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ABSTRACT

Previous analytical works on the wind-driven thin-shell bow shock neglected the centrifugal force
exerted on the shell material. We reanalyze the dynamic equations including the centrifugal force, and we
present approximate formulae in a Cartesian coordinate system for the general quantities describing the
thin-shell bow shock. The shocked interstellar medium and the shocked stellar wind are treated as mixed
and separated, respectively. These formulae are more accurate than previous analytical results.

Subject headings: ISM: kinematics and dynamics — methods: analytical — shock waves —

stars: early-type — stars: mass loss

1. INTRODUCTION

More and more nebulae of cometary morphology have
been discovered around mass-losing stars such as early-type
O stars, supergiants, Wolf-Rayet stars, cataclysmic binaries,
pulsars, etc., by radio, infrared, optical, and even X-ray
observations. They were proposed to be bow shock struc-
tures which are usually the results of the collision of a stellar
wind with a plane-parallel moving interstellar medium
(ISM). A bow shock is formed ahead of the star, with a
nebula of trailing configuration, when the star moves with
respect to the ISM at a supersonic velocity v,. A variety of
algorithms have been developed to describe the dynamics of
the bow shock. They can essentially be divided into two
sorts, namely, numerical and analytical treatments.

Baranov, Krasnobaev, & Kulikovskii (1971), Baranov,
Lebedev, & Ruderman (1979), and Aldcroft, Romani, &
Cordes (1992) calculated numerically in a polar coordinate
system, while Huang & Weigert (1982), Bandiera (1993),
and Chen, Wang, & Qu (1995) calculated in a Cartesian
coordinate system. Matsuda et al. (1989) and Mac Low et
al. (1991) simulated numerically the bow shock in different
ways.

Under the thin-shell approximation (Baranov et al. 1971;
Huang & Weigert 1982), analytical studies were carried out.
Figure 1 shows the inertial reference frame in which the bow
shock solution is stationary, with position angle 6 defined
there. The origin of the coordinates is set at the position of
the star, and the parabolic arc (solid line) stands for the
contact discontinuity. G; and G, denote the regions of
shocked ISM and shocked wind, respectively. Dyson (1975)
derived an approximate solution for the morphology of the
contact discontinuity in a tricky way:

r 0

=0, 1
ro sin 6 1)
where 7, is referred to as the standoff distance of the stagna-
tion point. This solution was also obtained by Houpis &
Mendis (1980) in their study of cometary ionospheres. It
was expanded into Taylor series for y < r, by Mac Low et

al. (1991):
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This expansion applies only near the apex (see Fig. 2),
though it is better than the approximation 1+ x/r, =
(v/ro)? of Van Buren & McCray (1988). Equation (1) and its
inferences for physical quantities have been adopted exten-
sively (e.g., Van Buren et al. 1990; Borkowski, Blondin, &
Sarazin 1992; Raga & Cabrit 1993; Wang, Dyson, & Kahn
1993; Raga, Cabrit, & Cant6 1995). In order to derive the
analytical solution, however, Dyson (1975) and Houpis &
Mendis (1980) neglected the term describing the centrifugal
force due to the curvature motion of the mass flow in the
shell, making the morphology of the bow shock shell more
curved than the exact solution (see Fig. 2). Moreover, they
derived the solutions only for small 6 (<70°) and con-
sidered only the case in which v,, < v, (therefore actually
neglecting the contribution of the outer medium [i.e., ISM
in this paper] to the mass flux in the shell), where v,, is the
terminal stellar wind velocity. The streaming velocities in
the shell they presented remain still to be obtained numeri-
cally. In addition, the physical quantities inferred cannot be
applied to the cases of pulsars, W-R stars, blue supergiants,
and young O stars for which v,, > v,.

We argue that good approximate analytical solutions to
the bow shock can be found coincidentally by considering
the centrifugal force term, in spite of the apparent unwieldi-
ness of the equations.

2. APPROXIMATE ANALYTICAL SOLUTIONS

Following most previous works, we assume that the
shocked matter is compressed in a thin shell. We discuss
two cases, as Dyson (1975) did. In the first case, the shocked
ISM and the shocked wind are assumed to mix well. In the
second case, they are considered to be separated by a
contact discontinuity.

2.1. The First Case

Since the shocked materials are mixed in a thin shell, they
stream at the same velocity along the surface. Let us adopt
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Fi1G. 1.—Coordinate system set for the bow shock

F1G. 2—Comparison of various analytical solutions of the bow shock
morphology with the numerical solution. The open star stands for the
star’s position. The solid line is the numerical solution. The dashed line is
plotted according to equation (10), the dot-dashed line is plotted according
to equation (1) (the Dyson 1975 solution), and the dotted line is plotted
according to equation (2) (the Mac Low et al. 1991 expansion).
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the momentum equations including the centrifugal term,
which are used by Chen et al. (1995) with a modification
over the divergence term in Huang & Weigert (1982):

2
ov;
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where j, = p,v2 and j, = Mv,,/(4nr?) are the momentum
fluxes of the ISM and the stellar wind, respectively, with p,,
the mass density of the ISM and M the mass-loss rate of the
star, s the arc length, ¢ the surface column mass density of
the shell, v, the tangential velocity of the flow in the shell, o,
(o,) the angle of the ISM (wind) momentum vector to the
tangent plane, and R = —(1 + y’?)*?/y” the curvature
radius, with y’ and y” the first and second derivatives of y
with respect to x, respectively. The mass continuity equa-
tion is

]0

20, y+ 4 ry

The dimensionless form of the above equations in a Carte-
sian coordinate system is

ov, = (r+x). )

; (6)
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where & = x/ro, 0 = y/ro, { =dn/dé, u=v,/v,, and ® =
6v?/j,1,. Here the independent variable has been switched
from £ ton.

We expand the variables &, {, @, and u into Taylor series
to the fourth order near the stagnation point (n = y/r, < 1):

&..I&.
= e
| -

©

3, 3
é+1—10n +280n, (10)
3 3 .\
C—(5n+70n> , (11)
1, 1,
2 (ve/v —4) 4

3(1 + v,/v,) 50(1 + v,/v,,)? (13)
These series are consistent with Bandiera’s (1993) equation
(16) with j — oo there. By the way, the first term on the
right-hand side of equation (10) is consistent with the corre-
spondlng result in Baranov et al. (1971), i.e., d*r/d6? |-, =
5, but Aldcroft et al. (1992) improperly found d*r/d6*|g— =
% and used it as a boundary condition.

As usual, it would be difficult to find analytical solutions
for ordinary differential equations (6)—(8). The key point of
this paper is that equation (10) is found not only to apply
for n < 1, but also to fit the numerical integration result
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F1G. 3.—Values of € for the analytical solutions. The relative error is
defined as | €|.

very well for n > 1 (see Figs. 2 and 3). In Figure 2, the curve
of equation (10) (dashed line) is almost pasted on the
numerical curve (solid line). The relative error (defined as
the absolute value of € = [analytical value — numerical
value]/[numerical value]) even at £ = 100 does not exceed
7%. Therefore, equation (10) and hence equation (11) are an
excellent approximation for the morphology of the bow
shock. By comparison, it can be seen in Figure 2 that equa-
tion (10) is much better than equation (1), the Dyson solu-
tion (dot-dashed line). The Taylor expansion (2) (dotted line)
is not as exact as equation (10) for ¢ < 0 near the apex.

The other quantity @ does not hit upon such a coin-
cidence. Figure 4 shows that both the Taylor expansions for
® to the fourth and the sixth orders diverge quickly after
¢ 2 0. However, it can be solved out from equation (7) that

L+ n/¢ — £\
® =105+ o/1om7 [1 - (é’ + n2> ] -

From Figures 3 and 4, one can see that equation (14) fits the
numerical values well. Its accuracy is better than 95% for
¢ < 5 and better than 90% for &€ < 9.

With equations (10) and (14), the streaming velocity v, is
known from equation (9). Dividing equation (14) by u? then
produces the column density ¢. The velocity derivation in
this way avoids the numerical calculations met by Dyson
(1975) and Houpis & Mendis (1980). For v,, < v,, this
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F1G. 4—® as a function of ¢ = x/r,. The solid line is the numerical
solution of ®@. The dotted line corresponds to equation (12), the dot-dashed
line corresponds to the expansion up to the sixth order ® = (1/3)n?
— (1/25)n* + (39/8750)n%, and the dashed line corresponds to eq. (14).

2.2. The Second Case

In the second case, the surface we discuss is the contact
discontinuity separating the two shocked matter layers G,
and G,, between which there is assumed to be no matter
exchange. Assume that the flows in shells G, and G,, with
the column densities ¢; and ¢,, stream at uniform velocities
v, and v,, respectively. The momentum equations for the
two layers are

o,v? + 0,03

jo sin* a; — j, sin? a, = R , 17)
josin o; cOs —li( 29 (18)
Jo 1 %y = y ds 0101)) >
j,» Sin o, COS —li( 2y) 19)
Jw 2 az—yds 0,02)) .
The mass equations are
J
0101 = EO* Y (20)
M
azvz—Fry(r+x). (21)
We express these equations in dimensionless form as
1/2 _ £\2
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u =201 25)
n
U, ’79{)2 (26)

T+ E +)

where ¢, = 0,03/joTo, ¢z = 0,03/joT0, U = ;/v,, and
u, = v,/v,,. The similarities in the form of equation (25) and
(26) to equations (16) and (15) are worth noting. It can be
found that equation (22) and the sum of equations (23) and
(24) are the same as equations (7) and (8) in the first case,
with

Q=0+ ¢, . @7

Therefore, equations (10) and (11) are still the solutions that
determine the morphology of the contact discontinuity. In
fact equations (3) and (4), which give the bow shock shape
and momentum flux, are closed on these quantities, and
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FiG. 5—Plot of ¢, and ¢, as functions of ¢ = x/r,. The top three lines
are for ¢, and the bottom two lines are for ¢,. The solid line a is the
numerical solution of ¢,. The dashed line b corresponds to eq. (28), and the
dashed line ¢ corresponds to eq. (32). The solid line d is the numerical
solution of ¢,, and the dotted line e corresponds to eq. (29). The vertical
dot-dashed line marks the location for n = 2.

they do not require any further assumption on how the
velocity profile is across the bow shock. Let us make the
following Taylor polynomial expansion forn < 1:

1., 57T 4
2, 18,
2 114
w=tn- e, 30
4 61 a1

SRS ERA L

Figures 3 and 5 show that equation (28) fits the numerical
values well for 1 < 2 or ¢ < 0.37. Both equations (28) and
(29) diverge quickly for larger n. For # = 2, however, we an
obtain an asymptotic solution of ¢, by integrating equation
(23):

b=ty 25 1 1, () 14)] 118
LT T e rr1d1a U T2 n

(32)

where the number 1.18 is determined from the numerical
values. In the derivation, the approximation
(1 +¢*»~ Y2~ 1 — (%2 and equation (11) have been used.
In Figures 3 and 5, one sees that, for n = 2, equation (32) fits
the numerical result very well. The combination of equa-
tions (28) (for n < 2) and (32) (for n = 2) has an accuracy
294%. In addition, ¢, for large  can be obtained via the
relation (27).

3. CONCLUSION

The general quantities describing the thin-shell bow
shock are worked out analytically with higher accuracy
than previous analytical solutions by taking into account
the centrifugal force term. The two ideal cases are con-
sidered: the shocked wind and the shocked ISM are mixed
and separated, respectively. The morphology of the bow
shock can be determined by equation (10). The quantity gv?
for the first case is given by equation (14). The quantity ¢, v}
for the second case is given by equations (28) and (32). The
density in the shell and hence the thickness of the shell are
influenced sensitively by concrete thermal condition, exter-
nal ionization, MHD effects, instabilities, and even chemical
reaction, and they should be modeled separately.

Note added in manuscript—We read a preprint of
Wilkin (1996) after the submission of this paper. In his
Letter, Wilkin uses an elegant approach to find the exact
analytical solutions for a one-layer bow shock. Our approx-
imate solutions in the one-layer case (§ 2.1) are in agreement
with his solutions: equation (10) in this paper can also be
obtained by expanding his equation (9). Still, equation (10)
seems to be an effective, simple expression for the bow
shock’s shape in a Cartesian system. Note that we have also
presented physical quantities for the two-layer case (§ 2.2),
which is not discussed by Wilkin.
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