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ABSTRACT

We present a new method for calculating linear cosmic microwave background (CMB) anisotropy
spectra based on integration over sources along the photon past light cone. In this approach the tem-
perature anisotropy is written as a time integral over the product of a geometrical term and a source
term. The geometrical term is given by radial eigenfunctions, which do not depend on the particular
cosmological model. The source term can be expressed in terms of photon, baryon, and metric pertur-
bations, all of which can be calculated using a small number of differential equations. This split clearly
separates the dynamical from the geometrical effects on the CMB anisotropies. More importantly, it
allows us to significantly reduce the computational time compared to standard methods. This is achieved
because the source term, which depends on the model and is generally the most time-consuming part of
calculation, is a slowly varying function of wavelength and needs to be evaluated only in a small number
of points. The geometrical term, which oscillates much more rapidly than the source term, does not
depend on the particular model and can be precomputed in advance. Standard methods that do not
separate the two terms require a much higher number of evaluations. The new method leads to about 2
orders of magnitude reduction in CPU time when compared to standard methods and typically requires
a few minutes on a workstation for a single model. The method should be especially useful for accurate
determinations of cosmological parameters from CMB anisotropy and polarization measurements that
will become possible with the next generation of experiments. A program implementing this method can

be obtained from the authors.

Subject headings: cosmic microwave background — cosmology: theory — methods: numerical

1. INTRODUCTION

The field of cosmic microwave background (CMB) aniso-
tropies has seen a rapid development since its first detection
by the COBE satellite only a few years ago. There are now
several reported experimental results that are detecting
anisotropies on degree angular scales (see Scott, Silk, &
White 1995 and Bond 1996 for a recent review), which,
together with a few upper limits on smaller angular scales,
already give interesting limits on cosmological models.
With the development of the new generation of experiments
now being proposed, one hopes to accurately map the CMB
sky from arcminute scales to several degree scales. The
amount of data thus provided would allow for an unprece-
dented accuracy in the determination of cosmological
parameters. As theoretical modeling shows (Bond et al.
1994; Hu, Sugiyama, & Silk 1995b; Jungman et al. 1995;
Seljak 1994), CMB anisotropies are sensitive to most of the
cosmological parameters and have a distinctive advantage
over other cosmological observations in that they probe the
universe in the linear regime. This avoids the complications
caused by physical processes in the nonlinear regime and
allows the use of powerful statistical techniques to search
over the parameter space for the best cosmological model
(see, e.g., Jungman et al. 1995). A large stumbling block in
this program at present is the speed of theoretical model
calculations, which are still too slow to allow for a rapid
search over the parameter space. This limitation was par-
tially removed by the development of approximation
methods (Hu & Sugiyama 1995a, 1995b; Seljak 1994),
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which can give fast predictions of CMB anisotropy with a
10% accuracy. However, these approximations are not
accurate enough to exploit the complete amount of infor-
mation that will be present in future CMB observations.
This is especially true for some of the more extreme cosmo-
logical models, where simple approximations break down
and lead to systematic inaccuracies in the results. Obvi-
ously, it would be useful to have a fast method that would
not be based on any approximations and would lead to
accurate results for any cosmological model. The purpose of
this paper is to present a new method of CMB calculation
that satisfies these requirements.

Theoretical calculations of the CMB anisotropies are
based on linear theory of cosmological perturbations, devel-
oped first by Lifshitz (1946) and applied to the CMB aniso-
tropies by Peebles & Yu (1970). In this early calculation,
only photons and baryons were included, but later workers
extended the calculations to include dark matter (Bond &
Efstathiou 1984, 1987; Vittorio & Silk 1984), curvature
(Wilson & Silk 1981; Sugiyama & Gouda 1992; White &
Scott 1995), gravity waves or tensor modes, (Crittenden et
al. 1993) and massive neutrinos (Bond & Szalay 1983; Ma
& Bertschinger 1995; Dodelson, Gates, & Stebbins 1995).
Most of these and more recent calculations (e.g., Holtzmann
1989; Stompor 1994; Sugiyama 1995) solve for each Fourier
mode of the temperature anisotropy Ap(k) by expanding it
in a Legendre series up to some desired [, and then
numerically evolving this system of equations in time from
the radiation-dominated epoch until today. Typically, this
means evolving a system of several thousand coupled differ-
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ential equations in time, a slow process even for present-day
computers. In addition, because each multipole moment is a
rapidly oscillating function, one has to densely sample it in
values of k with a typical number of evaluations of the order
of l,... Even the fastest codes at present require several
hours of CPU time for each theoretical model (Sugiyama
1995), while some numerically more accurate ones (e.g.,
Bode & Bertschinger 1995) require more like tens or
hundreds of hours.

In this paper we explore a different approach to compute
CMB anisotropies that is based on integration of the
sources over the photon past light cone. The method is a
generalization of an approximate method developed by one
of the authors (Seljak 1994) and is similar to the approach
pioneered by Kaiser (1983). It differs from these in that it is
exact, in the sense that it can achieve arbitrary precision
within the limits of linear perturbation theory. By rewriting
the system of equations in the integral form, one can
separate the geometrical and dynamical contributions to
the anisotropies. The former do not depend on the model
and need to be computed only once, while the latter contain
all the information on the particular model and can be
computed with a small system of equations. Solving for
CMB anisotropies using this integral form greatly reduces
the required computational time. The outline of the paper is
as follows. In § 2 we present the basic system of equations
that needs to be solved in both the standard and integral
methods. In § 3 we present in some detail a practical imple-
mentation of the integral method, highlighting the compu-
tational differences between it and the standard Boltzmann
method. We conclude in § 4 by discussing possible applica-
tions where the new method can be particularly useful.

2. METHOD

In this section we first present the standard system of
equations that needs to be solved for temperature aniso-
tropies, which is based on solving the Boltzmann equation
using a Legendre expansion of the photon distribution
function. This part follows closely the existing literature
(e.g., Ma & Bertschinger 1995; Bond 1996 and references
therein) and only the final results are given. We do not
discuss the technical details of the standard Boltzmann
method, except where our approach differs significantly
from it. In the second part of the section, we present the
integral solution of the photon distribution, which is the
basis of our method. In this paper we restrict the analysis to
a spatially flat universe.

2.1. Boltzmann, Einstein, and Fluid Equations

The temperature anisotropy at position x in the direction
n is denoted by A(x, n). In principle, it depends both on the
direction and on the frequency, but because spectral distor-
tions are only introduced at the second order, the frequency
dependence can be integrated out in the lowest order. The
anisotropy A4(x, n) can be expanded in terms of Fourier
modes Ar(k, n), which in linear perturbation theory evolve
independently of one another. Assuming perturbations are
axisymmetric around k, we may further Legendre expand
the anisotropy in the angle y = k * n/k,

Aq(k, n) = El: @1+ 1(—)'An Pw) 1)

where P,(u) is the Legendre polynomial of order / and A, is
the associated multipole moment. A similar decomposition
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also applies to the amplitude of polarization anisotropy
Ap(k, n) (Bond & Efstathiou 1984; Crittenden et al. 1993;
Kosowsky 1996; Zaldarriaga & Harari 1995).

Evolution of the temperature anisotropy is governed by
the Boltzmann equation (Peebles & Yu 1970; Wilson & Silk
1981; Bond & Efstathiou 1984). Its collisionless part is
given by the time component of the geodesic equation,
which depends on the metric. Here we will use the metric in
the longitudinal gauge (Bardeen 1980; Bertschinger 1996),
which is similar to the gauge-invariant formalism (Kodama
& Sasaki 1984) and gives expressions that are most similar
to their Newtonian counterparts. The choice of gauge is
purely a matter of convenience and in some cases (e.g., iso-
curvature models) other gauge choices, such as synchronous
gauge, are computationally advantageous over the longitu-
dinal gauge (see, e.g, Bode & Bertschinger 1995; Bond
1996). In the longitudinal gauge, the perturbations are
specified with two scalar potentials ¢ and y and a gauge-
invariant tensor perturbation h (we will ignore vector per-
turbations in this paper, as they most likely have a
negligible contribution to CMB anisotropy). The corre-
sponding temperature and polarization anisotropies are
denoted as AP, AP for scalar and AP, A for tensor com-
ponents. In linear perturbation theory, the scalar and tensor
perturbations evolve independently and the total power is
given by the sum of the two contributions.

The collisional part of the photon Boltzmann equation is
determined by the Thomson scattering term. After angular
and momentum integration, the Boltzmann evolution equa-
tions for scalar perturbations can be written as

AP +iku AP = ¢ — ikuy
+ ([ —A® + A + iy, + P, (WIT], (22)
AP + ikp AP = &{ —AP + 3[1 — P,w]IIT}, (2b)
I = Af) + AP} + AR} (2)

(Bond & Efstathiou 1987). Here the derivatives are taken
with respect to the conformal time 7 and v, is the velocity of
baryons. Differential optical depth for Thomson scattering
is denoted as k = an,x,or, where a(r) is the expansion
factor normalized to unity today, n, is the electron density,
x, is the ionization fraction, and o is the Thomson cross
section. The total optical depth at time 7 is obtained by
integrating K, k(t) = j§° k(t)dz. A useful variable is the visi-
bility function g(t) = k exp (—«). Its peak defines the epoch
of recombination, when the dominant contribution to the
CMB anisotropies arises.

Expanding the temperature anisotropy in multipole
moments, one finds the following hierarchy of coupled dif-
ferential equations:

A8 = —kAD, + ¢, (3a)

A$) = (A(S’ A, +¥) + x( A<S>>, (3b)

A§) = (2 AS) — 3A8) + K<% - A<S>> . (9

A§ = m AR -1y — (1 + DARY 1]

—kAD, 1>2, (3d)
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AY) = 2l—+1 UAS -1y — (1 + DA )]
+ 1'c|:—A(s) + ; n(am + 5;)] (3e)

(Wilson & Silk 1981; Bond & Efstathiou 1984; Ma & Berts-
chinger 1995), where J,; is the Kronecker symbol. A similar
system of equations without the Thomson scattering terms
and polarization also applies for massless neutrinos. For the
massive neutrinos, the system of equations is more compli-
cated, because the momentum dependence cannot be inte-
grated out of the expressions (see, e.g., Ma & Bertschinger
1995).

Baryons and cold dark matter (CDM) can be approx-
imated as fluids, and their evolution can be obtained from
the local conservation of the energy-momentum tensor.
This gives the equations for cold dark matter density 6, and
its velocity v,,

. . a

o.= —kv.+3¢, 1')C=—Zuc+k|//. 4)
For baryons, one has additional terms in Euler’s equation
caused by Thomson scattering and pressure,

8y = — kv, + 3¢, (5a)

5y = —2 oy + c2ko, + P2 k3 AS — v) + kyr . (5b)
a 3ps

Here c; is the baryon sound speed and p,, p, are the mean

photon and baryon densities, respectively.

Finally, the evolution of scalar metric perturbations is
given by Einstein equations, which couple the sources and
the metric perturbations. Only two equations are needed to
specify the evolution. Here we choose them to be the energy
and momentum constraint equations,

g +32 <¢ += l/,) = —4nGa%3p , (62)

k2<<i) +2 w) = 4nGa%of, (6b)
where dp and Jf are the total density and momentum
density perturbations, respectively. They are obtained by
summing over the contributions from all species, dp = Z
opi, Of =Y, 0fi, Op; = p;6;, and &f; = (p; + py)v;, where p;
and p; are the mean density and pressure of the ith species.

For tensor perturbations, the Boltzmann equation is
given by

AP + iku AP = —h — (AP — ), (7a)
AP + ikp AP = —k(AD + ), (7b)

¥ = ({0078 + 35 AT + 215 AT2 — $ AR
+ 50— oho o)) 79

(Crittenden et al. 1993). The only external source is that of
the tensor metric perturbation, which evolves according to
the Einstein equations as

h‘+2§h+k2h=o. )
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We ignored the source term on the right-hand side of
equation (8) (caused by neutrino and photon anisotropic
stress), as it is always negligible compared to the terms on
the left-hand side.

To obtain the temperature anisotropy for a given mode k,
one has to start at an early time in the radiation-dominated
epoch with initial conditions of the appropriate type (e.g.,
isentropic or isocurvature) and evolve the system of equa-
tions until the present. The anisotropy spectrum is then
obtained by integrating over the initial power spectrum of
the metric perturbation P,(k),

CP = (4nm)? szdkPw(k) | ARk, T = o) [* . ©

An analogous expression holds for the polarization spec-
trum and for the tensor spectrum [where the initial power
spectrum P, (k) has to be replaced by the initial tensor
power spectrum P,(k)].

The spectrum C,; is related to the angular correlation
function,

C(O) = <A(n1)A(n2)>n1 “m2=cos @

1 9]
- 1;0 (21 + 1)C, P(cos 0) . (10)

To test a model on a given angular scale 6, one has to solve
for Ay, up to I = 1/6. If one is interested in small angular
scales, this leads to a large system of differential equations
to be evolved in time and the computational time becomes
long. For a typical spectrum with I, ~ 1000, one has to
evolve a system of 3000 differential equations (for photon
and neutrino anisotropy and photon polarization) until the
present epoch. Moreover, the solutions are rapidly oscil-
lating functions of time, so the integration has to proceed in
small time increments to achieve the required accuracy on
the final values.

2.2. Integral Solution

Instead of solving the coupled system of differential equa-
tions (3a)—(3e), one may formally integrate equations
(2a)—(2c) along the photon past light cone to obtain

70
AP = f dretrr0g™x
0

1 .
(11a)
T0
AP = — %f dre™ e k1 — Py(u)JTT  (11b)
0

(e.g., Zaldarriaga & Harari 1995). The above expressions
can be further modified by eliminating the angle u in the
integrand through the integration by parts. The boundary
terms can be dropped, because they vanish as t — 0 and are
unobservable for t = 7, (i.e., only the monopole term is
affected). This way, each time a given term is multiplied by a
U, it is replaced by its time derivative. This manipulation
leads to the following expressions:

0
A(TS,)P - L d’reiku(t_m)S(Ts?p(k, ‘L') s (123)
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o, TII 301
SP(k, 7) = g(ATO +y+ ;” + 47?)
+e @ +P)+4 LML TN 1] (12b)
Nk Ta2) T w2
Sk, 1) = ﬁ? [g(k?IT + T1) + 241T + 4T1] . (12d)

Some of the terms in the source function S%)(7) are easily
recognizable. The first two contributions in the first term
are the intrinsic anisotropy and gravitational potential con-
tributions from the last-scattering surface, while the third
contribution is part of the velocity term, the other part
being the k™ !gv, term in the second row. These terms make
a dominant contribution to the anisotropy in the standard
recombination models. The first term in the second row,
e (¢ + V), is the so-called integrated Sachs-Wolfe term
and is important after recombination. It is especially impor-
tant if matter-radiation equality occurs close to the recom-
bination or in Q... 7#1 models. In both cases
gravitational potential decays with time, which leads to an
enhancement of anisotropies on large angular scales.
Finally, we have the terms caused by photon polarization
and anisotropic Thomson scattering, which contribute to
I1. These terms affect the anisotropy spectra at the 10%
level and are important for accurate model predictions.
Moreover, they are the sources for photon polarization.
Equation (12) is a generalization of the tight-coupling and
instantaneous recombination approximation (Seljak 1994)
and reduces to it in the limit where the visibility function is
a delta function and IT can be neglected. In that approx-
imation one only needs to evaluate the sources at recombi-
nation and then free-stream them to obtain the anisotropy
today. In the more general case presented here, one has to
perform an additional integration over time, which includes
the contributions arising during and after the recombi-
nation. Moreover, because the tight-coupling approx-
imation is breaking down at the time of recombination,
both polarization and photon anisotropic stress are being
generated and IT makes a nonnegligible contribution to the
anisotropy. For exact calculations, one has to use equation
(12), which properly includes all the terms that are relevant
in the linear perturbation theory.

To solve for the angular power spectrum, one has to
expand the plane wave e**~* in terms of the radial and
angular eigenfunctions (spherical Bessel functions and Leg-
endre polynomials, respectively), perform the ensemble
average,' and integrate over the angular variable p. This
leads to equation (9), where the multipole moment at
present time A{ p(k, T =1,) is given by the following
expression:

0
AESP,P)I(k’ T=1Tp) = J; S(TS,)P(k5 )jilk(to — 1)1dr, (13)

where j(x) is the spherical Bessel function. Note that while
angular eigenfunctions integrated out after angular averag-
ing, radial eigenfunctions remained and enter in equation
(13). The main advantage of equation (13) is that it decom-

! In performing an ensemble average, we assume that only the ampli-
tude and not the phase of a given mode evolves in time. While this is valid
in linear theory for most models of structure formation, it may not be
correct in some versions of models with topological defects (Albrecht et al.
1995).
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poses the anisotropy into a source term S$p, which does
not depend on the multipole moment I, and a geometrical
term j,, which does not depend on the particular cosmo-
logical model. Thus, the latter only needs to be computed
once and can be stored for subsequent calculations. The
source term is the same for all multipole moments and only
depends on a small number of contributors in equation (12)
(gravitational potentials, baryon velocity, and photon
moments up to [ = 4). By specifying the source term as a
function of time, one can compute the corresponding spec-
trum of anisotropies. Equation (13) is formally an integral
system of equations, because ! < 4 moments appear on both
sides of equations. To solve for these moments, it is best to
use the equations in their differential form (eqs. [3a]-[3¢]),
instead of the integral form above. Once the moments that
enter into the source function are computed, one can solve
for the higher moments by performing the integration in
equation (13) (see § 3 for more details).

The solution for the tensor modes can similarly be
written as an integral over the source term and the tensor
spherical eigenfunctions yxi. The latter are related to the
spherical Bessel functions:

(I+2)! jfkr)

(1) = 14
10 = 20— 2)1 (kop a4
(Abbott & Schaeffer 1986). This gives
70
Agpp)t = f dTS(TT,)P(ka T)Xi(fo -1, (15
0
where from equations (7a)—(7c) follows
SPD=—he 4+ g¥, SP=—g¥. (16)

Equations (12)16) are the main equations of this paper
and form the basis of the line-of-sight integration method of
computing CMB anisotropies. In the next section we will
discuss in more detail the computational advantages of this
solution of the Boltzmann equation and its implementation.

3. CALCULATIONAL TECHNIQUES

In the previous section we presented the expressions
needed for the implementation of the line-of-sight integra-
tion method. As shown in equations (13) and (15), one needs
to integrate over time the source term at time ¢ multiplied
by the spherical Bessel function evaluated at k(r, — ). The
latter does not depend on the model and can be computed
in advance. Fast algorithms exist that can compute spher-
ical Bessel functions on a grid in k and [ in a short amount
of time (e.g., Press et al. 1992). The grid is then stored on a
disk and used for all the subsequent calculations. This
leaves us with the task of accurately calculating the source
term, which determines the CMB spectrum for a given
model. Below we discuss some of the calculational tech-
niques needed for the implementation of the method. We
especially highlight the differences between this approach
and the standard Boltzmann integration approach. Our
goal is to develop a method that is accurate to 1% in C, up
to I ~ 1000 over the whole range of cosmological param-
eters of interest. These include models with varying
amounts of dark matter, baryonic matter, Hubble constant,
vacuum energy, neutrino mass, shape of initial spectrum of
perturbations, reionization, and tensor modes. The choice
of accuracy is based on estimates of observational accu-
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racies that will be achievable in the next generation of
experiments and also on the theoretical limitations of model
predictions (e.g., cosmic variance, second order effects, etc.).
Most of the figures where we discuss the choice of param-
eters are calculated for the standard CDM model. This
model is a reasonable choice in that it exhibits most of the
physical effects in realistic models, including acoustic oscil-
lations, the early-time integrated Sachs-Wolfe effect, and
Silk damping. One has to be careful, however, not to tune
the parameters based on a single model. We compared our
results with results from other groups (Bode & Bertschinger
1995; Sugiyama 1995) for a number of different models. We
find a better than 1% agreement with these calculations
over most of the parameter space of the models. The com-
putational parameters we recommend below are based on
this more detailed comparison and are typically more strin-
gent than what one would find based on the comparison
with the standard CDM model only.

3.1. Number of Coupled Differential Equations

In the standard Boltzmann method, the photon distribu-
tion function is expanded to a high I, (egs. [3a]-[3¢]), and
typically one has to solve a coupled system of several thou-
sand differential equations. In the integral method, one
evaluates the source terms S(k, 7) as a function of time (egs.
[12] and [16]), and one only requires the knowledge of
photon multipole moments up to ! = 4, plus the metric per-
turbations and baryon velocity. This greatly reduces the
number of coupled differential equations that need to be
solved. For an accurate evaluation of the lowest multipoles
in the integral method, one has to extend the hierarchy
somewhat beyond [ =4, because the lower multipole
moments are coupled to the higher multipoles (egs.
[3a]-[3e]). Because power is only being transferred from
lower to higher I, it suffices to keep a few moments to
achieve a high numerical accuracy of I < 5 moments. One
has to be careful, however, to avoid unwanted reflections of
the power being transferred from low [ to high I, which
occur for example if a simple cutoff in the hierarchy is
imposed. This can be achieved by modifying the boundary
condition for the last term in the hierarchy using the free-
streaming approximation (Ma & Bertschinger 1995; Hu et
al. 1995a). In the absence of scattering (the so-called free-
streaming regime), the recurrence relation among the
photon multipoles in equations (3a)—(3e) becomes the gen-
erator of spherical Bessel functions. One can therefore use a
different recurrence relation among the spherical Bessel
functions to approximate the last term in the hierarchy
without reference to the higher terms. The same approx-
imation can also be used for polarization and neutrino hier-
archies. This type of closure scheme works extremely well
and only a few multipoles beyond I = 4 are needed for an
accurate calculation of the source term. This is shown in
Figure 1, where a relative error in the spectrum is plotted
for several choices of maximal number of photon multi-
poles. We choose to end the photon hierarchy (both aniso-
tropy and polarization) at [, = 8 and massless neutrino at
I, = 7, which results in an error less than 0.1% compared
to the exact case. Instead of a few thousand coupled differ-
ential equations, we therefore evolve about 35 equations
and the integration time is correspondingly reduced.

3.2. Sampling of CM B Multipoles
In the standard Boltzmann integration method, one
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Fi16. 1.—CMB spectra produced by varying the number of evolved
photon multipole moments, together with the relative error (in percent)
compared to the exact case. While using I, = 5 produces up to 2% error,
using I, = 7 gives results almost identical to the exact case.

solves for the whole photon hierarchy (eqs. [3a]-[3¢]) and
the resultant A, is automatically obtained for each ! up to
some I,,. The CMB spectra are however very smooth (see
Fig. 1), except for the lowest I, where the discrete nature of
the spectrum becomes important. This means that the spec-
trum need not be sampled for each /, and instead it suffices
to sparsely sample the spectrum in a number of points and
interpolate between them. Figure 2 shows the result of such
interpolation with cubic splines (see, e.g., Press et al. 1992)
when every 20th, 50th, or 70th I is sampled beyond | = 100
with an increasingly denser sampling toward small /, so that
each [ is sampled below [ = 10. While sampling of every
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1

F1G. 2—Relative error between the exact and interpolated spectrum,
where every 20th, 50th, or 70th multipole is calculated. The maximal error
for the three approximations is less than 0.2%, 0.4%, and 1.2%, respec-
tively. The rms deviation from the exact spectrum is further improved by
finer sampling, because the interpolated spectra are exact in the sampled
points. For the sampling in every 50th multipole, the rms error is 0.1%.
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70th [ results in maximal error of 1%, sampling in every
20th or 50th [ gives errors below 0.2% and 0.4%, respec-
tively. We choose to compute every 50th C, beyond I = 100
in addition to 15 I modes below [ = 100, so that a total of 45
I modes are calculated up to I,,, = 1500. This gives a
typical (rms) error of 0.1%, with excursions of up to 0.4%.
The number of integrals in equation (9) is thus reduced by
10-50 and the computational time needed for the integrals
becomes comparable to or smaller than the time needed to
solve for the system of differential equations.

3.3. Free Streaming

After recombination and in the absence of a time-
dependent gravitational potential, the source function often
becomes negligible. This is the so-called free-streaming
regime, where the photons are freely propagating through
the universe. Most of the standard Boltzmann codes use a
special free-streaming algorithm to map the anisotropies
from a given epoch 7 into anisotropies today (Bond &
Efstathiou 1984). In the line-of-sight integration method,
the free-streaming regime is only a special case, where
S(k, T) = 0 after some time ... Thus, one can stop the inte-
gration at the time 74, beyond which the sources are not
important and there is no need for a separate algorithm to
evolve the anisotropies until today. For example, if one
assumes that only the first term in equation (12) is impor-
tant, one only needs to integrate over the source where the
visibility function g appreciably differs from 0. In the
absence of reionization, this restricts the time integration to
a narrow interval during recombination around z &~ 1100.
Although most of the contributions to the anisotropies
come from this epoch, a time-dependent gravitational
potential (and, to a smaller extent, other source terms in eq.
[12]) makes a nonnegligible contribution to the aniso-
tropies, even after recombination. As mentioned earlier, this
is especially important in Q... # 1 models and in models
with low Q... #*. In the first case, the gravitational poten-
tial is decaying at late times, while in the second class of
models the matter-radiation equality during which gravita-
tional potential changes in time is pushed to a lower red-
shift. Even in the standard CDM model (Q e = 1, h =
0.5), the gravitational potential is still significantly changing
in time at moderately low redshifts of z ~ 100 (Hu et al.
1995a). Similarly, one cannot use free-streaming in the
models with late reionization, where the visibility function
is nonvanishing at low redshifts. We choose to integrate
until the present time for most of the models, except for the
models with Q_..... = 1, where we stop the integration at
z = 10. In this case, the computational time is reduced sig-
nificantly (typically 50%) compared with that of evolving
the equations until the present time.

3.4. Integration over Time

For each Fourier mode k, the source term is integrated
over time 7 (eq. [13]). The sampling in time need not be
uniform, because the dominant contribution arises from the
epoch of recombination around z ~ 1100, the width of
which is determined by the visibility function g and is rather
narrow in look-back time for standard recombination sce-
narios. During this epoch, the sources acoustically oscillate
on a timescale of ¢,k !, so that the longest wavelength
modes are the slowest to vary. For short wavelengths, the
rate of sampling should therefore be higher. Even for long
wavelengths, the source function should still be sampled in
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several points across the last-scattering surface. This is
because the terms in equation (12) depend on the derivatives
of the visibility function. If the visibility function g is
narrow, then its derivative will also be narrow and will
sharply change sign at the peak of g. Its integration will lead
to numerical round-off errors if not properly sampled, even
though positive and negative contributions nearly cancel
out when integrated over time and make only a small con-
tribution to the integral. Figure 3 shows the error in inte-
gration caused by sampling this epoch with 10, 20, or 40
points. Based on comparison with several models, we
choose to sample the recombination epoch with 40 points,
which results in very small (~0.1%) errors. After this epoch,
the main contribution to the anisotropies arises from the
integrated Sachs-Wolfe term. This is typically a slowly
changing function, and it is sufficient to sample the entire
range in time until the present in 40 points. The exceptions
here are models with reionization, where the visibility func-
tion becomes nonnegligible again and a new last-scattering
surface is created. In this case a more accurate sampling of
the source is also needed at lower redshifts.

3.5. Integration over Wavenumbers

The main computational cost of standard CMB calcu-
lations is solving the coupled system of differential equa-
tions. The number of k modes for which the system is solved
is the main factor that determines the speed of the method.
For results accurate to [,,,, one has to sample the wave-
numbers up to a maximum value k,, = [,.,./7,. In the line-
of-sight integration method, solving the coupled system of
differential equations still dominates the computational
time (although for each mode, the time is significantly
shorter than in the standard Boltzmann method because of
a smaller system of equations). It is therefore instructive to
compare the number of k evaluations needed in each of the
methods to achieve a given accuracy in the final spectrum.

1 T T T T I T T T T T T T
L N =40 /,\ 4
L N,=20 ] |\
A ___N-=10 [
i [
Y S b
= \1 N
5 H I\ / \
E R [\ ! l
. L \ /ﬁ\ / \J/ _
L \\ / \\_/ \\./ _

\ /

Y :
_2 I 1 1 | 1 | | I i — 4L B | 1 ]

500 1000

1

F16. 3—Error in the spectrum caused by insufficient temporal sam-
pling of the source term. Inaccurate sampling of the source during recom-
bination leads to numerical errors, which can reach the level of 1% if the
source is sampled in only 10 points across the recombination epoch. Finer
sampling in time gives much smaller errors for this model. Comparisons
with other models indicate that sampling in 40 points is needed for accu-
rate integration.
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v S B L L L l(af' T spectrum (Hu et al. 1995a), but even in this case one requires
0.005 A - at least 1-2 points for each period, or [ ,,/2 k-mode evalu-
E 7,150 3 ations.

0F iUt To understand the nature of these rapid oscillations in
0.005 E ’ E A$) k), we will consider wavelengths larger than the width of
‘ S T T T the last-scattering surface. In this case, the Bessel function in
0.01 0.02 0.03 0.04 0.05 0.06 eq. (13) can be pulled out of the integral as j(kz,) because
k[hMpc-1] the time at which recombination occurs, when the domi-
nant contribution to A$)(k) is created, is much smaller than
0.015 7o and kAt < 1 (A is the interval of time for which the
' E PN O E visibility function differs appreciably from zero). So the final
0.01 & JS(k,7)dT E A$)(k) is approximately the product of j(kt,) and S inte-
0.005 £ 3 grated over time, if the finite width of the last scattering
0E = surface and contributions after recombination can be

-0.005 £ 3 ignored.
001 Bl b b b e Figure 4b shows the source term S% integrated over time
0.01 002 0.03 004 005 0.06 and the Bessel function j(kto). It shows that the high-

k[hMpc-1]

FiG. 4.—(a) A$) 54(k) plotted as a function of wavevector k. (b) AS) 5o(k)
is decomposed into the source term S integrated over time and the
spherical Bessel function j,so(k7o). The high-frequency oscillations of
A$) 5o(k) are caused by oscillations of the spherical Bessel function
Jj1solkty), whereas the source term varies much more slowly. This allows
one to reduce the number of k evaluations in the line-of-sight integration
method, because only the source term needs to be sampled.

In the standard Boltzmann method, one solves for AS)(k)
directly, so this quantity must be sampled densely enough
for accurate integration. Figure 4a shows A$)(k) for [ = 150
in a standard CDM model. One can see that it is a rapidly
oscillating function with a frequency k ~ 75 '. Each oscil-
lation needs to be sampled in at least a few points to assure
an accurate integration. To obtain a smooth CMB spec-
trum, one typically requires six points over one period,
implying 2l,.. k-mode evaluations. This number can be
reduced somewhat by filtering out the sampling noise in the
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F1G. 5—Error in the spectrum caused by insufficient k-mode sampling
of the source term. Sampling the source with 40 points up to k=21 .,
leads to 1% errors, while with 60 or 80 points the maximal error decreases
to 0.2%. Comparisons with other models indicate that sampling in 60
points is sufficient for accurate integration.

frequency oscillations in AL)(k) seen in Figure 4a are caused
by the oscillation of the spherical Bessel functions, while the
oscillations of the source term have a much longer period in
k. The different periods of the two oscillations can be under-
stood using the tight-coupling approximation (Hu et al.
1995a; Seljak 1994). Prior and during recombination,
photons are coupled to the baryons and the two oscillate
together with a typical acoustic timescale 7, ~ 7,../3'/* ~
70/(32,e0) 1 ~ 10/50. The frequency of acoustic oscillations
k ~ 1! is therefore 50 times higher than the frequency of
osclillations in spherical Bessel functions, which oscillate as
To

Because an accurate sampling of the source term requires
only a few points over each acoustic oscillation, the total
number of k evaluations in the integral method can be sig-
nificantly reduced compared with the standard methods.
Typically, a few dozen evaluations are needed over the
entire range of k, compared to about 500 evaluations in the
standard method when a noise filtering technique is used
and 2000 otherwise (for I ,,, ~ 1000). Once the source term
is evaluated at these points, one can interpolate it at points
with preevaluated spherical Bessel functions, which can be
much more densely sampled at no additional computa-
tional cost. The end result is the same accuracy as in the
standard method, provided that the source is sampled in a
sufficient number of points. Figure 5 shows the relative
error in the CMB spectrum for the cases in which the source
term is calculated in 40, 60, and 80 points between 0 and
kt, = 3000 (for I,,,, = 1500). While using 40 points results
in up to 1% errors, using 60 points decreases the maximum
error to below 0.2% for this model. In general, it suffices to
use I,,,,/30 k modes, which is at least an order of magnitude
smaller than in the standard methods. Note that with this
method there is no need to filter the spectrum to reduce the
sampling noise, because the latter is mainly caused by insuf-
ficient sampling of the spherical Bessel functions, which are
easy to precompute. The additional operations needed for a
higher sampling (summation and source interpolation) do
not significantly affect the overall computational time.
Moreover, if each C, is accurately calculated, they can be
sparsely sampled and interpolated (§ 3.2); this would not be
possible if they had a significant noise component added to
them.

4. CONCLUSIONS

In this paper we presented a new method for accurate
calculations of CMB anisotropy and polarization spectra.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...469..437S

(9]}

R e

A

[{e]]
(=]
[=h

444 SELJAK & ZALDARRIAGA

The method is not based on any approximations and is an
alternative to the standard Boltzmann calculations, which
are based on solving large numbers of differential equations.
The approach proposed here uses a hybrid integrodifferen-
tial approach in solving the same system of equations. By
rewriting the Boltzmann equations in the integral form, the
solution for the photon anisotropy spectrum can be written
as an integral over a source and a geometrical term. The
first is determined by a small number of contributors to the
photon equations of motion, and the second is given by the
radial eigenfunctions, which do not depend on the particu-
lar cosmological model, but only on the geometry of space.

One advantage of the split between geometrical and
dynamical terms is that it clarifies their different contribu-
tions to the final spectrum. A good example of this is the
temperature anisotropy in the nonflat universe, which can
be written using a similar decomposition, except that spher-
ical Bessel functions have to be replaced with their appro-
priate generalization (Abbott & Schaeffer 1986). This will be
discussed in more detail in a future publication—here we
simply remark that replacing radial eigenfunctions in a
nonflat space with their flat space counterpart (keeping
comoving angular distance to the LSS unchanged) is only
approximate and does not become exact even in the large-I
(small-angle) limit. The geometry of the universe leaves its
signature in the CMB spectra in a rather nontrivial way and
does not lead only to a simple rescaling of the spectrum by
Q.12 (Jungman et al. 1995).

The main advantage of our line-of-sight integration
method is its speed and accuracy. For a given set of param-
eters, it is 2 orders of magnitude faster than the standard
Boltzmann methods, while preserving the same accuracy.
We compared our results with the results of Sugiyama

(1995) and of Bode & Bertschinger (1995), and in both cases
the agreement was better than 1% up to a very high [ for all
of the models to which we compared.

The method is useful for fast and accurate normalizations
of density power spectra from CMB measurements, which
for a given model require the CMB anisotropy spectrum
and matter transfer function, both of which are provided by
the output of the method. Speed and accuracy are even
more important for an accurate determination of cosmo-
logical parameters from CMB measurements. In such appli-
cations one wants to perform a search over a large
parameter space, which typically requires calculating the
spectra of several thousand models (e.g., Jungman et al.
1995). One feasible way to do so is to use approximation
methods mentioned in the introduction. These can be made
extremely fast, but at a cost of sacrificing the accuracy.
While several percent accuracy is sufficient for analyzing the
present-day experiments, it will not satisfy the requirements
for the future all-sky surveys of the microwave sky. Provid-
ed that foreground contributions can be successfully filtered
out (see Tegmark & Efstathiou 1995 for a recent discussion),
one can hope for accuracies in the spectrum close to the
cosmic variance limit, which for broadband averages can
indeed reach below 1% at [ > 100. It is at this stage that fast
and accurate CMB calculations such as the one presented
in this paper will become crucial and might enable one to
determine many cosmological parameters with an unprece-
dented accuracy.

We would like to thank Ed Bertschinger for encouraging
this work and providing helpful comments. This work was
partially supported by grant NASA NAGS5-2816.
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