency on other parameters (twist in the magnetic field,
strength of the mass flow, density distribution, etc.,) in the
different possible application fields (solar coronal loops,
magnetospheric cavity, and tokamak plasmas) can now be
investigated easily.

The authors would like to thank M. S. Ruderman for
useful discussions and comments. They are also grateful to
L. Ofman for providing them with his numerical values of
Figure 7 and for comments that helped to improve the
paper. This work was performed while W. Tirry was a
research assistant of the Belgian National Fund for Scienti-
fic Research.

APPENDIX
In this appendix, we derive analytical solutions of the equation in the following form:
2
[% + i sign (A)r — A:I‘I’(‘c) = RHC, (A1)
T

where RHC is the right-hand side constant. The boundary conditions are set by requiring that the solutions of the corre-
sponding equations (8), (9), and (10) match the ideal solutions valid outside the dissipative layer. For the driven problem,
Goossens et al. (1995) have determined the solutions in integral form using a sort of Laplace transform technique. Their
analysis can be followed again, but here we present a shorter alternative approach. The value 6, < s, implies that the interval
of validity of the simplified versions of the dissipative MHD equations embraces the dissipative layer and, in addition,
contains two overlap regions to the left-hand side and the right-hand side of the dissipative layer, where ideal MHD is valid.
By consequence, ¥(r) should vanish at infinity (~ 1/z), and therefore its Fourier transform exists. Fourier transforming (in the
sense of generalized functions) of equation (A1) gives

o*¥ + A¥ + sign (A) % = —27RHC §(0) sign (A) (A2)

where ¥(o) is the Fourier transform of ¥(z) with respect to 7, and 8(c) stands for the delta distribution. With the boundary
condition that ¥(c) has to vanish at | 6| — oo, the only solution to equation (A2)is

(o) = — 27 sign (A)RHC H(g)e @3 +Aa sign @) | (A3)

where H(o) is the heaviside function. Finally, the physically relevant solution to equation (A1) is the inverse Fourier transform
of (A3):

¥(r) = —RHC f e 33~ Adgiotsin(B) o (A9
0
With this analysis it is now easy to recover the solutions formulated in (11).
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