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ABSTRACT

We investigate the importance of the slow continuum (from linear, ideal magnetohydrodynamics
[MHDY]) for hot, evacuated, and strongly magnetic fibrils with nonnegligible radial structure. The radial
structure allows for both slow and Alfvén resonant absorption of acoustic power (in linear, visco-resistive
MHD). When calculating how efficiently the acoustic power is absorbed by such “hot magnetic fibrils,”
embedded in a uniform compressible medium, as a function of the real driving frequency, it is found that
the axisymmetric component of the acoustic excitation is absorbed quite strongly for frequencies within
the range of the slow continuum.

Additionally, for these one-dimensional hot magnetic fibrils, a sequence of absorption maxima accu-
mulates in real driving frequency above the range of the slow continuum, still within the Alfvén contin-
uum. The maximal absorption coefficients reach 80% and more. We identify the complex optimal driving
frequencies and the associated complex leaky eigenmodes responsible for these absorption maxima.

The leaky eigenmodes relate to the well-known tube speed modes of a uniform, hot, and evacuated
flux tube. The complex eigenfrequencies of the leaky eigenmodes of the radially structured fibrils are cal-
culated from the impedance criterion that these eigenfrequencies satisfy.

We define the generally complex optimal driving frequencies to be those driving frequencies at which
total (100%) absorption of the incoming wave field takes place. They also obey an impedance criterion,
similar to the one that defines the eigenfrequencies. Both impedance criteria demonstrate clearly the con-
nection between optimal driving frequencies and leaky eigenmodes. This also calls for a reevaluation of
the results of Goossens & Hollweg, in which optimal and total resonant absorption for real driving fre-
quencies and the complex leaky eigenmodes was discussed.

For network and plage magnetic elements in the solar atmosphere, our results may be relevant for
wave interactions within a layer situated at a geometrical height of about 400 km above photospheric

t=1
Subject headings: MHD — Sun: magnetic fields

1. INTRODUCTION

In ideal magnetohydrodynamics (MHD), an equilibrium
gradient across otherwise straight magnetic field lines intro-
duces continuous ranges of equilibrium frequencies, com-
monly known as the Alfvén and slow continuum (see, e.g.,
Goedbloed 1983). Assuming an ignorable vertical (field-
aligned) coordinate z, and Fourier-analyzing as exp (ik, z),
the (squared) Alfvén frequencies are given by

K B2/(up) = K3 03,
and the (squared) slow frequencies are given by
K% B2 c/Lupl(c® + 03)] = K 3.

In these expressions, B, denotes the (vertical) magnetic field,
p is the density, and p is the magnetic permeability. From
these, the squared Alfvén speed is introduced as vi =
B2/(up), while c? denotes the squared sound speed and c2 is
the squared tube speed. It is the aim of this paper to illus-
trate how both continua allow for efficient absorption of
acoustic power by hot magnetic (straight) fibrils with inter-
nal radial structure (one dimension), due to resonant absorp-
tion.

Resonant absorption has been studied extensively in the
context of linear MHD: in essence, due to the equilibrium

1 On leave from Center for Plasma-Astrophysics, K. U. Leuven,
Belgium. Presently at FOM Institute for Plasma Physics, Rijnhuizen, P.O.
Box 1207, 3430 BE Nieuwegein, Netherlands.
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gradient across the field lines in a one-dimensional mag-
netic fibril, it becomes possible to excite resonantly a single
flux surface at one of its natural frequencies (slow or Alfvén).
Any usually ignorable dissipative mechanism prevents the
development of infinite gradients in the disturbances by the
introduction of a dissipative layer of small, finite width
about the critical surface. Within the framework of linear
dissipative MHD, one has analytic information about the
extent of this dissipative layer and the actual variation of
the linear disturbances within it (Goossens, Ruderman, &
Hollweg 1995). The total power extracted from the excita-
tion due to such “resonant absorption” can hence be deter-
mined by (i) solving for the linear disturbances outside the
dissipative layer using ideal MHD, (ii) incorporating the
linear analytic (!) dissipative MHD results to deal with the
resonance, and (iii) comparing the radially incoming versus
radially outgoing energy fluxes. Indeed, the net effect of
each resonant layer in which dissipation occurs is to extract
some of the incoming acoustic power and heat up the
plasma locally.

Resonant absorption due to the Alfvén continuum
received most attention in the literature, in particular within
the context of coronal loop heating mechanisms and
p-mode absorption by sunspots (see, e.g., Hollweg 1988;
Lou 1990; Poedts, Goossens, & Kerner 1989, 1990;
Goossens & Poedts 1992). In both cases, the power carried
by waves exciting the magnetic structure is partly scattered
and partly transmitted, and part of the transmitted power
may be dissipated into heat due to resonant absorption.
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Naturally, in order for such dissipation to occur, it is
required that the frequency spectrum of the exciting waves
overlaps with the Alfvén and/or slow frequency spectrum of
the excited equilibrium structure. In the simplest model of a
flux tube embedded in homogeneous unmagnetized sur-
roundings characterized by a sound speed c, the frequencies
w of the exciting acoustic waves all satisfy w > k| ¢, and the
low-frequency slow continuum usually cannot be accessed.
Therefore, most studies focused on Alfvén resonant absorp-
tion. However, there are two cases of physical interest in
which a study of slow resonant absorption in one-
dimensional magnetic flux tubes deserves particular atten-
tion. First, hot and evacuated magnetic flux tubes may have
internal tube speeds ¢ in excess of the external sound speed
¢, such that the slow continuum is (partly) accessible for
acoustic excitation. Second, in twisted magnetic flux tubes,
the degeneracy of the frequency ranges of Alfvén and slow
continuum with respect to the azimuthal variation is lifted,
and slow resonant absorption cannot a priori be ignored. In
this paper, we discuss the former case of hot and evacuated,
but untwisted, flux tubes. Our aim is to investigate and
compare the efficiency of resonant absorption within both
the slow and the Alfvén continuum.

A prerequisite for interpreting the efficiency of resonant
absorption in magnetic fibrils is a full understanding of the
linear MHD spectrum of the combined system consisting of
the fibril and its (here, assumed uniform and unmagnetized)
surroundings (Goossens & Hollweg 1993). In particular, as
frequencies of interest for acoustic wave excitation satisfy
o > k| c, the eigenfrequencies of leaky modes must be cal-
culated, and their influence on the absorption efficiency
must be established. The term “leaky ” refers to the fact that
for real k|, eigenmodes of the fibril plus its (infinite!) sur-
roundings have complex eigenfrequencies w = wy + iw;
when their real part wg > k¢, since the mode will be
damped due to acoustic wave leakage into the surroundings
(for results on leaky modes of uniform flux tubes, see Wilson
1981; Spruit 1982; Cally 1986). In cases of interest here, the
real part wg can lie within either the slow or the Alfvén
continuum (or both), so that in such cases, the damping w,
has a contribution from the resonant absorption internal to
the fibril. Although a connection between efficient resonant
absorption and leaky eigenmodes was anticipated
(Goossens & Hollweg 1993), the actual calculation of the
complex eigenfrequencies for a one-dimensional magnetic
flux tube embedded in uniform (wave carrying) surround-
ings awaited the realization that all eigenfrequencies (leaky
and nonleaky alike) satisfy an impedance matching
(Keppens 1995a, 1995b). In the Appendix, we provide
details about the basic ideas that have led to this realiza-
tion. In essence, the important linear quantities are the (total)
linear pressure 0P and the velocity component normal to
the flux tube boundary, dvg (the subscript R refers to the
radial direction, which is the normal for a cylindrical flux
tube), and their ratio defines the normal acoustic impedance
Z = 6P/dvg (usually made dimensionless, or “specific” by
division through pc; see, e.g., Morse & Feshbach 1953).
When we decompose the wave field external to the flux tube
into the exciting (subscript “exc”) and the scattered
(subscript “sc”) part (that part that is due entirely to the
presence of the flux tube), we may define an impedance for
each of these wave fields separately. Hence, by denoting the
internal wave field as transmitted (subscript “tr”), we have
three impedances: the transmitted one Z; = 6P, /dvg ,,, the
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exciting® one Zg = 0p.y./0Ug xe» and the scattered one
Zg = 0p,./0vg, .- Note that we use total linear pressure JP
for the transmitted wave field, while in the unmagnetized
surroundings, the external linear pressure perturbation is
made up of the linear gas pressure dp alone. In contrast to
this decomposition of the external wave field into its excit-
ing and scattered part, we may prefer to take the geometry
of the flux tube into account and decompose the external
wave field into radially incoming and outgoing cylindrical
waves instead (see Appendix), so that we may introduce
incoming (Z; = 0p;,/0vg ;) and outgoing (Zp =
OPout/OVg, o) impedances as well. Since the total pressure
perturbation and the normal velocity component are con-
tinuous across the flux-tube boundary, we then have several
ways to calculate the transmitted normal acoustic imped-
ance, namely,

5Ptr 6pexc + 6psc 5pin + 5pout
ZT = = = . (1)
5UR,tr 50R,exc + 50R,sc 5UR,in + 50R,uut
These equalities can be manipulated to yield
0 Zr— 7
URyse _ T E X ?)
51}R,exc ZS - ZT
and also
50R,out — ZT - ZI . (3)
517R,in Zo—Zg

A careful examination of these expressions reveals that the
left-hand sides are proportionate to the relative phase
shift and amplitude modifications suffered by the exciting
wave field to yield the scattered wave (eq. [2]), and similarly
for the incoming wave field to yield the outgoing wave? (eq.
[3]). Yet, other manipulations can give information on the
transmitted wave field with respect to either the exciting or
the incoming wave field. Two important conclusions can be
drawn from equations (2) and (3):

1. No incoming (or no exciting) wave corresponds to the
impedance criterion Z, = Z (or Zg = Z;). This impedance
criterion can thus be used to calculate the eigenfrequencies
of the eigenmodes of the cylindrical scatterer embedded in
its infinite and wave-carrying surroundings (see also
Keppens 1995a, 1995b). Those eigenfrequencies w that have
their real part wg in excess of k| ¢ lead to acoustic wave
leakage into the surroundings and are referred to as
“leaky ” eigenmodes, while those with wy < k, ¢ are termed
“nonleaky.”

2. 100% absorption, or no outgoing wave, corresponds
to the impedance criterion given by Z; = Z;. This imped-
ance criterion defines the (complex) optimal driving fre-
quencies. Hence, we define an optimal driving frequency
from the condition that when one drives the system at this
(complex) frequency, an analysis of the external wave field
into incoming and outgoing waves leads to a zero ampli-

2 In Keppens (1995b), this was Zg = 0p,,o/(— 60 o). In this paper, we
drop this extra minus sign.

3 These expressions are related to the so-called T-matrix and S-matrix
of a cylindrical scatterer; see Appendix. Keppens (1995b) uses eq. (2) to
calculate the components of the T-matrix for a flux tube with a thin
transition layer analytically. The components of both matrices for cylin-
drical scatters are related by S = 1 — 2T.
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tude for the outgoing wave, such that one may say that the
incoming wave is totally absorbed by the scattering object.
From equation (3), this is equivalent to the impedance cri-
terion Z; = Z;.

What exactly these impedance criteria mean for our one-
dimensional magnetic flux fibril will be explained in more
detail in this paper. Suffice it to say that they will allow us to
give, for the first time, a complete and detailed account of
the connection between efficient resonant absorption and
leaky eigenmodes. Therefore, these results support and sup-
plement the results of Goossens & Hollweg (1993), in which
this connection was first realized.

As we restrict ourselves in this paper to study hot mag-
netic fibrils with nonnegligible internal radial structure, we
expect to find leaky modes, satisfying Zg = Zr, in relation
with the slow continuum since it is derived from the radial
variation of the tube speed. This is because, as is well
known, the tube speed ¢y in a thin, but uniform, flux tube
plays the role of an accumulation point (in longitudinal
phase speed w/k) of infinitely many discrete eigenmodes
(Defouw 1976). However, it is not immediately obvious how
these discrete modes behave when the single slow frequency
of the uniform flux tube is replaced (or “smeared out”)in a
slow continuum. As mentioned above, the impedance cri-
terion that the eigenfrequencies satisfy will allow us to
address the faith of these modes. We will show the follow-
ing:

1. That sequences of leaky modes (for which Zg = Z )
are found to accumulate in (the real part of the) frequency
toward the maximum in the slow continuum;

2. That associated optimal, but in general complex, fre-
quencies for which Z; = Z exist at which 100% absorption
occurs.

We investigate how the (complex) leaky modes and the
(mostly complex) optimal driving frequencies play a role in
the acoustic excitation of a hot magnetic fibril with real
driving frequency. This will call for a reevaluation of the
results of Goossens & Hollweg (1993).

Finally, within the solar context, the thin hot magnetic
fibrils studied in this paper are (admittedly poor) represen-
tations for the omnipresent magnetic elements of strong
(kG) fields and positive temperature contrast (see, e.g.,
Keller 1992; Schiissler 1991; Solanki 1993). As these are
embedded in almost field-free, convective surroundings, the
scattering and absorption processes we are dealing with
here within the framework of linear MHD may serve to
understand better the more realistic dynamic situation.
When we crudely ignore the dynamic nature of solar mag-
netic elements (as evidenced by the numerical simulations of
Steiner et al. 1996) and compare the semiempirically deter-
mined vertical structure of plage and network small-scale
magnetic fluxtubes (from Keller et al., 1990)with our (one-
dimensional) model parameters, we can identify a layer at
approximately 400 km geometrical height above the photo-
spheric T = 1 level at which slow resonant absorption, and
the leaky modes accumulating toward the slow continuum,
may play a role in wave interactions with magnetic ele-
ments.

The paper is organized as follows. For a particular equi-
librium configuration modeling a hot magnetic fibril, we
give a rather detailed account of its absorption properties
due to slow and Alfvén resonant absorption, and we clarify
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the connection with leaky modes and optimal driving fre-
quencies. This is done in § 2. We calculate exact eigen-
frequencies and optimal driving frequencies using the
impedance criteria given above. In § 3, we illustrate the
effects of varying the evacuation, the radial stratification,
and the thickness of the hot magnetic fibril equilibrium, and
we discuss its relevance to solar magnetic elements. We
conclude in § 4.

2. LINEAR ANALYSIS OF A ONE-DIMENSIONAL
HOT FIBRIL

2.1. The One-dimensional Fibril Equilibrium

The ideal, axisymmetric one-dimensional MHD equi-
librium that we use to model a straight magnetic fibril with
internal radial structure is adopted from Lou (1990). This
equilibrium had the practical “sharpness” parameter A,
which controlled the sharpness of the transition between the
magnetized and the external unmagnetized region. We
define a generalized Lou-type equilibrium as characterized
by two physical parameters, 4 and D. The parameter A still
has the interpretation of a sharpness parameter, while D
measures the density ratio between the external and the
axial density D = py/p,(0) (from here on, a subscript “0”
refers to external quantities, while a subscript “1” refers to
internal quantities). If we scale the equilibrium quantities
(and denote scaled quantities by a superscript “*”) to the
cylinder radius a, the total axial field strength B,(0), and the
axial density p,(0), the defining equation (for radial coordi-
nate0 < R < 1)is

PHR) = % (1 + e MR=12)] 4 0.5e4R-12)  (4)

The density profile can be chosen independently, but to
keep the physical meaning of A as a sharpness parameter,
we proceed as follows. If we introduce the factor A4 as

1-D
A=De"1—1’ )

we can define a Lou-type density profile as

1+ Ae™MR-12

*R —
PIR) 1+ Ae™*

(6)
We note that in the orginal equilibrium used by Lou (1990),
the factor A4 was equal to one, such that the actual density
contrast D was limited to small values (D < 2), through its
nontrivial dependence on the sharpness parameter A. The
(vertical) magnetic field B¥,(R) is then determined from the
static equilibrium condition and varies smoothly from its
axial value B (0) =1 to zero at the flux-tube radius. In
these equations, the parameter p,,, = p¥(1) measures the
dimensionless pressure at the flux-tube radius and relates
to the external pressure p, as p, = Pl B;1(0)]%/2p. As
noted previously by Goossens & Poedts (1992), the param-
eter p.,, is actually dependent on the defining equilibrium
parameter /4,

B 0.5
Pext = [1 __ (1 + e_;')(l + 058_}‘)/3] .

Q]

Further, the external density p, = p¥(1)p,(0). Some other
physical parameters that can be derived from A, D, and the
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(dependent) parameter p,,, are

pi1)=D,
pHO) = % 1+ e M1 +05e7%),
v41(0) _ B’lk_(_l_) ®)
CO ypext ’
¢;(0) * va1(0)
o -  1pi(0) Tey

In this Lou-type equilibrium, large A corresponds to an
almost uniform untwisted flux tube with a thin transition
layer. The ratio of specific heats is y = 5/3, as usual.

2.2. Slow and Alfvén Resonant Absorption

In the remaining part of this section, we consider the
particular case of a fibril with its thickness characterized by
kja =09, sharpness A = 75, and with a density contrast of
D = 5. The radial variation of p}, B}, and p¥ is shown in
Figure 1. We show also the variation of the Alfvén, tube,
and sound speed across the fibril, normalized to the external
sound speed c,. We infer from these profiles that the tem-
perature contrast is about T; = 1.66T, over 75% of the
fibril radius a, and for typical photospheric pressures of the
order of p, = 10* Pa, the field strength is roughly 1.8 kG
over a similar radial extent. Hence, this particular hot mag-
netic fibril bears no immediate resemblance to a magnetic
element (which has a lower temperature contrast), apart
from its field strength. Variations in the equilibrium param-
eters (and in particular, parameter values more suitable for
magnetic elements) will be considered in § 3.

Due to the variation of the equilibrium in the outer 25%
of radius, we must integrate the Hain & Liist (1958) equa-
tion that governs the linear disturbances about this axisym-

5rlrrrlvrvll|vlv!lvv
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metric one-dimensional, ideal MHD equilibrium. Omitting
unduly details (which can be found, e.g., in Sakurai, Goos-
sens, & Hollweg 1991a, their egs. [9] and [10]), the linear
ideal MHD equations can be reduced to a system of two
linear first-order ordinary differential equations in the vari-
ables (6vg, 6 P) of the form

A (@, m; ky)vg + Ay(w, m; ky)ovg + As(w, m; k)oP
+ Ay, m; k) )oP'=0. (9)

A prime denotes differentiation with respect to the important
R-coordinate, dvg is again the radial velocity perturbation,
and JP denotes the Eulerian total linear pressure (recall that
the ratio of these two linear quantities defines the normal
acoustic impedance). The coefficients A4; are complex and
equilibrium dependent. To derive these equations from the
linearized MHD equations, one starts as usual with a
Fourier analysis in the ignorable vertical coordinate
exp (ik; z) and takes advantage of the axisymmetry through
Fourier analysis of the azimuthal (angle @) variation about
the fibril as exp (img), where m is the integer multipole com-
ponent. For straight fibrils, the A; values depend on m?
only, so that positive and negative values of m cannot be
distinguished (this changes if the equilibrium has twist).
Also, in these equations, the time dependence is taken as
exp (—iwt), but the frequency w may well be complex. A
dimensionless (complex) aspect ratio ka = aw/c, will be
used to quantify the frequency. For a fibril of a certain
thickness (e.g., one with kjja = 0.9 as will be considered
throughout this section), the slow continuum ranges from
zero frequency up to Ze (ka) < (k| a)cr;(0)/cy, while the
Alfvén continuum overlaps the whole slow continuum, but
reaches up to higher frequencies, namely, Ze (ka) < (k a)
X v41(0)/c,. Hence, for general complex frequencies w (or ka)
in the driven problem [time dependence exp (—iwt)] of a
hot fibril of size k| a = 0.9, we find regimes of (i) both slow
and Alfvén resonant absorption, (ii) only Alfvén resonant

2.0 T
o 1.5¢
(@]
~ c
c)..; ................................
O° """"""
N 1.0} c,
Q
C_J°
\-1
<
> 0.5}
0.0 TR G RN BT RN AR S
0.0 0.2 0.4 0.6 0.8 1.0

R

FiG. 1.—Left: The radial variation of (dimensionless) density p¥(R) (solid line), magnetic field B¥,(R) (dotted line), and pressure p*(R) (dashed line) for a
Lou-type equilibrium characterized by a density contrast D = 5 and sharpness parameter A = 75. Right: The corresponding variation of (normalized) Alfvén
speed v,,(R)/c, (solid line), sound speed c,(R)/c, (dotted line) and tube speed c,(R)/c, (dashed line).

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...468..907K

No. 2, 1996

absorption, and (iii) no resonant absorption. Depending on
(the real part of) the driving frequency ka, we must incorp-
orate the effects of thin dissipative layers about critical sur-
faces at which either the local slow or Alfvén frequency is
matched (see, e.g., Goossens et al. 1995). This can be done
using the so-called connection formulae that link the appro-
priate Hain & Liist solutions to the left and right of the
dissipative layer(s). Note that when both an Alfvén and a
slow resonance occurs, we must make two such connections
using the appropriate formulae for the slow and the Alfvén
critical surface. Details of this procedure can be found in
Sakurai, Goossens, & Hollweg (1991a, 1991b, hereafter
SG&Ha, SG&HD, respectively); novel to our approach is
only its use for general complex frequency w (see also
Stenuit, Erdélyi, & Goossens 1995a; Stenuit, Keppens, &
Goossens 1995b). In summary, the internal solution for
general complex ka, including the effects of Alfvén and/or
slow resonances, can be determined from the solution of
two (complex) first-order ordinary differential equations in
(dvg, OP) of the form of equation (9). In principle, we can
then calculate the normal acoustic impedance for the trans-
mitted wave field from the boundary values of the solution.
Naturally, in practice, the solution must be “tuned” to
satisfy boundary conditions, which come into play by a
consideration of the external solution.

As far as the outside (unmagnetized) medium is con-
cerned, leakage of acoustic waves from the fibril into this

medium may occur for disturbances that have the real part

of the aspect ratio Ze (ka) > k| a. For the hot fibrils con-
sidered here, this frequency regime of acoustic leakage over-
laps partly with the ideal slow and Alfvén frequency contin-
va. Exactly this overlap regime is of interest for the
absorption of acoustic power by the fibrils. For a general
complex ka, the appropriate solution of the wave equation
in the unmagnetized medium can, e.g., be characterized by
the normal acoustic impedance for the scattered wave field,
Z,s (the additional subscript “0” serves to underline that

10 T T T L T

0.5}

0.0l (0,0)  (ka,0)

-0.59¢

fm(ka)

-1.0¢

—-1.5¢

-2.0¢

_2.5 1 ! ! | 1

5‘m(kla)

0.0 1.0 2.0
Re/(ka)
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this impedance is really an external quantity). For this cylin-
drically symmetric configuration, we define this impedance
per multipole component exp (img). It is constructed from
the well-known Hankel function solution to the wave equa-
tion external to a cylindrical scatterer (see also the
Appendix) as

_i(ka) HP(k, a)
" (kya) HY'(k a)”

The symbol H{" denotes the Hankel function of the first
kind and order m, and a prime indicates the derivative with
respect to its argument. Under this definition, the normal
scattered acoustic impedance Z,g is dimensionless (or
“specific ”), through division by p, co. How this expression
applies for general complex frequency is hidden within the
prescription to calculate the external horizontal wavenum-
ber k, a from the complex aspect ratio ka. To be specific,

kya = /(ka)* — (ky a)? (11)

where we introduce a branch cut on the real axis as [ -k a,
+kja] in the complex ka plane and choose signs for
Re(k, a) and I (k, a) such that Ze [(ka)k, a)] =0 to
remove the double-valuedness of the root (the overline
means complex conjugate). With the branch cut for the
Hankel function of order m running from —m to — co along
the negative real axis, this implies that for the stable quad-
rant given by Ze (ka) > 0 and F» (ka) < 0, the mapping
(ka)<> (k, a) is as shown in Figure 2. In particular, the
segment 0 — +k;a of the branch cut itself maps into
ik a — 0 on the imaginary k, a axis. This ensures that even
the nonleaky regime is treated correctly, since under this
prescription, the Hankel function ratio in equation (10) with
the purely complex argument turns into the appropriate
ratio of modified Bessel functions of the second kind. By
inspection of equation (10), we note that the scattered
acoustic impedance may have poles within the stable quad-

(10)

I T T

1.0 (O,k“'a)

1
1
]
1
0.5 1
]
]
1

00 T 1

) - -

-0.5¢ 1

—1.0¢ 1

-1.5F W 1

TTTTrT
it
-

—2.0} [ ]
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FiG. 2—The mapping ka <k, a, under the transformation k, a = [(ka)* — (k; a)*1"/* (we took kj a = 0.9). Only the stable quadrant % (ka) > 0 and
I (ka) < 0is shown, and the other quadrants map likewise. Note how the branch cut itself maps onto the imaginary axis in the k, a plane.
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rant of the ka plane due to the (complex) zeros of the
function H{! in the mapped argument.* As a result, these
poles largely determine the topology of the real and the
imaginary part of the scattered acoustic impedance, regard-
ed as a function of [Ze (ka), £ » (ka)]. Why this realization
is important will become clear in the following section.

Other characterizations of the wave field in the uniform
surroundings of the cylindrical scatterer are the outgoing
normal acoustic impedance, Z,,, which is equal to Z; the
incoming normal acoustic impedance Z;, found from Z
by replacing H\" <> H?; and the exciting normal acoustic
impedance Z,z, found from Z,g by replacing H « J,,.
Here H? is the Hankel function of the second kind, and the
Bessel function is J,, = (H + H?)/2. We refer to the
Appendix and to Keppens (1995b) for the mathematical
details.

Now that we have a full characterization of the external
solution, and an algorithm to find the internal solution for a
general complex aspect ratio ka, we can apply the boundary
conditions of continuous total pressure perturbation and
continuous normal velocity component at the tube radius a.
The net result of applying the boundary conditions for a time
dependence exp (—iwt) (with @w complex) is to ensure the
appropriate amplitude and phase shift for the outgoing and
transmitted disturbances, relative to the incoming dis-
turbance under the imposed driving exp (—iwt) (or equiva-
lently, amplitudes and phase shifts for scattered and
transmitted disturbances, relative to the exciting
disturbance).

Specifically, for real aspect ratios ka within the range
[kya, kjavay(0)/co), a determination of the full solution

4 The complex zeros of the Hankel function of integer order m (and its
derivative) that play a role here lie in the stable half-plane of its argument,
near a curve extending from +m to —m and going through
—im x 0.66274. See Abramowitz & Stegun (1964).
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following the above procedure allows us to investigate the
efficiency of the resonant absorption mechanisms. There-
fore, we compare the outgoing versus incoming acoustic
power by constructing the dimensionless absorption coeffi-
cient o, (defined per multipole; see Appendix as the differ-
ence between total incoming versus total outgoing acoustic
power, divided by incoming power? (see also Braun, Duvall,
& Labonte 1987). The result for the hot magnetic fibril
mentioned earlier is shown in Figure 3. We plot the mono-
pole (m=0), dipole (m=1), and quadrupole (m =2)
absorption coefficients as a function of (real) driving fre-
quency (or ka). Since the equilibrium configuration con-
sidered here has no twist, monopole absorption occurs only
as long as the frequency lies within the range of the slow
continuum, up to ka < 0.976 = (k| a)cr,(0)/c,. However,
surprisingly high monopole (m = 0) absorption coefficients
(up to 43%) are found, given the moderate size of the tube
(kya=0.9). The absorption coefficients for m > 1 show a
more exotic dependence on frequency:

1. At the lower frequencies {ka e [0.90, 0.976] =
[kya, (kja)cr;(0)/co]}, both slow and Alfvén resonant
absorption take place but lead to less than 10% dipolar
(m = 1) absorption and negligible higher order (m > 1)
absorption coefficients;

2. Above the range of the slow continuum, but within the
range of the Alfvén continuum, a series of pronounced
absorption maxima accumulates (the resolved peaks are
shown in close-up), with absorption coefficients reaching
80% and more;

3. Apart from the afore-mentioned absorption peaks, the
Alfvén resonant absorption amounts to less than 20%

5 With this definition for a,,, these absorption coefficients can be calcu-
lated easily from the components of the T- or S-matrix for the scatterer:
oy, =1—|1—-2T,|>=1—8S,|> See Appendix.
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FiG. 3.—The monopole o, (left), dipole o, (middle), and quadrupole o, (right) absorption coefficients as a function of real frequency ka = waj/c,, for the
equilibrium shown in Fig. 1 and taking the size k; a = 0.9. For dipole and quadrupole, the frequency range immediately above the slow continuum is shown
in detail (insets). Note the efficient monopolar (m = 0) slow resonant absorption, and the absorption maxima in m > 1 absorption coefficients associated with

leaky eigenmodes (§ 2.3).
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power loss for the dipole, and negligible higher order
(m > 1) absorption coefficients.

We emphasize the fact that, in Figure 3, the only place in
which both Alfvén and slow resonances occur simulta-
neously is in the range ka € [0.90, 0.976], and this only
applies for the m > 1 panels. Clearly, for this equilibrium
configuration, the simultaneous occurence of both reso-
nances does not represent a regime of greatly enhanced
resonant absorption. However, immediately above the slow
continuum, the absorption coefficients found for real
driving frequencies reach levels of almost total absorption
(up to 80%). Since we have defined complex optimal driving
frequencies as those frequencies at which exactly total
(100%) absorption takes place, we need to give a more
detailed account of the absorption maxima found at real
driving frequencies, and their connection with optimal
(generally complex) driving frequencies. As these, in turn,
are defined from an impedance criterion involving the
transmitted normal acoustic impedance Z, and this imped-
ance is crucial also for the determination of the leaky eigen-
modes, we need also to calculate the complex
eigenfrequencies of the fibril embedded in its surroundings.

Once all these connections are clarified, we investigate in
§ 3 the dependence of the absorption efficiency on the equi-
librium parameters (density evacuation D, sharpness A, and
thickness k| a), to assess the relative importance of slow and
Alfvén resonant absorption, and the leaky eigenmodes.

2.3. Leaky Eigenmodes and Optimal Driving Frequencies

The maxima in the absorption coefficients (m > 1) in
Figure 3 for the equilibrium shown in Figure 1 can be easily
understood: the equilibrium has a uniform “core”
throughout approximately 75% of its radius, so that one
may expect that the constant tube speed ¢y core = ¢17(0)
derived from this uniform core still plays the role of an
accumulation point (in complex[!] “ phase speed ” w/k ) of
leaky eigenmodes. Indeed, were the flux tube uniform
throughout, we could calculate analytically the transmitted
normal acoustic impedance. To this extent, define a
complex internal wavenumber k, as

[(ka)* — (ky a)*v4,/c31[(ka)* — (ky a)*c}/c3]

kya)? =
K1) = T ka? — (ky @c2e/cRLC2IGE + oRy/el]

12)

Then the normal acoustic impedance for the transmitted
wave field, again scaled to p, ¢, becomes

_ il(ka)* — (ky )*v3,/c3] py Jolky0)
(ka)(k 1) po Jnlkia)”

The particular role played by the tube speed c,; of such
a uniform flux tube translates itself in these expressions in
the limit ka — (kja x ¢,1/cy, 0) (where ka is in general
complex), when the Bessel function ratio J,/J,, behaves
as a tangent [in fact, in this limit (J,/J, )k, a) ~ —cot
(kya — mn/2 — n/4)], and Z,; has infinitely many, but
purely real, poles. Here we regard Z,; as a complex func-
tion in the complex argument ka. In what follows, we will
demonstrate for the more general case of the flux-tube equi-
librium shown in Figure 1, how such poles of Z, ;- determine
the topology of the functions Zygs — Z,r and Z,; — Z, 1 in
argument ka. This, in turn, will allow us to clarify how, from
a mathematical point of view, poles of Z,, leaky eigen-

Zir

(13)
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modes (zeros of Zy,s— Z,r), and optimal driving fre-
quencies (zeros of Z,; — Z, ) are ultimately related.

Since for a flux tube with internal radial structure, no
analytic result is available for the transmitted wave field,®
one must resort to a full numerical integration of the Hain
& Liist equation to determine Z, (ka). As explained in § 2.2,
in doing so for a general complex aspect ration ka, we need
to take due care when Alfvén and/or slow resonances occur,
but this is done consistently using the analytic results of
linear dissipative MHD (with the connection formulae from
the SG&Ha, SG&HDb prescription, see also Goossens et al.
1995). The complex eigenfrequencies (or aspect ratios ka) for
the leaky modes are then found by a determination of

Her{Re(Zos— Zyr)(ka)} ﬂ Hev {Im (ZLos—Zyr)ka)} ,
(14)

where A'er {F(z)} stands for the collection of zeros of
the function F in argument z. It turns out that the poles
of the individual impedances Z s and Z, ; play a dominant
role in determining the topology of both functions
Re(Zos — Zyp) = RAZ) and Im [Zys — Z17] = F(AZ).
Therefore, they are a very useful guide in determining the
actual zeros of both functions #(AZ) and #(AZ). This is
best illustrated from Figure 4a. To construct Figure 4a, we
have calculated both functions #Z(AZ) and #(AZ) for the
particular hot magnetic fibril of Figure 1 (k; a = 0.9) and
Figure 3, taking m = 0, in a limited region of the complex ka
plane: real and imaginary axes denote the actual
portion of the ka plane considered. The heavy solid lines
are the sets Hev {R(AZ)(ka)} and Her {F(AZ)ka)}, as
indicated. These are seen to intersect at two complex fre-
quencies, once on the real frequency axis at approximately
(0.97897, 0), and once at approximately (0.97905,
—1 x 10™%). The dotted and thin solid lines are selected
contour lines for negative and positive values of Z(AZ) and
F(AZ), and they serve merely to guide the eye. Since we
took m =0, and since the equilibrium considered has
straight magnetic field lines (no twist), Alfvén resonant
absorption plays no role in Figure 4a. Furthermore, in
Re (ka), we are above the slow continuum in Figure 4q, so
that the only physical mechanism determining the imped-
ances is leakage of acoustic waves into the surroundings.
This implies that we may consider equation (13), which is
exact for a uniform tube in which only such leakage plays a
role, as an approximate expression for the transmitted
normal acoustic impedance for the one-dimensional hot
magnetic fibril. Then, we must conclude that the crossing of
the sets Aev {R(AZ)ka)} and H'er {F(AZ)(ka)} on the real
frequency axis at approximately (0.97897, 0) is not a true
zero and hence not an eigenfrequency of a leaky m =0
sausage mode, but a pole of the transmitted acoustic imped-
ance Z,r. This is recognizable from the behavior of the
functions (as suggested by the contour lines) in the vicinity
of this pole: the function #(AZ) behaves singularly along
the real frequency (or ka) axis, since the function values
tend to plus and to minus infinity on approach of the pole
at (0.97897, 0) from opposite ends along the real axis, while
the function #(AZ) likewise behaves singularly but along a
direction perpendicular to the real ka axis. This is exactly
what the (for our purposes) approximate equation (13) pre-
dicts: introducing a large argument expansion for the Bessel

6 Except for tubes with a thin transition layer: see Keppens (1995b).
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F1G. 4—How to locate leaky modes and complex optimal driving frequencies from the impedance criteria. This figure applies to the specific equilibrium
of Figures 1 and 3 (with k| a = 0.9) and multipole m = 0. (a) Contour lines of both imaginary and real part of the function (Z,, — Zg)(ka), over a limited
region in the complex ka piane. Thick solid lines correspond to zeros of each function, as indicated by #2 {-}. Thin solid lines and dotted lines are selected
contours for positive and negative values, respectively. An absolute zero (or sausage m = 0 leaky mode) is found at ka = (0.97905, —1 x 10™%), while
ka ~ (0.97897, 0) on the real ka axis is a pole of the transmitted normal acoustic impedance Z, ;. See text for details. (b) Same as (a) for the function
(Zy1 — Z)(ka). An optimal driving frequency is found at the absolute zero ka = (0.97905, +1 x 1674,

function ratio (for m = 0) in Z, from equation (13) and a
small argument expansion (for the sake of argument
assuming k, a small) in Z,5 of equation (10), the function
AZ(ka)is given by

. —— (ka)? — (ky @)}, /c3
AZ ~ lI:(ka)ln (k. a) + (ka) TkalP(k,a)

Py n
x—=cot|kja——])|. (15
Po ( ! 4>] 13)

The presence of the term (ka) is then responsible for a (co)
tangent-like singularity in #(AZ) perpendicular to the real
ka axis, and in #(AZ) along the real ka axis, when crossing a
poleof Z, .

As one then approaches the pole throughout the com-
plex plane, and not merely along that unique direction at
which the infinities occur, we can understand why the poles
are helpful in determining the sets S'es {#(AZ)(ka)} and
Her {F(AZ)ka)}: a pole introduces a bounded positive
(negative) “island” in an otherwise negative (positive)
“landscape” for each function #(AZ)ka) and F(AZ)(ka)
separately. Hence, the boundaries of these “islands ” consti-
tute the sets Her {R(AZ)ka)} and Her {F(AZ)(ka)}.
Because of the difference in the directions along which the
infinities occur, both “islands” intersect once more, where
an absolute zero is found for the impedance difference: a
true eigenfrequency of a leaky mode. From Figure 4a, we
can thus conclude that ka ~ (0.97905, —1 x 10%) corre-
sponds to an eigenfrequency of a leaky m = 0 sausage mode
for the one-dimensional hot magnetic fibril considered.

In summary, the search process to locate the complex
eigenfrequencies of leaky modes that we have described
above follows from “topological ” arguments on both func-
tions Z(AZ)ka) and F(AZ)(ka). The poles of the normal

acoustic impedances play an essential role in this process,
as they determine the sets Her {R(AZ)(ka)} and
Her {F(AZ)ka)}, which in turn intersect at eigen-
frequencies. At this point, it should be stressed that we do
not wish to attribute any physical meaning to these poles.
In the above process, they merely serve as a tool to deter-
mine the physically meaningful leaky eigenmodes!”’

It should be evident that completely analogously, we can
locate the optimal driving frequencies that obey the imped-
ance criterion Zy; = Z, ;. It suffices to replace the Hankel
functions of the first kind in equation (10) by Hankel func-
tions of the second kind in the same argument. If we repeat
the search process in the vicinity of the pole ka =~ (0.97897,
0) of Z, 1 for m = 0, an optimal m = 0 driving frequency is
found in the overstable half-plane at ka = (0.97905,
+1 x 10™%). This is shown in Figure 4b. That the optimal
driving frequency for m = 0 lies in the overstable half-plane
is physically consistent, as no m = 0 resonant absorption
occurs for the frequencies considered. The only possibility
to achieve an apparent 100% absorption in the linear
problem is by driving with an amplitude that grows in time,
so that the lag of the amplitude growing of the outgoing
wave with respect to the incoming perturbance appears as a
total absorption.

While the m = 0 case proved to be illustrative, since we
could use the approximate expression (13) for frequencies
above the slow continuum, it is apparent that in order to
explain the behavior of the m > 1 absorption coefficients in
Figure 3, we need to locate leaky modes and optimal
driving frequencies for m > 1. Of course, the same search

7 Indeed, the function Z,s— Z;; shows up as denominator in the
expression for the T-matrix of the cylindrical scatterer (see also eqs. [2]
and [3]), and the presence of a similar factor in the numerator and a
multiplicative term in front filters out the poles but leaves the zeros of
Z,s — Z, 1 as the physical eigenfrequencies.
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pattern can be followed. Again we can concentrate on fre-
quencies immediately above the slow continuum, but now
(m > 1) Alfvén resonant absorption takes place at those fre-
quencies. It should come as no surprise that as a result, the
poles of Z, are no longer on the real frequency axis, but
shift into the stable quadrant. An example for m =1 is
shown in Figure 5, in the same format as Figure 4. A pole of
Z,r is located at approximately ka =~ (0.987, —0.0014), a
leaky kink mode is found at ka z (0.9906, —0.0039) (Fig.
5a), and an optimal driving frequency is ka = (0.9917,
—0.0016) (Fig. 5b). Note that the optimal driving frequency
now lies in the stable half-plane. Referring back to Figure 3,
we can now attribute the maximum in the absorption coeffi-
cient o, at real frequency ka =~ 0.992 as an immediate conse-
quence of the nearby optimal (but complex) driving
frequency.

For the particular one-dimensional hot magnetic fibril
from Figures 1 and 3, we summarize our findings in Table 1.
Just as for a uniform tube, we find a sequence of leaky
eigenmodes for each multipole m: they accumulate toward
the top of the slow continuum. In Table 1, only the
“higher” frequencies of each sequence are listed. Poles of
Z,r, leaky modes, optimal driving frequencies, and real fre-
quencies corresponding to maxima in absorption coeffi-
cients (if they exist) are indicated. We repeat that the poles
have no physical meaning, but they establish mathemati-

HOT MAGNETIC FIBRILS
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cally the connection between leaky eigenmodes and
(complex) optimal driving frequencies in a manner
explained above. Note in particular that the m = 0 mode
from Figure 4a is the second in a sequence of leaky sausage
modes, and that the maxima in the m > 1 absorption coeffi-
cients above the slow continuum (but within the Alfvén
frequency range) are closely related to the locations of the
leaky modes and the optimal driving frequencies in the
complex ka plane (the last digit in each tabulated frequency
represents a rounded value; slight differences between the
exact frequency of a leaky mode and an optimal driving
frequency always occur).

2.4. Implications for Real Driving Frequencies

To conclude this section, a critical review of the results of
Goossens & Hollweg (1993) is appropriate. These authors
have studied the variation of the absorption coefficients as a
function of real driving frequency, and they were the first to
realize the intimate connection with the complex leaky
eigenmodes. Our terminology differs from these authors
only when referring to optimal driving frequencies:
Goossens & Hollweg (1993) define them as those real
driving frequencies corresponding to the maxima in the
absorption coefficients, while we define them as the true, but
in general complex, driving frequencies at which 100%
absorption occurs. Our definition of complex optimal
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FI1G. 5—Same as Fig. 4, for m = 1. A pole of Z, lies in the stable ka quadrant at ka ~ (0.987, —1.4 x 10~3). From (a), a leaky kink mode occurs at
ka = (0.9906, —3.9 x 10~3). From (b), optimal driving corresponds to ka ~ (0.9917, —1.6 x 10~ 3). Note the connection with the maximum in the absorption

coefficient «, in Fig. 3 (middle) at a real frequency of about ka =~ 0.992.

TABLE 1
LocCATION OF PoLES, EIGENFREQUENCIES, AND OPTIMAL DRIVING FREQUENCIES IN THE COMPLEX ka PLANE
m Pole of Z, Leaky Mode 100% Absorption Maximal «,,
0...... (1.125, 0) (0.98, —0.115) (0.98, +0.115)
(0.97897, 0) (0.97905, —1 x 10™%) (0.97905, +1 x 1074
1...... (0987, —1.4 x 1073) (0.9906, —3.9 x 1073) (09917, —1.6 x 1073) 0.992
0.97756, —2.1 x 107%) (0.977605, —3.6 x 10~%) (0.977607, —1.55 x 107%) 0.977607
2...... (09796, —6 x 10™%) (0.9802, —1.42 x 1073) (0.9802, —1.42 x 1073) 0.981
(0.97701, —3 x 107%) (097704, —4.5 x 10~5) (097704, —4.5 x 107%) 0.97705
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o driving frequencies is derived from physical principles, as we
have obtained an impedance criterion for optimal driving,
analogous to the impedance criterion satisfied by the leaky
eigenmodes. Naturally, equilibria may exist where one (or
perhaps several) of the (generally complex) optimal driving
frequencies satisfying Z,; = Z lie on the real frequency
axis, so that total absorption takes place at a particular real
frequency. Thus, it follows that Goossens & Hollweg (1993)
concluded correctly that total absorption at a real optimal
driving frequency takes place only when the equilibrium is
fine tuned with respect to the incoming wave. Likewise,
Goossens & Hollweg (1993) were correct to point out that a
condition for total absorption can be interpreted as an
impedance criterion. A subtle correction to their results
concerns the realization that one can always define complex
optimal driving frequencies for which o = 100% from the
impedance criterion Z,; = Z;. Therefore, the condition
for total absorption is not merely an impedance matching
on both damping mechanisms (acoustic leakage and reso-
nant absorption), as explained by Goossens & Hollweg
(1993): the complex impedances Z; and Z,  actually have
both a real and an imaginary part, commonly referred to as
resistance and reactance, respectively. Total absorption
requires the simultaneous equality of resistances (related to
damping) and reactances. The reason why Goossens &
Hollweg (1993) concluded only on the impedance matching
for both damping mechanisms as a condition for total
absorption at a real optimal driving frequency is under-
stood as follows. Their results derive from Taylor expan-
sions in real frequencies about the real part of the complex
eigenfrequency of a leaky mode. Now, the complex eigen-
frequency of a leaky mode satisfies Zys = Z,1 (or Zyo =
Z 1, since Zy, = Zyg), SO that both resistances and reac-
tances of scattered and transmitted field are equal. Further,
the differences Z,5 — Z; for real frequencies is purely real
(which follows easily from eq. [10]), so that the reactances
for scattered and incoming field are always equal for real
frequencies. If we then Taylor expand from the real part of
the eigenfrequency of a leaky mode to find a condition for
total absorption at a real driving frequency, we satisfy auto-
matically the condition of equal reactances for incoming
and transmitted wave field, so that we are left with the
condition on equal resistances.

Under most conditions, the difference Zys — Z,; is
small, which is why leaky modes, optimal driving fre-
quencies, and the real driving frequencies corresponding to
maxima in the absorption coefficients are all connected (see
Table 1). However, it should be clear that our definition of
complex optimal driving frequencies is more general and
holds even when leaky eigenmodes and optimal driving fre-
quencies are separated by sufficient amounts requiring
higher than first-order Taylor expansions (note in particu-
lar the case m =0 in Table 1). Therefore, our results
confirm, but also extend, the results obtained by Goossens
& Hollweg (1993).

3. VARIATIONS IN THE EQUILIBRIUM PARAMETERS

With the connection between leaky eigenmodes, complex
optimal driving frequencies, and maxima in the absorption
coefficients as a function of real driving frequency spelled
out in detail (see Table 1) for the particular fibril with D = 5,
4 =175, and kja =09, we may ask how the equilibrium
structure plays a role in the efficiency of the resonant
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absorption. After all, although the equilibrium of Figure 1
proved useful to demonstrate these connections, a density
contrast of D = 5 may seem quite large to model a magnetic
element, and more critically, the temperature contrast was
too high. Likewise, it may be of interest to know what
happens if the equilibrium varies more gradual throughout
the tube (measured by 1), and what changes if the tube is
bigger. In the opposite limit of a thin tube with a thin
transition layer, the analytic results of Keppens (1995b) are
appropriate, so that we can restrict the parameter varia-
tions to decreasing the density contrast D, increasing the
transition layer by decreasing A, and exploring what
happens for larger k| a.

When the density contrast D is lowered, at fixed sharp-
ness A = 75 and thickness k| a, both the Alfvén and slow
frequency ranges shift to lower frequencies. This is seen
easily from equation (8), since that part of the Alfvén and
slow continuum of interest for resonant absorption is [k a,
(ky a)va1(0)/co] and [k a, (k a)cr,(0)/co], respectively. We
note that our one-dimensional “model” for a magnetic
element based on equations (4)(6), with a value of the sharp-
ness parameter 4 = 75, is quite consistent with a transition
layer of about 10% in radius for magnetic elements (see
Knolker, Schiissler, & Weisshaar 1988), as can be seen from
the variation of ¢;(R)/c, in Figure 1. The shift to lower
frequencies of the slow continuum with decreasing D is such
that, as soon as the density contrast D drops below about
4.25, the slow continuum is no longer accessible for acoustic
excitation. Therefore, to determine whether the slow contin-
uum plays any (significant) role in a “realistic” magnetic
element, we can deduce the dimensionless appropriate
parameter values (density contrast D; characteristic speed
ratios v,1/¢o, €1/Co, C11/Co; and tube thickness as measured
by k| a) from semiempirical determinations of the vertical
internal structure of magnetic elements (Keller et al. 1990)
with respect to a reference nonmagnetic atmosphere model
(VAL + Spruit model; Vernazza, Avrett, & Loeser 1976,
Spruit 1977). As our calculations are only one-dimensional,
we need these quantities (D, k;, a, etc.) as a function of equal
geometrical height (not equal optical depth!) when compar-
ing the internal versus the external quantities. This is shown
in Figure 6, for both a plage (left panel) and a network (right
panel) magnetic element.® The zero level of geometrical
height z corresponds to the level of continuum formation in
the nonmagnetic atmosphere. It is important to note that in
these models, the assumed values for the continuum contrast
on the axis of the flux tubes are 1.3 for the plage and 1.4 for
the network flux tube. The network magnetic element is
therefore somewhat hotter than the plage element, and both
are hotter than the surrounding atmosphere at heights
greater than 200 km (where ¢, /cq > 1 [lower dotted lines]; a
solid line delineates ¢; = c,). The thickness of the tube k| a
(dashed line) is deduced from a flux conservation argument
and set arbitrarily at 300 km diameter (2a) at z = 0, with a
heuristic value of k; ~ 2 x 1073 km ™! for p-modes in the
solar photospheric iayers. As noted by Keller et al. (1990)
and evidenced by the virtually identical flaring of the plage
and network magnetic element with height in Figure 6
(dashed line in both panels), the magnetic structure of both

8 This figure is produced from the results of Keller et al. (1990). These
authors note that these models are most reliable in the layer extending
from about — 100 km (roughly the Wilson depression for these structures)
up to + 300 km.
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F1G. 6.—Vertical equilibrium structure for plage (leff) and network (right) flux tubes compared vs. a nonmagnetic reference atmosphere as a function of
geometrical height (z in km above photospheric T = 1), produced from the semiempirical results by Keller et al. (1990). Thick solid lines indicate the density
contrast D; dotted lines are used for the speed ratios v,,/c, and c,/c,. Dashed line indicates k a deducted from flux conservation (see text), and the tube

speed is indicated as a dash-dotted line.

kinds of flux tubes is comparable, but the network tube has
a slightly lower field strength than the plage tube (1550 G
for the network tube at z = 0 vs. 1610 G for the plage tube).
From Figure 6, it can be seen that both plage and network
flux tubes reach high levels of evacuation D (solid lines in
both panels) in the higher photospheric layers: a horizontal
solid line delineates the level D = 4.25 mentioned above.
The run of the normalized tube speed c¢r/c, for both flux
tube models is given by the dash-dotted lines. As the tube
speed nears (but never quite exceeds) the external sound
speed (especially in the plage element) at a height of about
400 km above photospheric T = 1, we suggest that in those
higher photospheric layers, the slow continuum and the
associated eigenmodes for hot evacuated magnetic fibrils
may play a role in the interaction of waves with the fibrils.
Note also that in those higher layers, the tubes have reached
dimensions of the appropriate order kja oc O(1), due to
flaring. However, we emphasize that firm conclusions
cannot be drawn as based on an oversimplified one-
dimensional hot magnetic fibril model, and that the
dynamic nature of real magnetic elements may not validate
a comparison with a static model atmosphere as suggested
by Figure 6. In any case, it is clear that in the lower photo-
spheric layers, in which k| a drops to about 0.3 (and lower)
and the density contrast lies considerably below 4.25,
neither the slow continuum nor the associated eigenmodes
play a role. In fact, for a one-dimensional “magnetic
element” at those layers modeled by D = 3.25, A = 75, and
kja~0.25, only a negligible amount of Alfvén resonant
absorption takes place, with the largest absorption coeffi-
cient a,, obtained for m = 1 (dipole), but at a value typically
less than 1% (see also Keppens 1995a, 1995b).

If we keep the density contrast D =5 and decrease
instead the sharpness parameter A while keeping the size

fixed at kja = 0.9, the absorption coefficients change as
indicated in Figure 7. We decreased A by one order of magni-
tude, from A = 75 through A = 7. The intermediate value
A =35 corresponds to an equilibrium at which the tran-
sition layer is about 50% in radius, while at A = 7, the varia-
tion of the equilibrium quantities is smooth throughout.
The left panel of Figure 7 shows the monopole absorption
coefficient a,, which is due entirely to slow resonant absorp-
tion (the equilibrium has straight field lines). Hence, aq = 0
at frequencies above ka = (k| a)c,(0)/co = 0.976. Note how
the slow m = 0 resonant absorption becomes increasingly
important (with monopole absorption coefficients even-
tually up to more than 80% over the whole extent of the
slow continuum) when the radial equilibrium variation
becomes more gradual. This is true, even though the tube is
quite thin: we kept the size fixed at k| a = 0.9. Monopolar
(m = 0) slow resonant absorption is thus surprisingly effi-
cient under certain equilibrium conditions.

The right panel of Figure 7 shows the dipole absorption
coefficient ;. We have filtered out the frequency range
immediately above the slow continuum at which the
absorption maxima were found to accumulate (for 1 = 75;
see Fig. 3). Below ka =~ 0.976, combined slow and Alfvén
resonant absorption takes place but leads to modest dipole
absorption coefficients a; < 12% for all sharpness param-
eters A shown. Within the frequency range in which only
Alfvén resonant absorption occurs, we find typically a; <
15%. It appears that for a fibril of fixed density contrast and
size ka ~ O(1), the variation of the equilibrium quantities
has no dramatic effects on its m > 1 absorption properties.

Figure 8 shows how for larger tubes, still characterized by
D =5 and A =75, the absorption coefficient maxima shift
in frequency away from the tip of the slow continuum and
broaden within the range of the Alfvén continuum. We
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F1G. 7—Monopole «, (left) and dipole a, (right) absorption coefficient as a function of real driving frequency ka, for hot fibrils of size k| a = 0.9 and
density contrast D = 5, varying the sharpness A through 75 (solid line, as in Fig. 3), 35 (dotted line), and 7 (dashed line). Note the scale difference in the abscissa:
for the monopole, we zoomed in on the slow continuum. Smoother equilibria have surprisingly large monopole absorption coefficients. For m = 1, the
frequency range in which peaks occur is filtered out artificially (shaded region).

increased k| a through (0.9, 2, 3) and plotted the dipole (left)
and quadrupole (right) absorption coefficients as a function
of k/k. For the given parameters D and 4, this means that
the slow continuum reaches up to k/k; ~ 1.085, while the
Alfveén frequencies reach up to k/k| = 2: therefore, note the
abscissa range in Figure 8. Figure 8 suggests that the

sequences of leaky modes and optimal driving frequencies
(one sequence for each multipole index m) found at the tip of
the slow continuum may eventually dominate the absorp-
tion properties of larger hot and evacuated magnetic flux
tubes. This is particularly apparent in the quadrupole (a,)
absorption coefficient.

1.0 1.0
k,a=0.9 k,a=0.9
s 0.5f /\\ s 0.5f .
k,a=2.0 k,a=2.0
s 0.5} i 5 0.5} :
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k/k k/k

F16. 8—Dipole «, (left) and quadrupole m = 2 (right) absorption coefficients as a function of (real) k/k for hot fibrils with D = 5, 4 = 75 (as in Fig. 1), of
sizes kya = 0.9, 2, and 3 (as indicated). The absorption maxima shift to higher frequencies and start to dominate the absorption throughout the Alfvén

continuum when the size of the fibrils increases.
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4. CONCLUSIONS

The results of this paper may be summarized as follows.

Introducing normal acoustic impedances, we were able to
derive impedance criteria for both eigenmodes and optimal
driving frequencies for completely general cylindrical scat-
terers. Complex frequencies at which scattered (or outgoing,
since Zg = Z,)) and transmitted normal acoustic impedances
are equal correspond to eigenmodes (see also Keppens
1995b), and complex frequencies at which incoming and
transmitted normal acoustic impedances are equal are
optimal in the sense that (apparent) 100% absorption
occurs. Since the transmitted normal acoustic impedance
appears in both criteria, eigenmodes and optimal driving
frequencies are ultimately connected.

In the context of linear MHD, these impedance criteria
prove extremely useful to obtain a full understanding of the
efficiency of both slow and Alfvén resonant absorption for
flux tubes embedded in wave-carrying surroundings. In § 2,
we presented an illustrative calculation of complex leaky
modes, complex optimal driving frequencies, and the run of
the absorption coefficients for different multipoles m as a
function of real driving frequencies for a so-called hot mag-
netic fibril with nonnegligible radial structure. We choose to
give a detailed account of the search process followed to
find leaky modes and optimal frequencies from the complex
impedance criteria that they satisfy: one must take due care
when dealing with general complex frequencies w in
exp (—iwt). For the one-dimensional hot magnetic fibril
embedded in unmagnetized homogeneous surroundings, we
were able to treat simultaneously both slow and Alfvén
resonant absorption, and the possibility for acoustic
leakage into the surroundings, and this for general complex
frequencies. Wherever possible, analytic results were used in
the interpretation, but it is realized that for the one-
dimensional fibrils considered, numerical techniques must
be exploited. To deal with the resonant absorption, the
SG&Ha, SG&Hb prescription was implemented (as in
Stenuit et al. 1995a). Together with a numerical integration
of the Hain & Liist (1958) equation and the analytic results
pertinent to the external homogeneous medium, a complete
description was possible. The results of Keppens (1995b)
extend the results presented here analytically, since for flux
tubes with a thin transition layer there is no need for a
numerical integration of the Hain & Liist equation.

We found that a one-dimensional hot and evacuated
magnetic fibril of size kja~ 1 is an efficient monopole
(m = 0) absorber of incident acoustic power, as long as the
slow continuum can be accessed. This efficiency of the
monopolar slow resonant absorption is even more pro-
nounced for smoother equilibrium profiles. Moreover,
sequences of leaky modes and optimal driving frequencies
accumulate toward the top of the slow continuum, giving
rise to maxima in the run of absorption coefficients as a
function of real frequency within the Alfvén continuum, at
the transition out of the slow continuum. These maxima in
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the absorption coefficients as a function of real driving fre-
quency are related directly to the near presence of a
complex optimal driving frequency close to the real fre-
quency axis in the stable complex frequency half-plane.
Through the impedance criteria, each optimal driving fre-
quency seems related to a leaky eigenmode of the fibril in its
infinite surroundings (Table 1). Further, these sequences of
discrete leaky modes and optimal driving frequencies may
start to dominate the absorption properties of larger hot
and evacuated flux tubes with internal radial structure.

Within the solar context, we suggest that the slow contin-
uum and the associated eigenmodes may play a role in the
absorption and scattering properties of the hot and strongly
magnetized (kG) magnetic elements at higher photospheric
layers (typically 400 km above the level of continuum
formation). In the lower photospheric layers, their evac-
uation is simply not large enough to make the slow contin-
uum accessible, and their diameters (200-300 km) are too
small to achieve a sufficient amount of resonant absorption.

In addition, we could reevaluate the results obtained by
Goossens & Hollweg (1993). These authors realized the
connection between leaky eigenmodes and the maxima in
the absorption coefficients as a function of real driving fre-
quency. Our results called for a subtle change in their
nomenclature: the optimal driving frequencies are in
general complex and are best defined from the impedance
criterion Z,; = Z,. This in turn confirms that the equi-
librium must be fine tuned to the incoming wave in order to
achieve total absorption at a real driving frequency. Natu-
rally, our definition of optimal driving frequencies includes
the possibility of the physically uninteresting optimal
driving frequencies with an exponentially growing ampli-
tude (imaginary part w; > 0), such that only apparent total
absorption occurs. For real driving frequencies, the optimal
driving frequencies on the real frequency axis, or close to
the real frequency axis, but in the stable complex half-plane,
are of primary physical importance.

Finally, we called for similar investigation of the close
connection between the slow continuum, the complex leaky
modes, the optimal driving frequencies, etc., in twisted flux-
tube equilibria. The presence of twist in the (axisymmetric)
equilibrium decouples the slow continua corresponding to
different multipole components m, and this may be impor-
tant when studying their absorption and scattering proper-
ties. This will be addressed in a forthcoming paper (Stenuit
et al. 1995b).

This work has been inspired by earlier collaborations in
the context of linear MHD); I thank T. J. Bogdan and Pro-
fessor M. Goossens for passing on their knowledge in this
field. I wish to thank Hilde Stenuit for reading and com-
menting on the manuscript, and M. Schiissler for supplying
me with the reference flux tube atmospheres of Figure 6. 1
thank an anonymous referee for helpful suggestions and a
critical assessment of the original manuscript.

APPENDIX

A NOTE ON IMPEDANCES

In this Appendix, we collect some of the basic ideas set forth in Keppens (1995b) on normal acoustic impedances and their
importance in linear MHD problems. A starting point, suitable for the problem at hand, is to obtain an analytic expression
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for the wave field in the uniform, but unmagnetized, surroundings of a cylindrically symmetric, longitudinally invariant
cylindrical scatterer of radius a (which does not need to be specified further). This boils down to solving the wave equation in
the infinite, but uniform, region (sound speed c,) external to a cylinder, and after Fourier analyzing as exp (ik z) exp (imo)
exp (—iwt), we find for the radial dependence (R-coordinate) of the linear velocity potential ¢ defined from v = —V¢ (such
that the linear pressure is given by 6p = —iwp, ¢, with p, the uniform external equilibrium density) the following solution:

d)wk”m(R) = “in(w; k||a m)Hsr%)(kJ_ R) + aout(w; k||> m)HSnl)(kJ. R) > (16)

where k, is the component of the wavevector perpendicular to the cylinder axis. Through the dispersion relation of the
uniform medium k’c§ = w?, we have that k? = k* — k}. This way of writing the external solution by means of Hankel
functions of the second (H$) and first (H(") kind and order m decomposes the wave field external to the cylinder in incoming
and outgoing cylindrical waves, essentially. The complex coefficients (o, &) give amplitudes and phases to the incoming and
outgoing waves. We construct a complex number T,, (a component of the so-called T-matrix) per multipole exp (im¢), from
these complex coefficients as

_ ol ey, m)] | .

1
Tol: k”) - 5 [1 ti(@; k||= m)

If we then consider the amplitude of the outgoing wave, relative to the amplitude of the incoming wave, i.c., make the ratio
| %ut/%in |, and also calculate the relative phase shift §,, = Arg (o) — Arg (o) (“ Arg” for argument), we may write

T, = 31— /T=ae™™),

where a,, = 1 — | /%, |? is the absorption coefficient for the mth multipole (see, e.g., Braun et al. 1987). This absorption
coefficient is a measure of the power absorbed out of the incoming wave field by the scatterer.

So far, we have not said anything explicitly about the scatterer and the transmitted wave field. However, it is clear that
while we may prescribe the incoming wave field by choosing «;,, the scatterer will impose the relative amplitude and phase
shifts of the outgoing wave, hence a,,,. It does so in accord with the boundary conditions valid at its radius a, namely, by
keeping the total linear pressure perturbation 6P continuous across its circumference, and by keeping the normal velocity
component §vg continuous (no vacuum should form). In terms of a description of the external wave field in incoming and
outgoing waves (as above), this means that at radius a, we have dP,, = 8p;, + 0p,y and Svg ., = Svg i, + Vg ou», Where the
subscript “ tr” stands for the transmitted wave field and a 6P is used for the internal total linear pressure (which may have a
part from, e.g., magnetic pressure), and dp is the external linear (gas) pressure. Defining impedances Z for each of the wave
field components (transmitted, incoming, and outgoing), and per multipole component exp (img), as the ratio of linear
pressure to normal velocity, one can manipulate these conditions valid at radius g, to eliminate the unknown amplitude o,,,.
To do so, we denote impedances as Zy, Z,, and Z,, for the transmitted, incoming, and outgoing wave fields, respectively, and
we start from the boundary conditions to write the identity

UR,in (Z T ZI>
UR,out/(l - 2Tm) ZO - ZT
This expression (which is our eq. [3]) tells us that 1 — 27T;, = 0, or &, = 1, when Z; = Z,. Physically, this means that we have
100% absorption, or no outgoing wave, when the impedance criterion Z; = Z, is fulfilled. It tells us also that the poles of the
T-matrix element T,, correspond to the impedance criterion Z, = Z. Returning to the defining expression (17), the poles of
T,, correspond to &;, =0, or no incoming wave. This means that these poles, found from Z, = Z,, give the physical
eigenfrequencies of the scatterer, where no imposed incoming wave is present.

To derive our equation (2) in an analogous manner, a similar elimination process rewrites o, = a;,(1 — 2T,) (the definition
of T,,) and eliminates T,,. This turns out to be equivalent to writing the solution of the wave equation external to the cylinder
in its exciting and its scattered part, instead of decomposing it in incoming and outgoing waves. The exciting part is that part
of the external wave field associated with the Bessel function J,, = (H") + H?)/2, while the scattered part is the part due
entirely to the presence of the scatterer itself. Going through the algebra, this yields a normal acoustic impedance Zg for the
scattered wave field that is identical to the outgoing one Z,,. For more details, we refer to Keppens (1995a, 1995b).

1 - 2T, =

(18)
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