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ABSTRACT

We report the results of new SPH calculations of parabolic collisions between two main-sequence
stars in a globular cluster. Such collisions are directly relevant to the formation of blue stragglers. In
particular, we consider parent stars of mass M/Myo = 0.2, 0.5, 0.75, and 1, where Mo is the cluster
turnoff mass (typically about 0.8 M). The parent star models are more realistic, and the numerical
resolution of the hydrodynamics more detailed, than in previous studies. We focus on the hydrodynamic
mixing of helium and hydrogen, which plays a crucial role in establishing the color, luminosity, and
lifetime of collisional blue stragglers. In all cases we find negligible hydrodynamic mixing of helium into
the outer envelope of the merger remnant. The amount of hydrogen carried into the core of the merger
remnant depends strongly on the entropy profiles of the colliding stars. For stars with nearly equal
masses (and hence entropy profiles), the composition profile of the remnant closely resembles that of the
parents. If the parent stars were close to turnoff, very little hydrogen is present at the center of the
merger remnant and the main-sequence lifetime of the blue straggler could be short. In contrast, during
a collision between stars with sufficiently different masses (mass ratio g < 0.5), the hydrogen-rich material
originally in the smaller star maintains, on average, a lower specific entropy than that of the more
massive star and therefore settles preferentially in the core of the merger remnant. Through this process,
moderately massive blue stragglers (with masses M1o S Mpg S 1.5M o) can obtain a significant supply
of fresh hydrogen fuel, thereby extending their main-sequence lifetime. We conclude, in contrast to what
has often been assumed, that blue stragglers formed by direct stellar collisions do not necessarily have
initially homogeneous composition profiles. However, we also demonstrate that the final merged configu-
rations, although close to hydrostatic equilibrium, are typically far from thermal equilibrium. Therefore,
it is possible that convective, semiconvective, or rotationally induced mixing could occur on a thermal

timescale, as the merger remnant recontracts to the main sequence.
Subject headings: blue stragglers — hydrodynamics — stars: evolution — stars: interiors —

stars: rotation

1. INTRODUCTION AND MOTIVATION

Blue stragglers are stars that appear along an extension
of the main sequence (hereafter MS), beyond the turnoff
point in the color-magnitude diagram of a cluster. It is
generally believed that they are more massive objects (mass
Myg > M) formed by the merger of two MS stars (each of
mass less than M). Merging can occur through a direct
physical collision, or following the coalescence of the two
components of a close binary system (Leonard 1989; Livio
1993; Stryker 1993; Bailyn 1995). Clear evidence for binary
coalescence has been found in the form of contact binaries
among blue stragglers in the low-density globular clusters
NGC 5466 (Mateo et al. 1990) and M71 (Yan & Mateo
1994), as well as in open clusters (Kaluzny & Rucinski 1993;
Milone & Latham 1994; Jahn, Kaluzny, & Rucinski 1995).
Hills & Day (1976) were the first to suggest that some blue
stragglers must be formed by direct stellar collisions. Recent
evidence for such collisions comes from detections by the
Hubble Space Telescope of large numbers of blue stragglers
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concentrated in the cores of some of the densest clusters,
such as M15 (De Marchi & Paresce 1994; Yanny et al.
1994a) and M30 (Yanny et al. 1994b), and from the appar-
ent lack of binaries in such dense systems (Shara et al. 1995).
Collisions can happen directly between two single stars only
in the cores of the densest clusters, but even in somewhat
lower density clusters they can also happen indirectly,
during resonant interactions involving primordial binaries
(Leonard 1989; Leonard & Fahlman 1991; Sigurdsson,
Davies, & Bolte 1994; Sigurdsson & Phinney 1995; Davies
& Benz 1995). Observational evidence for dynamically sig-
nificant numbers of primordial binaries in globular clusters
is now well established (Hut et al. 1992; C6té et al. 1994).
Benz & Hills (1987, hereafter BH) performed the first
three-dimensional calculations of direct collisions between
two MS stars. An important conclusion of their pioneering
study was that grazing collisions lead to nearly complete
mixing of the fluid. The mixing of fresh hydrogen fuel into
the core of the merger remnant would reset the nuclear
clock of the blue straggler, allowing it to remain on the MS
for up to ~10° yr after its formation. Even though BH’s
collisions at small impact parameters reveal only partial
mixing, subsequent works generally assumed that all col-
lisional blue stragglers were born nearly homogeneous in
composition. Such blue stragglers would start their lives close
to the zero-age MS, but with an anomalously high helium
abundance coming from the (evolved) parent stars. In con-
trast, less hydrodynamic mixing would be expected during
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the gentler process of binary coalescence, which could take
place on a stellar evolution timescale rather than on a
dynamical timescale (Mateo et al. 1990; Bailyn 1992; but
see Rasio & Shapiro 1995 and Rasio 1995).

On the basis of these ideas, Bailyn (1992) suggested a way
of distinguishing observationally between the two possible
formation processes. The helium abundance in the envelope
of a blue straggler, which reflects the degree of mixing
during its formation process, can affect its observed position
in a color-magnitude diagram. Blue stragglers made from
collisions would have a higher helium abundance in their
outer layers than those made from binary mergers, and this
would generally make them appear somewhat brighter and
bluer. The analysis was carried out by Bailyn & Pinson-
neault (1995), who performed detailed stellar evolution cal-
culations for blue stragglers assuming various initial
profiles. To represent the collisional case, they again
assumed chemically homogeneous initial profiles with
enhanced helium abundances, calculating the total helium
mass from the age of the cluster and the masses of the
parent stars.

In this paper, we use smoothed particle hydrodynamics
(SPH) simulations of stellar collisions to reexamine the
question of fluid mixing. We improve on the previous work
of BH by adopting more realistic models for MS stars and
by performing the numerical calculations with increased
spatial resolution. Since SPH is a Lagrangian method, in
which particles are used to represent fluid elements, it is
ideally suited for the study of hydrodynamic mixing.
Indeed, with the assumption that the gas remains fully
ionized throughout the dynamical evolution, chemical
abundances are passively advected quantities. Therefore,
the chemical composition in the final fluid configuration
can be determined after the completion of a calculation
simply by noting the initial and final positions of all SPH
particles and then assigning chemical abundances accord-
ing to composition profiles of the parent stars.

The colliding stars in our calculations are modeled as
polytropes or composite polytropes (Chandrasekhar 1939;
Rappaport, Verbunt, & Joss 1983; Rucinski 1988), and we
adopt an ideal gas equation of state. The polytropic index n
relates the pressure and density profiles in the star accord-
ing to P oc p1*1/" The adiabatic index I'; = 5/3 for an ideal
gas, with the equation of state being P = Ap"*. Here A is a
physical parameter related to the local specific entropy s
according to 4 oc exp [(T'; — 1)s/k], where k is Boltzmann’s
constant. When I'; # 1 + 1/n the quantity A, and hence the
entropy s, has a nonzero gradient. BH used n=1.5,T; =
5/3 polytropic models to represent MS stars. Unfortunately,
such models apply only to very low-mass MS stars with
large convective envelopes: for Population II MS stars, the
effective polytropic index (defined in terms of the degree of
central mass concentration) is close to n = 1.5 only for a
mass M < 0.4 M (see Lai, Rasio, & Shapiro 1994, Table 3).
The object formed by a merger of two such low-mass stars
would hardly be recognizable as a blue straggler, since it
would lie below, or not far above, the MS turnoff point
(typically Mo = 0.8 M) in a color-magnitude diagram.

Stars near the MS turnoff point have little mass in their
convective envelopes and are much better described by
n=3, TI;=5/3 polytropes (Eddington’s “standard
model”; see, e.g., Clayton 1983). The mass distribution of
such stars is much more centrally concentrated than in
n = 1.5 polytropes, which has important consequences for
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the hydrodynamics of collisions. Population II MS stars
with masses in the intermediate range 0.4 M, SM 0.8
M can be modeled by composite polytropes with a poly-
tropic index of n = 3 for the radiative core and n = 1.5 for
the convective envelope.

Stars close to the MS turnoff point in a cluster are the
most relevant to consider for stellar collision calculations
for two reasons. First, as the cluster evolves via two-body
relaxation, the more massive MS stars will tend to concen-
trate in the dense cluster core, where the collision rate is
highest (see, e.g., Spitzer 1987). Second, collision rates can
be increased dramatically by the presence of a significant
fraction of primordial binaries in the cluster, and the more
massive MS stars will preferentially tend to be exchanged
into such a binary, or collide with another star, following a
dynamical interaction between two binaries or between a
binary and a single star (Sigurdsson & Phinney 1995;
Bacon, Sigurdsson, & Davies 1996).

Lai et al. (1993) have calculated collisions between MS
stars modeled by n =3, I'; = 5/3 polytropes, but they
focused on high-velocity (hyperbolic) collisions more rele-
vant to galactic nuclei than to globular clusters. The veloc-
ity dispersion of globular cluster stars is typically ~ 10 km
s~ 1, which is much smaller than the escape velocity from
the stellar surface [for example, a MS star of mass M = 0.8
M and radius R = Ry has an escape velocity (2GM/
R)!/2 = 552 km s~ ']. For this reason, we consider only
parabolic collisions in this paper, i.e., all initial trajectories
are assumed to have zero orbital energy.

Our paper is organized as follows. In § 2 we describe our
implementation of the SPH method and the numerical
setup of our calculations. In § 3 we present the models used
for the parent MS stars, detailing their assumed structure
and chemical composition profiles. We also describe the
initial (t = 0) configuration of the trajectory. Our results are
presented in § 4. After describing the results for two typical
collisions in detail, we then characterize the rotation states
and the final profiles of all our merger remnants. We also
present a general method, which does not depend on our
particular choice of initial chemical composition profiles,
for calculating the final profile of any passively advected
quantity in the merger remnant. We conclude our results
with an analysis of the numerical accuracy of our simula-
tions. Finally, in § 5 we discuss the astrophysical implica-
tions of our results as well as directions for future work.

2. NUMERICAL METHOD AND CONVENTIONS

2.1. The SPH Code

Our numerical calculations are done using the smoothed
particle hydrodynamics (SPH) method (see Monaghan 1992
for a recent review). We use a modified version of the code
developed by Rasio (1991) specifically for the study of stellar
interactions (see Rasio & Shapiro 1995, and references
therein). In this subsection, we briefly describe our particu-
lar implementation of the SPH scheme.

Associated with each SPH particle i is its position #;,
velocity v;, mass m;, and a purely numerical “smoothing
length” h; specifying the local spatial resolution. An esti-
mate of the fluid density at r; is calculated from the masses,
positions, and smoothing lengths of neighboring particles as
a local weighted average:

Pi=zijij, )
J
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where the symmetric weights W; = W, are calculated from
the method of Hernquist & Katz (1989), as

mj=%[W(|ri_rj|5hi)+W(lri_rjl,hj)]' 2

Here W(r, h) is an interpolation kernel, for which we use the
second-order accurate form of Monaghan & Lattanzio

(1985):
A ot
W(r,h)=$ %[2—(%)]3, 1<7<25 0)
0. %22.

In addition to passively advected scalar quantities (such
as the helium mass fraction Y), each particle i also carries
the local entropy variable 4;. The specific entropy s; at r; is
related to A4; by

k
r,—1

51— 5, = In4, @

where k is Boltzmann’s constant and s, is a constant.
Neglecting radiation pressure, the pressure at r; is estimated
as

pi = A; P}—l > &)

where the adiabatic index I'; = 5/3 is the ratio of specific
heats for a fully ionized ideal gas. As a self-consistency test
of our ideal gas approximation, we have checked that the
vast majority of particles have p; remaining much larger
than the radiation pressure $aT$, where a is the radiation
constant and T; is the local temperature, throughout the
dynamical evolution.

An SPH code must solve the equations of motion of a
large number N of Lagrangian fluid particles. Particle posi-
tions are updated according to

F=0;, (6)
while the velocity of particle i is updated according to
m;v; = F©=Y 4 FEPH W)

Here the gravitational force F{©™" is calculated by a
particle-mesh convolution algorithm (Hockney & East-
wood 1988; Wells et al. 1990) based on fast Fourier trans-
forms (FFT) on a 256> grid and

FS™ = Y m, m,.[<% + p—;) + n,.,.]v,. Wy. ()
i P Pj
The II;; term accounts for the artificial viscosity described
below, while the rest of equation (8) represents one of many
possible SPH estimators for the local pressure-gradient
force —my(Vp/p); (see, e.g., Monaghan 1985).

For the artificial viscosity, a symmetrized version of the
form proposed by Monaghan & Lattanzio (1985) is
adopted:

—0o ..ci.+ 2,
I, = i Buij

)
Pij
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where o and f are constant parameters, ¢;; = (c; + ¢;)/2, and

v;—v) - (r;—r)
Mij = hi1(|"i""j|2/hi2j+'l2)’
0, when (v; —v)) - (r; —r;) 20,

(10)

with h;; = (h; + h;)/2. We have used a =1, f=2 and
n? = 0.01, which provides a good description of shocks
(Monaghan 1989; Hernquist & Katz 1989).

To complete the evolution equations of the fluid, 4; is
evolved according to a discretized version of the first law of
thermodynamics:

dA; -1

- ;pz_lgjmjnij(vi—v,.yv,.w,.j. (11)
Equation (11) has the advantage that the total entropy is
strictly conserved in the absence of shocks (i.e., when IT;; =
0), and the disadvantage that the total energy is only
approximately conserved (Rasio 1991; Hernquist 1993).
Both total energy and angular momentum conservation are
monitored throughout the integrations as a measure of
numerical accuracy, and these quantities are conserved
typically at the percent level.

The dynamical equations are integrated using a second-
order explicit leap-frog scheme. We calculate the time step
as At = Cy Min (At,, At,), where At, = Min; (h;/d;)'/?,
At, = Min, [h/(c? + v})'*] and the Courant number
Cy = 0.8. Other details of our implementation, as well as a
number of test-bed calculations using our SPH code are
presented in Lombardi, Rasio, & Shapiro (1996).

Twenty of the 23 calculations reported here employ
N =3 x 10* equal-mass particles, while the remaining
three calculations (cases U, V, and W below) use
N = 1.8 x 10* equal-mass particles. Unequal-mass SPH
particles, sometimes used to allow for higher resolution in
low-density regions, tend to settle spuriously to preferred
regions in the gravitational potential because of numerical
discreteness effects. Therefore, even though equal-mass par-
ticles can lead to poor resolution in low-density stellar
envelopes, they are still the appropriate choice for studies of
fluid mixing. In all of our simulations, time-dependent, indi-
vidual particle smoothing lengths h; ensure that each parti-
cle interacts with a constant number of neighbors Ny =~ 64.
The numerical integration of the SPH equations typically
takes about 2 CPU hours per time unit (eq. [12] below) on
an IBM SP-2 supercomputer.

when (v, —v;) - (r;—r) <O0;

2.2. Choice of Units

Throughout this paper, numerical results are given in
units where G = Mo = Ryo =1, where G is Newton’s
gravitational constant, and M, and Ryo are the mass and
radius of a terminal-age MS (TAMS) star at the cluster
turnoff point. The units of time, velocity, and density are
then

3 \1/2 -1/2 3/2
t, = h = 1782 s &0_ ﬁ , (12)
GM+o 0.8 Mg R,

v, = (o 301 km s Mo ) (Rro _1/2,
Rro 08 Mo/ \Ro

(13)
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MTO — MTO RTO -3
21047 32 J(Bro) T (g4
=R g cm (0.8 Mo\ R, (14

Furthermore, the units of temperature and specific entropy
are chosen to be

_ GMyomy 7 Mo BE !
T, = KRog =185 x 10" K 08 Mo\ R, , (15)

_ Kk
Y Mo

-1
s =868 x 10730 erg K1 g-1< Mro ) ,

0.8 M,
(16)

where my is the mass of hydrogen and k is Boltzmann’s
constant.

2.3. Determination of the Bound Mass and T ermination
of the Calculation

The iterative procedure used to determine the total
amount of gravitationally bound mass M of a merger
remnant is the same as in Rasio (1991): namely, to be con-
sidered bound, a particle must have negative specific enth-
alpy with respect to the bound fluid’s center of mass. During
all of the stellar collisions we considered, only a small frac-
tion (typically a few percent) of the ejected mass becomes
gravitationally unbound. Some SPH particles, although
bound, are ejected so far away from the system’s center of
mass that it would take many dynamical timescales for
them to rain back onto the central remnant and settle into
equilibrium. Rather than wait for these particles (which
would allow for more spurious dissipation and mixing; see
§§ 4.2 and 4.5), we terminate the calculation once we are
confident that at least the inner 95% of the mass has settled
into equilibrium. We confirm this by two stability tests.
First, we check that the specific entropy s increases from the
center to the surface of the merger remnant, a sufficient (and
necessary for nonrotating stars) condition for convective
stability (see the discussion surrounding eq. [18]). For
rotating merger remnants we also check another dynamical
stability criteria, namely that the specific angular momen-
tum increases from the poles to the equator along surfaces
of constant entropy (Tassoul 1978).

3. INITIAL DATA

We consider parent MS stars of masses M = 0.2, 0.5, 0.75,
and 1M,. Table 1 gives the stellar radius R that we adopt,
as well as the radii enclosing mass fractions 0.9 and 0.95, for
each of these parent stars. Note the central concentration of
mass in the M = Mo, R = Ryg star: 90% of its mass lies
within a sphere of radius 0.503Ryo, so that 10% of the
(equal-mass) SPH particles are used to model the outer 87%
of the volume. Whereas the numerical resolution is conse-
quently somewhat lower in the envelope of such a star, we
do note that all of our parent models have more than 1500
particles with r/R > 0.5.

TABLE 1
PARENT STAR CHARACTERISTICS
M R r(0.9M) r(0.95M) My /M
02....... 0.16 0.124 0.133 0.240
05....... 0.37 0.286 0.307 0.250
0.75...... 0.56 0.422 0.457 0.283
1......... 1 0.503 0.573 0.411
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The M = 0.2 and 0.5M o stars are modeled as n = 1.5
polytropes, whereas the M = M stars have the structure
of n = 3 polytropes. The 0.75M ¢, stars are modeled as com-
posite polytropes consisting of a radiative core of index
n = 3 and a convective envelope of index n = 1.5, with the
interface being located at a radius 0.29Ro. This interface
radius, as well as the stellar radii for all the parent stars, is
obtained from the stellar evolution calculations by
D’Antona (1987) for Population II stars of primordial
helium abundance Y = 0.23 and metallicity Z = 0.0001.
The results were interpolated assuming Mo = 0.8 M to
anaget = 15 Gyr.

The top frame of Figure 1 shows the resulting specific
entropy profiles as given by one-dimensional numerical
integrations. The convective regions have constant specific
entropy. Note that the specific entropy in the M = 0.2 and
0.5M, stars is everywhere smaller than the minimum spe-
cific entropy in the two more massive stars; this fact plays a
central role in understanding the dynamics of the merger
involving either an M = 0.2 or 0.5M, star with a more
massive star. For comparison, the bottom frame of Figure 1
shows the three-dimensional SPH entropy profile for our
M = M, parent star with N = 1.5 x 10* particles, super-
imposed on the one-dimensional result. The central concen-
tration of the M = M, star, along with the use of
equal-mass SPH particles, leads to the relatively small
number of particles in the outer layers; nevertheless, the
agreement between the SPH and one-dimensional profiles
remains excellent throughout the star. In all of our other
parent models, the outer layers have a larger number
density of SPH particles and hence a better resolution.

We have used the stellar evolution code developed by
Sienkiewicz and collaborators (see Sienkiewicz, Bahcall, &

o b bl e b b by 1
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F1G. 1.—Specific entropy s (relative to the constant s,) as a function of
radius r for the parent stars used in our collision calculations. The dotted,
short-dashed, long-dashed, and solid curves in the top frame correspond to
the results of a one-dimensional integration for our parent stars of mass
M =02, 05, 0.75, and 1M, respectively, where M, = 0.8 M, is the
mass of a turnoff star. The bottom frame shows the SPH particle values of
the entropy for our M = My, star with N = 1.5 x 10* particles, superim-
posed on the one-dimensional result. Units are defined in § 2.2.
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FI1G. 2—Fractional helium abundance Y as a function of interior mass
fraction m/M for the parent stars whose entropy profiles are shown in Fig.
1. As in Fig. 1, the dotted, short-dashed, long-dashed, and solid curves
correspond to parent stars of mass M = 0.2, 0.5, 0.75, and 1M, respec-
tively.

Paczynski 1990) to compute the chemical composition
profile in the radiative zones of the M = 0.75 and 1M,
parent stellar models. We evolved MS stars of total mass
M =06 and 08 M, primordial helium abundance
Y = 0.25 and metallicity Z = 0.001 for a time ¢ ~ 15 Gyr,
which brought the center of the M = 0.8 M, star to the
point of hydrogen exhaustion. Everywhere in the (fully
convective) M = 0.2 and 0.5M, stars, we set a constant
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fractional helium abundance Y =0.24 and Y = 0.25,
respectively. In the convective envelope of our 0.75M
parent star, we set Y = 0.25. Figure 2 shows the resulting
profiles, which are used to assign the helium abundance to
all the SPH particles in the calculations. The final column in
Table 1 gives the total mass fraction of helium My, /M for
each of the parent stars. Although the assumed composition
profiles do not affect the hydrodynamics of a collision in
any way, they are needed to determine the chemical com-
position profile of the merger remnant. In § 4.4 we present a
method for applying our results to arbitrary initial com-
position profiles.

The stars are initially nonrotating and separated by at
least 4 times the radius of the larger star, which allows tidal
effects to be neglected in the initial configuration. The initial
velocities are calculated by approximating the stars as point
masses on an orbit with zero orbital energy and a pericenter
separation r,. The Cartesian coordinate system is chosen
such that these hypothetical point masses of mass M, and
M, would reach pericenter at positions x;=(—1)
[1—-M/M;+ M,)]r,, y;=2=0, where i=1,2 and
i = 1 refers to the more massive star. The orbital plane is set
to be z = 0. With these choices, the center of mass resides at
the origin.

4. RESULTS

Table 2 summarizes the initial parameters and final
results of all our calculations. The first column gives
the name by which the calculation is referred to in
this paper. The second and third columns give the
masses M; and M, of the colliding stars, in units of My,
(~0.8 M). Column (4) gives the ratio r,/(R; + R;), where
r, is the pericenter separation for the initial orbit and R,
+ R, is the sum of the two (unperturbed) stellar radii. This
ratio has the value O for a head-on collision, and 1 for a
grazing encounter. Note, however, that an encounter with
r,/(Ry + R;) 2 1 can still lead to a direct collision in the
outer envelopes of the two stars because of the large tidal

TABLE 2
SUMMARY OF COLLISIONS

y M
Case M, M, R, +R, To ty n, 1 M, +M, T/|W| V. v,
1 @ 3 @ ©) ©® O ®) © (10) (11)
A ... 1.00 1.00 0.00 4 22 1 0.064 0.00 0.000 0.000
B..... 1.00 1.00 0.25 4 48 3 0.023 0.07 0.000 0.000
C...... 1.00 1.00 0.50 5 85 4 0.012 0.12 0.000 0.000
D...... 1.00 0.75 0.00 5 15 1 0.057 0.00 —0.015 0.000
E..... 1.00 0.75 0.25 5 41 2 0.024 0.07 —0.003 —0.007
F... 1.00 0.75 0.50 5 65 3 0.008 0.09 0.000 —0.002
G...... 1.00 0.50 0.00 5 30 1 0.056 0.00 —0.029 0.000
H...... 1.00 0.50 0.25 5 39 2 0.028 0.05 —0.010 —0.009
I....... 1.00 0.50 0.50 5 68 3 0.008 0.07 —0.001 —0.003
T 0.75 0.75 0.00 5 16 1 0.049 0.00 0.000 0.000
K..... 0.75 0.75 0.25 5 40 2 0.028 0.08 0.000 0.000
L.... 0.75 0.75 0.50 3 95 4 0.022 0.10 0.000 0.000
M...... 0.75 0.50 0.00 3 15 1 0.054 0.00 —0.034 0.000
N...... 0.75 0.50 0.25 3 40 2 0.029 0.05 —0.010 —0.011
O...... 0.75 0.50 0.50 3 62 3 0.010 0.07 —0.002 —0.002
P..... 0.50 0.50 0.00 1.85 14 1 0.037 0.00 0.000 0.000
Q...... 0.50 0.50 0.25 1.85 29 2 0.029 0.06 0.000 0.000
R..... 0.50 0.50 0.50 1.85 30 3 0.010 0.10 0.000 0.000
Sl 0.50 0.50 0.75 1.85 35 3 0.008 0.12 0.000 0.000
T...... 0.50 0.50 0.95 1.85 61 3 0.011 0.13 0.000 0.000
U...... 1.00 0.20 0.00 5 23 1 0.026 0.00 0.003 0.000
V... 1.00 0.20 0.25 5 41 2 0.025 0.02 —0.009 —0.004
Ww...... 1.00 0.20 0.50 5 81 3 0.021 0.03 —0.007 —0.007
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M deformations near pericenter. We did not attempt to
perform any calculations for o
(Ry + R,) > 1, for reasons discussed in § 5. Column (5) gives
the initial separation r, in units of Ryo. Column (6) gives the
final time ¢, at which the calculation was terminated, in the
units of equation (12); see § 2.3 for a discussion of how the
values of ¢, were obtained. Column (7) gives the number n,
of successive pericenter interactions that the stars experi-
ence before merging. In general, n, increases with r,, and it
is only for very nearly head-on collisions that the two stars
merge immediately after the first impact (n, =1 in that
case). Column (8) gives the mass-loss fraction 1 — M/(M,
+ M), where M is the mass of the bound fluid in the final
merged configuration. Column (9) gives the ratio T/| W | of
rotational kinetic energy to gravitational binding energy of
the (bound) merger remnant in its center of mass frame at
time t,. Columns (10) and (11) give the velocity components
V. and V, in the units of equation (13) for the merger
remnant’s center of mass at time ¢, in the system’s center of
mass frame (¥, = 0 by symmetry). Since the amount of mass
ejected during a parabolic collision is very small, the merger
remnant never acquires a large recoil velocity. The largest
value of 0.035 in our calculations occurs for case M and
corresponds to a physical speed of about 14 km s~ (for
Mo =08 Mg and Ryo = Rg). This may be large enough
to eject the object from the cluster core but not to eject it
from the entire cluster.

4.1. Overview of the Results for Two Typical Cases

One of our calculations involving two TAMS stars (Case
C) has already been described by Lombardi et al. (1995). In
this section we discuss in detail the results of two other

T T | T T T T T T T T

-2 0 2

Vol. 468

representative cases (E and G).

Figure 3 illustrates the dynamical evolution for Case E: a
TAMS star (M; = M) collides with a slightly less massive
star (M, = 0.75M o). The initial separation is r, = 5 and
the parabolic trajectory has a pericenter separation r, =
0.25(R; + R,). The first collision at time ¢t &~ 4 disrupts the
outer layers of the two stars but leaves their inner cores
essentially undisturbed. The two components withdraw to
apocenter at t =7 and by t =~ 10 are colliding for the
second, and final, time (n, = 2). The merger remnant under-
goes some large-amplitude oscillations that quickly damp
away becasue of shock dissipation. Only about 2% of the
total mass is ejected during the collision, and this ejection is
nearly isotropic. As a result, the final recoil velocity of the
merger remnant in the orbital plane is small, V' =~ 0.007.

The final (t = 41) equilibrium configuration (see Fig. 4) is
an axisymmetric, rapidly rotating object (T/| W | = 0.07).
Figure 5 shows SPH-particle values of the angular velocity
Q as a function of the cylindrical radius @ (the distance to
the rotation axis) in the equatorial plane. The uniformly
rotating core contains only about 15% of the mass and is an
artifact of the artificial viscosity, as discussed in § 4.2. The
majority of fluid in the merger remnant is differentially
rotating (e.g, dInQ/dlnw~ —1.8 at @ = 3R;,). The
angular velocity drops to half its central value near w =
1.1R1o, and 80% of the mass is enclosed within the iso-
density surface with this equatorial radius.

Figure 6 displays the thermal energy U, kinetic energy T,
gravitational potential energy W, and total energy
E =U + T + W as afunction of time ¢ for case E. The total
energy is conserved to within 2%. Dips in the potential
energy W correspond either to a collision of the two com-
ponents before final merging or to a maximum contraction

L T T T T T 1]
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_2 — —
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F1G. 3.—Snapshots of density contours in the orbital plane (z = 0) showing the dynamical evolution in case E, where we consider a parabolic collision
between parent stars of masses M; = My, and M, = 0.75M, at a pericenter separation r, = 0.25(R; + R,). There are eight density contours, which are

spaced logarithmically and cover four decades down from the maximum.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...468..797L

No. 2, 1996

COLLISIONS OF MAIN-SEQUENCE STARS

803

LA R L B B

(b)

T | T

IlglI‘Ll\

[T T T 1t

Lo | L

PRI S AT WA N S N S

-2 0 2
X

F16. 4—Density contours and velocity field for the final (t = 41) configuration of the case E collision in (a) the equatorial (z = 0) plane and (b) the
y = constant plane, which includes the rotation axis. There are 10 contours such that, starting from the center, each corresponding isodensity surface
encompasses an additional 10% of the total mass, with the exception of the outermost contour, which encompasses 95% of the mass.

during the subsequent oscillations of the merger remnant.
The criterion we use to distinguish collisions (which should
be included in the number of interactions n, before the stars
merge) from oscillations is that the first local maximum of
W which is lower than the previous local maximum occurs
immediately after the final merging. The idea behind this
criterion is that a collision without merger ultimately tends
to increase the system’s gravitational potential energy,
whereas a merger will decrease the potential energy. For
example, in Figure 6, the local maximum of W at t ~ 11 is
lower than the one at t = 6, so that the dips in W at t = 4
and 11 account for the number n, = 2 of interactions given
in Table 2 for case E. The remaining dips at t ~ 12 and 15
correspond to the peak contraction of the merger remnant
during oscillations. The value n, = 2 obtained here in this
way agrees with what one gets simply by direct visual
inspection of the system at various times. In some cases,
however, visual inspection can be subjective, since it is often
difficult to recognize two components connected by a
bridge of high-density material just prior to final merging.

1.5 T T T T T T T T T T T
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F1G. 5—Angular velocity Q as a function of cylindrical radius @ for
particles near the equatorial plane (|z;| < 2h;, where h; is the particle
smoothing length) in the final (t = 41) merger remnant of case E.

Figure 7 illustrates the dynamical evolution in case G,
which involves a TAMS star (M; = M1,) and a low-mass
MS star with M, = 0.5M, on a head-on parabolic trajec-
tory with initial separation r, = 5. The initial collision
occurs at time t ~ 4, and the stars never separate. The
resulting isodensity surfaces of the final equilibrium con-
figuration are essentially spherically symmetric (Fig. 8).
About 6% of the total mass becomes gravitationally
unbound following the collision, and it is ejected prefer-
entially in the + x-direction. Of this ejected material, 95%
originated in the more massive (M = M) star.

Figures 9a and 9b show the entropy profiles for the final
configurations in cases E and G. Except over the outer few
percent of the mass, where equilibrium has not yet been
reached (see § 2.3), the specific entropy s is an increasing
function of the interior mass fraction m/M. Here m is the
mass inside an isodensity surface, and M is the total bound
mass of the merger remnant. Most of the scatter of the
points in Figure 9 is physically meaningful, since isodensity
surfaces and surfaces of constant entropy do not coincide.
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[ 8]
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T
0~ 1
>
iﬂ I JOE
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=)
s L 4
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S5 1 1 | 1 1 1 1 ‘ 1 1 1 1 | 1 1 1 1 |—
0 10 20 30 40

F1G. 6.—Internal energy U, kinetic energy T, gravitational potential
energy W, and total energy E=U + T + W as a function of time ¢ for
case E.
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F1G. 7—Snapshots of density contours in the orbital plane (z = 0) showing the dynamical evolution in case G, where we consider a head-on parabolic
collision between parent stars of masses M, = My, and M, = 0.5M,. There are eight density contours, which are spaced logarithmically and cover four

decades down from the maximum.

The small scatter in Figure 9b demonstrates that the
entropy does tend toward spherical symmetry in non-
rotating merger remnants, despite the strong angular
dependence of the shock heating owing to the geometry of
the collision.

Even though the density and entropy profiles of both the
merger remnant and parent stars are spherically symmetric
in case G, this does not imply that the chemical composi-
tion must also share this symmetry. Indeed, the effects of
anisotropic shock heating are always evident in the final
spatial distribution of the chemical composition. On a
constant-entropy surface in the final configuration, particles
that have been shock heated the most necessarily had the
lowest entropy prior to the collision. Since lower entropy
material generally has higher helium abundance (see Figs. 1
and 2), shock-heated regions tend to have higher helium
abundances. Generally, fluid elements that reside in the
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:
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X

orbital plane, and especially those which lie along the colli-
sion axis in r, = 0 cases, are shielded the least from the
shock. Figure 10 displays the angular distribution of the
helium abundance for the merger remnants of cases E and
G, near the interior mass fractions m/M = 0.25, 0.5, and
0.75. The helium abundance Y peaks in Figures 10b and 10d
at the polar angle 8 = /2 (the equatorial plane), as well as
in Figure 10c at ¢ = 0 (the collision axis). In the r, # 0
cases, shear in the differentially rotating merger remnant
tends to make the profiles axisymmetric (see Fig. 10a).
However, no dynamical motions exist to circulate the fluid
along the meridional directions, and consequently, on an
isodensity surface the fractional helium abundance
increases from the poles to the equators for both rotating
and nonrotating merger remnants (see Figs. 10b and 10d).
Meridional circulation will smooth out these deviations
from compositional spherical symmetry over a timescale
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FiG. 8—Cross sections of isodensity surfaces for the final (¢ = 30) configuration of the case G collision in (a) the equatorial (z = 0) plane and (b) the
y = constant plane, which includes the rotation axis. The 10 contours are spaced the same as in Fig. 4.
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FiG. 9—Relative specific entropy s — s, as a function of final mass fraction m/M for the merger remnants of (a) case E and (b) case G. Here m is the mass
enclosed by an isodensity surface and M is the total bound mass of the merger remnant.

much longer than that treatable by our purely dynamical
code (see related discussion in § 5). As a practical concern,
we note that stellar evolution codes, which can use our
merger remnants as initial data, usually assume spherical
symmetry. For these reasons, we often average out the
angular dependence when presenting composition, and
other, profiles.

Figures 11a and 11b show the helium mass fraction Y as
a function of the interior mass fraction m/M for the final
merged configurations of cases E and G, respectively. The
points correspond to the final SPH particle values, with the
long-dashed curve representing their average. The spread in
the points is caused by the mixing of the fluid as well as the
deviation from spherical symmetry. Only a small fraction of
the observed mixing is a numerical artifact of the SPH
scheme (see § 4.5). In case E (Fig. 11a), there is only a modest
amount of hydrogen in the core, with the innermost 25% of
the mass being 60% helium. For both cases E and G, it is
immediately apparent that the helium enrichment in the
outer layers is minimal since the fractional helium abun-
dance is just barely above Y = 0.25, the value in the outer
layers of the parent stars.

The horizontal line at the bottom of Figure 11b corre-
sponds to the particles in case G, which originated in the
less massive parent star, star 2, all of which have a helium
abundance Y = 0.25. Although these particles are spread
over the entire range 0 < m/M < 1 in the merger remnant,
they are found preferentially near the center. Of all the par-
ticles that originated in star 2, 69% ultimately end with
m/M < 0.25, while only 6% end in the range 0.75 <
m/M < 1. Essentially, the entire star 2 has sunk to the
center of the merger remnant, displacing the material in star
1 and leaving only a small amount of shock-heated gas in
the remnant’s outer envelope. Consequently, the hydrogen
enrichment in the core is quite pronounced: all of the inner-
most 22% of the mass originated in star 2 and is therefore
75% hydrogen. This core concentration of hydrogen is even
higher than would be obtained if the stars had been com-

pletely mixed by the collision (64% hydrogen). Also note
that the average helium abundance jumps to a maximum
exceeding Y = 0.7 near m/M = 0.3. The subsequent stellar
evolution of an object with such an atypical chemical abun-
dance profile could be quite peculiar (see § 5).

4.2. Rotational Properties of the Merger Remnants

The collisions with r, # 0 result in rapidly, differentially
rotating merger remnants. As a global measure of rotation,
we list in Table 2 the final values of T/| W |, the ratio of
kinetic energy to gravitational binding energy, for the
merger remnants. Rotating fluid configurations with
T/|W| = 0.14 are secularly unstable, and those with
T/|W |z 0.26 are dynamically unstable (Chandrasekhar
1969; Shapiro & Teukolsky 1983, chap. 7). Our final
merged configurations are, by definition, dynamically
stable, but they could in principle be secularly unstable.
Although some of our calculations produce merger rem-
nants close to the secular stability limit, none of them
exceed it. However, extrapolation of our results to larger
values of r, suggests that secular instabilities could well
develop in some merger remnants.

Table 3 lists the values of the central angular velocity Q,
in the equatorial plane as well as other quantities character-
izing the rotation in the outer layers of the merger rem-
nants. Specifically, for the two mass fractions m/M = 0.9
and m/M = 0.95, we give the values of the polar and equa-
torial radii r, and r,, the angular velocity Q in the equato-
rial plane, and the ratio Q%,/g of centrifugal to
gravitational acceleration in the equatorial plane. We see
that Q%r /g can be a significant fraction of unity, indicating
that some configurations are rotating near breakup. The
central angular velocity Q, is typically an order of magni-
tude larger than the angular velocity Q at m/M = 0.95.

Figure 12 shows contours of the specific angular momen-
tum Qw?, where @ is the cylindrical radius measured from
the rotation axis, in the vertical (x, z) plane for several rep-
resentative cases. The outermost bounding curves corre-
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FiG. 10.—Fractional helium abundance Y for particles in the vicinity of the tinal mass fractions m/M = %, 4, and 2 as a function of the azimuthal angle ¢ (measured counterclockwise from the positive

x-direction) and the polar angle § (measured from the rotation axis). Panels (a) and (b) are for the merger remnant of case E, while panels (c) and (d) are for case G.
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FiG. 11.—Fractional helium abundance Y as a function of final mass fraction m/M for the merger remnants of (a) case E and (b) case G. The dashed line

represents the average of the individual SPH particle values.

spond to m/M = 0.95. Clearly, the merger remnants are not
barotropic since the condition dQ/dz =0 is not satisfied
everywhere. The implications of this result will be discussed
in§>5.

Artificial viscosities of the form of equation (9) witha 2 1
introduce a large shear viscosity into the fluid. The conse-
quences of shear viscosity will be discussed in detail in a
future paper (Lombardi et al. 1996), but here we summarize
the main effects relevant to our present calculations. One
prominent effect is for a uniformly rotating core to develop
in our merger remnants, as seen in Figure 5. With time, the
core grows in size, and the central angular velocity Q,

TABLE 3
ROTATION OF MERGER REMNANTS

m/M =09 m/M = 095
Caste Q, r, r, Q Q%jg r, r. Q Qrjg

A..... 00 12 12 000 000 20 20 000 000
B.... 12 16 25 021 03 26 40 010 033
C...... 15 12 25 027 057 21 38 013 045
D...... 00 12 12 000 000 20 20 000 000
E... 12 12 19 031 040 20 30 014 032
F ... 12 12 25 027 067 18 39 013 059
G.... 00 09 10 000 000 15 15 000 000
H.... 12 10 15 040 040 17 25 017 029
| U 12 10 20 034 061 16 33 016 058
T 00 13 13 000 000 20 20 000 000
K.... 12 11 17 032 034 19 27 014 026
L... 13 12 23 023 044 24 37 011 037
M...... 00 10 10 000 000 16 16 000 000
N.... 12 09 13 039 030 16 22 015 021
O...... 13 10 18 030 043 17 29 013 034
P... 00 09 09 000 000 14 14 000 000
Q... 15 07 10 053 029 12 17 021 020
R.... 18 07 12 050 046 11 18 024 037
S 18 06 15 045 066 09 20 026 057
T 21 05 14 045 065 08 23 022 063
U...... 00 08 08 000 000 11 11 000 000
LA 07 09 10 044 020 14 18 020 020
W..... 08 09 12 047 032 15 24 017 033

drops. For instance in case E, the uniformly rotating core
has Q=Q,=16forallw <02 att =25 whileQ=Q, =
1.2 for w < 0.4 at t = 41 (see Fig. 5). The angular velocity of
the outer layers increases slightly as a result, since the total
angular momentum of the system is conserved. Further-
more, the ratio of kinetic to gravitational binding energy
T/| W | drops slightly. Since the decrease in Q, and T/| W |
would not occur in a simulation free of shear viscosity, the
values of Q, in Table 3 and T/|W| in Table 2 should be
interpreted as lower limits. Note, however, that it may not
be physically unrealistic to have such a large shear viscosity.
Indeed, it is well known that in most real rotating systems
(such as accretion disks), rapid and differential rotation can
induce a large anomalous shear viscosity.

With the artificial viscosity parameters « 2 1 and f ~ 1,
the term linear in p; in equation (9) dominates in the
absence of shocks, and the angular momentum transfer
timescale in a differentially rotating configuration can be
comparable to the dynamical timescale. For a region in
which the angular velocity profile obeys Q oc @™ *, dimen-
sionless analysis on the IT;; term in equation (8) gives a
viscous timescale ~w(Ny)!/?/(aAc,). In the units defined in
§ 2.2, the sound speed ¢, ~ 1 throughout our merger rem-
nants. Furthermore, we have « = 1 in our simulations, and
our results imply A ~ 1. Therefore, at w = 1, the viscous
timescale is only an order of magnitude larger than the
dynamical timescale, meaning that the rotation profile in
the region w < 1 is significantly affected by shear viscosity
within only ~ 10 time units. Note that for « = 0, the viscous
timescale becomes ~@(Ny)'/2/(BA*Qh), where h is a typical
smoothing length of a local SPH particle. We have com-
pleted a simulation analogous to case E, but with & = 0 and
B = 2.5 instead of & = 1 and § = 2. The viscous timescale in
the o = 0 simulation is more than an order of magnitude
larger in the remnant’s core than in case E. This difference
in timescales is evident in the resulting rotation profile: at
t = 41, the central angular velocity Q, = 1.7, as opposed to
the Q, = 1.2 found in case E (see Fig. 5). All other profiles,
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FiG. 12—Contours of the specific angular momentum Qw? in the vertical (x, z) plane (meridional section) for several representative cases. Here Q is the
angular velocity and @ is the cylindrical radius measured from the rotation axis. The contours have a linear spacing of 0.1, with the specific angular
momentum increasing from the rotation axis to the outer layer of the merger remnant. The thick bounding curve marks the isodensity surface, which encloses
95% of the total gravitationally bound mass.
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such as entropy and chemical composition, are only weakly
dependent on the values of the artificial viscosity param-
eters a and f. Entropy production due to the shear viscosity
does of course occur in the merger remnant, but only on a
timescale much larger than the timescale for angular
momentum transfer (as can be seen from dimensional
analysis on eq. [11]). Chemical composition profiles, when
expressed as a function of interior mass fraction, are hardly
affected by the shear viscosity.

4.3. Composition and Thermodynamic Profiles

Figures 13a—13g show the variation of the density p, rela-
tive specific entropy s — s,, helium fraction Y, and tem-
perature T as a function of m/M for all merger remnants.
The density and entropy profiles are fundamental in the
sense that they do not depend on the assumed initial helium
profiles. The entropy and helium profiles have been aver-
aged over isodensity surfaces. The temperature profile is
calculated from the entropy and helium profiles by setting
the pressure p = pkT/u equal to p = Ap"?, solving for T
and using equation (4). Here the mean molecular weight p is
given by

p=my2X +3Y +12)7t, 17

where my is the mass of hydrogen and X, Y, and Z are the
fractional abundances of hydrogen, helium and metals. For
Population II stars, Z ~ 10”4-10"3, and the precise value
does not significantly affect the calculated temperature pro-
files.

Note the peculiar shapes of some of the temperature and
helium profiles in Figure 13. For example, often the tem-
perature or helium abundance reaches its maximum value
somewhere other than the center of the star. Although these
configurations are very close to hydrostatic equilibrium, it
is clear that they are not in thermal equilibrium (see related
discussion in § 5). These unusual profiles suggest that we
look at the condition for convective stability more carefully.
For a nonrotating star, this condition can be written simply
as

ds
dr

where s is the local specific entropy (see, e.g., Landau &
Lifshitz 1959, § 4). When written in terms of temperature
and composition gradients, equation (18) becomes, for an

ideal gas,

1dr 1 (dT 1du

T r>T<dr>m,+udr’ (19)
which is known as the Ledoux criterion (see, e.g.,
Kippenhahn & Weigert 1990, chap. 6). Here the subscript
ad denotes that the derivative is to be taken at constant
entropy. Most of our merger remnants have composition
gradients, and it is in the regions where du/dr >0 that
equation (19) can require dT/dr >0 for stability. For
chemically homogeneous stars, the second term on the
right-hand side of equation (19) vanishes, and the familiar
Schwarzschild criterion results. Although equation (18) is
quite general, it does require slight modification for rotating
stars (see Tassoul 1978, chap. 7).

Figure 13a, 13d, and 13f demonstrate that merger rem-
nants formed from equal-mass parent stars have composi-
tion profiles that mimic those of the parents, as can be seen
by comparing the resulting helium profiles to the corre-

>0, (18)

sponding parent profiles in Figure 2. In Figure 13f, all of the
merger remnants have Y =025 for all m/M, which is
simply because the fully convective parents stars in these
cases had Y = 0.25 everywhere.

We see from Figure 13¢ that the central specific entropy
of the merger remnants increases with r,, which can explain
the qualitatively different shapes of the corresponding
helium abundance profiles. This increase occurs because the
number of interactions n,, and hence the level of shock
heating in star 2 (the smaller star), increases with r,. The
shock heating in the central region of star 1 is less sensitive
to n,, since the outer envelope absorbs the brunt of the
shock. For case G (solid line), n, = 1 and much of star 2 is
able to maintain a lower specific entropy than the minimum
value in star 1. Since low-entropy material tends to sink to
the bottom of the gravitational potential well, the merger
remnant’s core consists entirely of fluid originally from star
2 and therefore with a helium abundance Y = 0.25. For
case H (long-dashed line), n, = 2 and, although the central
fractional helium abundance is still 0.25, there is enough
shock heating for the fluid at small m/M to be affected by
contributions from both stars. For case I (short-dashed line),
n,=3 and the additional shock heating is sufficient to
prevent most of the fluid from star 2 from reaching the
center of the remnant, which consequently is not signifi-
cantly replenished with hydrogen.

Figure 13g displays the profiles for merger remnants
resulting from collisions between two stars of masses M, =
Mo and M, = 02Myo. In the head-on case, the less
massive star (star 2) plummets so quickly to the center that
there is significant shock heating in the core of star 1, where
the highest fractional helium abundance resides. This causes
the helium-rich material to be spread throughout a larger
region of the merger remnant, and the resulting helium
profile is not as sharply peaked as in cases V and W.

4.4. A Simplified Method for Calculating Final Profiles

To make our results more useful to future studies, we now
present a simple and general method for constructing the
final composition profiles in our merger remnants for any
assumed initial composition profiles. From our results, we
extract some simple functions that can be applied to trans-
form, for example, any given helium abundance profiles for
the parents into a helium abundance profile for the merger
remnant. Indeed, these transfer functions allow one to find
the final profile of any passively advected quantity, provid-
ed only that the profiles of that quantity in the parent stars
are both known and spherically symmetric.

Table 4 and Figure 14 establish a correlation between the
initial and final mass fractions of an SPH particle and also
demonstrate that the details of fluid mixing during a colli-
sion can be quite complicated. Table 4 presents mixing data
for all eleven collisions between equal-mass stars. The
parent stars and merger remnant are partitioned into zones
according to interior mass fractions. For every zone in the
final configuration, we list the fraction of particles that orig-
inated in each of the initial zones. Although there is defi-
nitely a preferred final mass fraction m/M for a given initial
mass fraction m;/M;, there is always a range of m/M obtain-
able. In Figure 14, which is for case G, this range of mass
fractions is evident in the spread of points around a pre-
ferred average. The lower band of points surrounding the
solid line correspond to particles that originated in star 1,
while the upper band surrounding the dashed line corre-
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spond to particles that originated in star 2. The lines corre-
spond to the average initial mass fraction {m;/M;) for stars
i=1,2 as a function of the final mass fraction m/M,
obtained by binning in the m/M dimension. In contrast,
note that if the parent stars were completely mixed by the
collision then the points would be distributed uniformly
over the entire plot with an average initial mass fraction
{my/M;> = % for all m/M.

Let us define p; = p,(m/M) to be the probability that a
particle with final mass fraction m/M originated in star 1.
Obviously, 1 — p, is then the probability that the particle

1=
0.8
0.6

m,/M, }-

0.4

L
*§ ',‘f

|

0

0.R

m/M

FiG. 14—Individual points show the initial mass fraction m/M; of
SPH particles that originated in star i = 1 (the more massive star) or i = 2
(the less massive star) as a function of the particles’ final mass fraction m/M
for case G. The lines represent averages {m,/M;) obtained by binning in
m/M, with the solid line corresponding to star 1 and the dashed line
corresponding to star 2.

originated in star 2. With this definition we can approx-
imate the final profile of any passively advected quantity Q

M 1 m/M.

o(i) =)o
r-n(@GE)L) e

where Q; are the initial (spherically symmetric) profiles for
that quantity in the parent stars i = 1, 2. The quantities
{m;/M;} |,,;»s Wwhich appear in equation (20) are the average
initial mass fractions, such as the ones in Figure 14, evalu-
ated at the final mass fraction m/M. If all particles at m/M
came from a single value of m;/M;, then equation (20) would
be exact. In addition, if the initial profiles are linear over the
range of m;/M; which contributes to the abundance at m/M,
then the above relationship is exact.

Figures 15a-15¢ give the average mass fractions (m;/M;)
as a function of m/M for all of our collisions, while Figure
16 gives the function p, = p,(m/M) for the 12 collisions that
involve parent stars of unequal mass. Collisions involving
two identical stars necessarily have {m;/M;) = {m,/M,)
and p, = 3 for all m/M. The solid, long-dashed, and short-
dashed lines correspond to pericenter separations r, of 0,
0.25, and 0.5(R; + R,), respectively; in Figure 15f the dot-
dashed and dotted lines refer to case S [r, = 0.75(R; + R,)]
and case T [r, = 0.95(R, + RZ)], respectlvely Note that the
horizontal hne {m;/M;» = 1 would correspond to the fluid
of star i being completely mixed throughout the merger
remnant, which is not the case for any of our calculations.
For collisions involving equal-mass stars, if there were no
shock heating and no mass loss, then every particle would
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TABLE 4
FLUDD MIxXING IN EQUAL PARENT MAss CASEs

INITIAL FINAL Mass FRACTION
Mass
CASE FracTION 0-0.01 0-0.25 0.25-0.5 0.5-0.75 0.75-1 Ejecta

A...... 0-0.25 1.00 091 0.16 0.00 0.00 0.00
0.25-0.5 0.00 0.09 0.74 0.23 0.01 0.00
0.5-0.75 0.00 0.00 0.10 0.69 0.28 0.01
0.75-1 0.00 0.00 0.00 0.08 0.72 0.99
B...... 0-0.25 1.00 0.87 0.13 0.02 0.00 0.00
0.25-0.5 0.00 0.13 0.65 0.23 0.02 0.00
0.5-0.75 0.00 0.00 0.22 0.57 0.22 0.00
0.75-1 0.00 0.00 0.00 0.18 0.75 1.00
C...... 0-0.25 1.00 0.88 0.13 0.01 0.00 0.00
0.25-0.5 0.00 0.12 0.63 0.25 0.01 0.00
0.5-0.75 0.00 0.00 0.24 0.51 0.26 0.00
0.75-1 0.00 0.00 0.00 0.24 0.73 1.00
Joooo. 0-0.25 1.00 091 0.14 0.00 0.00 0.00
0.25-0.5 0.00 0.09 0.75 0.20 0.01 0.00
0.5-0.75 0.00 0.00 0.11 0.67 0.26 0.03
0.75-1 0.00 0.00 0.00 0.12 0.73 0.97
K...... 0-0.25 1.00 0.80 0.18 0.04 0.00 0.00
0.25-0.5 0.00 0.20 0.48 0.25 0.09 0.00
0.5-0.75 0.00 0.00 0.31 0.44 0.28 0.01
0.75-1 0.00 0.00 0.03 0.26 0.63 0.99
L...... 0-0.25 1.00 0.86 0.14 0.02 0.00 0.00
0.25-0.5 0.00 0.14 0.59 0.24 0.05 0.00
0.5-0.75 0.00 0.00 0.18 047 0.36 0.05
0.75-1 0.00 0.00 0.08 0.27 0.58 0.95
P...... 0-0.25 0.94 0.74 0.26 0.04 0.00 0.00
0.25-0.5 0.05 025 0.50 0.27 0.01 0.00
0.5-0.75 0.01 0.01 0.24 0.55 0.24 0.01
0.75-1 0.00 0.00 0.00 0.14 0.74 0.99
Q...... 0-0.25 0.96 0.55 0.33 0.14 0.01 0.00
0.25-0.5 0.04 0.32 0.36 0.27 0.08 0.00
0.5-0.75 0.00 0.13 0.27 0.38 0.25 0.01
0.75-1 0.00 0.00 0.04 0.21 0.66 0.99
R...... 0-0.25 1.00 0.66 0.21 0.12 0.03 0.00
0.25-0.5 0.00 0.26 0.36 0.23 0.16 0.00
0.5-0.75 0.00 0.08 0.32 0.36 0.26 0.05
0.75-1 0.00 0.00 0.11 0.30 0.55 0.95
S...... 0-0.25 0.98 0.57 0.30 0.12 0.02 0.00
0.25-0.5 0.02 0.29 0.30 0.28 0.14 0.00
0.5-0.75 0.00 0.13 0.27 0.33 0.27 0.04
0.75-1 0.00 0.01 0.13 0.26 0.58 0.96
T...... 0-0.25 0.98 0.60 0.24 0.11 0.06 0.01
0.25-0.5 0.02 0.25 0.31 0.25 0.19 0.00
0.5-0.75 0.00 0.13 0.25 0.31 0.32 0.03
0.75-1 0.00 0.03 0.20 0.32 0.42 0.96

have identical initial and final mass fractions (i.e., m;/M; =
m/M), so that the merger remnant’s helium profile would be
the same as in the parent stars. In the equal-mass cases A, B,
C, I, K, and L, we do find {m;/M,> ~ m/M and the final
helium profiles are indeed quite similar to the parent profile,
as shown in §4.3.

Along with equation (20), the functions of Figures 15 and
16 provide the means for approximating the final profile of
any passively advected quantity. As a concrete example of
how to use this method, we will now calculate the fractional
helium abundance at m/M = 0.28 in the merger remnant of
case G, using the same initial profiles as shown in Figure 2.
From the solid lines corresponding to case G in Figures 15¢
and 16, we find that {m,;/M ) |y.,5 = 0.05, {my/M ) o258 =
0.65 and p,(0.28) = 0.62. Therefore,

Y(0.28) ~ 0.62 x Y;(0.05) + (1 — 0.62) x ¥,(0.65) = 0.70 ,
(1)

where we have used Y;(0.05) = 0.97 and Y,(0.65) = 0.25,
obtained from the solid and short-dashed lines of Figure 2,

respectively. By repeating this calculation for other values
of m/M, we construct the approximate helium profile shown
as the dashed line in Figure 17. Also shown for comparison
is the “exact” profile (solid line) constructed by considering
the individual helium abundance carried by each particle
(the same curve that appears in Fig. 11b). We consider the
agreement to be quite good, given the simplicity of the
approximation scheme and the fact that it does not require
access to large data files containing information on all
N = 3 x 10* particles.

4.5. Degree of Spurious Mixing

In all SPH calculations, numerical noise can lead to spu-
rious, or artificial, mixing of SPH particles. To estimate how
much of the observed mixing is in fact spurious, we have
performed a series of systematic tests to evaluate quantitat-
ively the effects of spurious transport in SPH calculations
(Lombardi et al. 1996). In particular, one of these tests mea-
sures, in the absence of shocks and as a function of the
neighbor number Ny and local noise level v, (the root
mean square particle velocity deviation from the local
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pond to different pericenter separations r, for the initial orbit. For collisions involving two identical parent stars,

FiG.

{m,/M ), so that only one set of plots is necessary.

FI1G. 15.—Average initial mass fractions {m;/M,) as a function of final mass fraction m,

()P, Q, R, S, and T; and (g9) U, V, and W. As in Fig. 13, the different lines corres

{m/M >
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Fi1G. 17.—Exact (solid line) and approximate (dashed line) helium abun-
dance profiles for the final merger remnant of case G. The exact profile was
calculated using the values of ¥; (for all N =3 x 10* particles) derived
from our assumed initial composition profiles. The approximate profile
was derived by using eq. (20) and the curves of Figs. 15 and 16 correspond-
ing to case G.

mean), dimensionless spurious diffusion coefficients defined

by
E
"\ dt /@

where the angle brackets denote a time average, Ar, =
(Ax? + Ay? + Az2)'? is the total distance traveled by a par-
ticle due to spurious diffusion, n is the local number density
of SPH particles, c, is the local sound speed and ¢ is time.

Although strong shocks in SPH calculations can lead to
direct particle penetration (Monaghan 1989), the parabolic
calculations considered here typically lead to rather weak
shocks and we believe particle diffusion dominates any spu-
rious mixing. Once measured, the diffusion coefficients can
be applied to give an estimate for the spurious deviation in a
particle’s position: after monitoring its local values of v,,,,
n, and c, as a function of time ¢, this spurious deviation is
estimated by numerically integrating

22)

—-1/3
n

Ar? x~ fD
cs

From the local density gradient Vp at the particle’s final
position we can then approximate the error in its final mass
fraction according to

dt . (23)

Amg~ 37 12Ar | Vp|, (24
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where the 3712 arises from assuming isotropic spurious
transport and accounts for the interior mass fraction being
changed only by motion normal to surfaces of constant
density. By repeating this procedure for all the particles, we
arrive at an average spurious diffusion distance (Ar,y and
mass fraction {|Am| ), as well as a root mean square spu-
rious displacement (Ar?»!/2 and mass fraction (Am2)!/2,
This method of estimating spurious diffusion distances will
be referred to as Method 1.

In the case of a head-on collision, a method that makes
use of the axisymmetry around the collision axis (the x-axis),
Method II, can also be applied. Assuming that the system
remains axisymmetric throughout the entire dynamical
evolution (this would not be the case if, e.g, Rayleigh-
Taylor instabilities were to develop), then a particle should
always remain in the plane defined by the collision axis and
the particle’s initial position. The distance to which a parti-
cle moves in the direction perpendicular to this plane imme-
diately provides an estimate of the spurious displacement,
simply by multiplying by 3!/?> (again we approximate the
spurious motion as locally isotropic). We finally convert the
spurious diffusion distance to an error in mass fraction
exactly as in Method 1 (see eq. [24]). The advantage of
Method II is that it does not approximate spurious trans-
port as being a diffusive process, but instead exploits the
special geometry of a head-on collision to directly account
for spurious mixing, even in the presence of shocks.

The results of the two methods applied to our calcu-

lations are given in Table 5. When two numbers are given,
the second one has been calculated by Method II. Included
in this table are the average spurious diffusion distance
{Ar,, the root mean square diffusion distance (Ar?>'/%, the
average equivalent mass fraction {|Am,| »/M, and the root
mean square mass fraction (Am2»'/?/M. It is clear that the
two methods are generally in good agreement, and that,
when expressed in terms of m/M, the effects of spurious
diffusion are always small.

A particle with a given initial interior mass fraction m;/M;
has some preferred final mass fraction m/M, as discussed in

COLLISIONS OF MAIN-SEQUENCE STARS 815

§ 44 and as can be seen from the clustering of points in
Figure 14. Let Am,/M be the difference between this pre-
ferred final mass fraction and the observed final mass frac-
tion for a particular particle. Averaging over all particles,
the quantities | Am, | »>/M and {Am?»*/*/M, listed in Table
5, then quantify the observed degree of mixing (including
both physical and spurious mixing) during the collision.
The last column of Table 5 then subtracts the contribution
{Am?) due to spurious mixing from the total square devi-
ation {(Am2), giving an estimate for the degree of mixing
expected in a hypothetical simulation free of numerical
errors. For example, in case G, we observe a root mean
square spread in the interior mass fraction of
(Am2YY2/M = 0.09. Using Method I, we estimate that the
root mean square spread in interior mass fraction due to
spurious mixing is {Am2)'/2/M ~ 0.036, while Method II
gives an estimate of 0.057 for this quantity. We therefore
believe that the physical root mean square spread (i.e., the
spread in a calculation free of spurious diffusion) would be
approximately 0.08 or 0.07, depending on whether Method
I or Method II is more accurate.

5. SUMMARY AND DISCUSSION

The main results of this paper can be summarized as
follows. The typical merger remnants produced by colli-
sions are rapidly and differentially rotating, and are far from
chemically homogeneous, with composition profiles that
can be rather peculiar in certain cases. For example, it often
happens that the maximum helium abundance does not
occur at the center of the remnant (see Fig. 11b). The merger
remnants produced by our dynamical -calculations,
although very close to hydrostatic equilibrium, are usually
far from thermal equilibrium. In particular, the remnants
are not barotropes, i.c., the condition dQ/dz = 0 is generally
not satisfied), and their temperature profiles can have posi-
tive gradients (dT/dr > 0) in certain regions.

At a qualitative level, many of our results can be under-
stood very simply in terms of the requirement of convective
stability in the final merger remnant. If entropy production

ESTIMATES OF SPURIOUS DIFFUSION DISTANCES AND MAsS FRACTIONS

TABLE 5

Case {Ar AW L AmYM AmBDYM (Am, )M (AmP M ((AmD) — (Am2))' M
A ... 019013 045042 0.027 0.029 0.036 0.042 0.07 0.09 0.08 0.07
B.... 0.31 0.66 0.037 0.045 0.08 0.11 0.10
C..... 0.33 0.86 0.040 0.050 0.09 0.11 0.10
D...... 0.17 0.11 0.37 0.30 0.032 0.029 0.043 0.041 0.07 0.09 0.08 0.08
E ... 0.26 0.58 0.037 0.045 0.09 0.12 0.11
F... 0.30 0.64 0.041 0.053 0.09 0.12 0.11
G...... 0.160.12 042 0.36 0.028 0.039 0.036 0.057 0.07 0.09 0.08 0.07
H.... 0.22 0.52 0.038 0.050 0.13 0.18 0.18
I....... 0.27 0.63 0.044 0.059 0.12 0.17 0.15
T 018012  0.380.32 0.034 0.029 0.047 0.042 0.07 0.09 0.08 0.08
K.... 0.24 0.53 0.038 0.046 0.11 0.14 0.14
L... 0.34 0.93 0.042 0.053 0.11 0.14 0.13
M...... 0.17 0.11 0.37 0.27 0.039 0.041 0.054 0.060 0.08 0.10 0.08 0.08
N...... 0.21 0.51 0.037 0.045 0.12 0.17 0.16
O...... 0.24 0.59 0.038 0.046 0.13 0.17 0.16
P..... 0.32 0.29 0.66 0.77 0.032 0.041 0.041 0.057 0.11 0.13 0.13 0.12
Q...... 0.37 0.81 0.038 0.045 0.16 0.20 0.19
R..... 043 0.84 0.051 0.078 0.17 0.20 0.19
S....... 042 0.84 0.041 0.055 0.18 0.22 0.21
T...... 0.46 121 0.039 0.051 0.20 0.24 0.23
U...... 015010  0.36 0.32 0.055 0.050 0.084 0.094 0.09 0.13 0.10 0.09
V... 0.20 0.50 0.050 0.078 0.09 0.13 0.10
W...... 0.25 0.64 0.054 0.087 0.11 0.16 0.13
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in shocks could be neglected (which may be reasonable for
parabolic collisions, especially in the head-on case), then
one could predict the remnant’s composition profile simply
by observing the composition and entropy profiles of the
parent stars. Convective stability requires that the specific
entropy s increase from the center to the surface (ds/dr > 0)
in the final hydrostatic equilibrium configuration. In the
absence of shock heating, fluid elements would conserve
their entropy, and the final composition profile of a merger
remnant could therefore be determined simply by combin-
ing mass shells in order of increasing entropy, from the
center to the outside. Many of our results follow directly.
For example, in the case of a collision between two identical
stars, the composition profile of the merger remnant must
match that of the parent stars, since there is a one-to-one
correspondence between entropy and chemical composi-
tion. For two stars of very different masses, the much lower
entropy material of the lower mass star tends to concentrate
at the center of the final configuration, leading to the
unusual composition and temperature profiles seen in
Figures 13c, 13e, and 13g.

Regions where the dynamical stability criterion ds/dr > 0
(eq. [18]) is satisfied can nevertheless be thermally, or secu-
larly, unstable. The small vertical oscillations [at the local
Brunt-Viisili frequency Qg oc (ds/dr)'/?] of a fluid element
in such a region have amplitudes that grow slowly, and
mixing will occur on a timescale comparable to the local
radiative damping time (see, e¢.g., Kippenhahn & Weigert,
chap. 6). The thermal instability can be of two types. When
du/dr > 0 and dT/dr > 0 (as in Figs. 13c, 13e, and 13g), a
so-called thermohaline instability can develop, allowing
fingers of the high-u material to penetrate down into the
lower p, colder material below (see, e.g., Ulrich 1972). When
such mixing occurs in the stellar core, it tends to increase
the central helium abundance and therefore decrease the
time that the merger remnant can remain on the MS.

When du/dr <0 but dT/dr < (dT/dr),,, so-called semi-
convection can occur (Spruit 1992). In terms of easily com-
puted SPH variables, the criterion for semiconvection is

1 dd

Iy du
<A dr

<—75, (25)

0
where A is related to specific entropy by equation (4). We
have tested our merger remnants formed from head-on col-
lisions (which are spherically symmetric in structure) and
found this instability typically to be present. Since the
chemical composition of the remnant is never spherically
symmetric, equation (25) must be checked along many dif-
ferent radial vectors. Figure 18 shows, as a function of the
final mass fraction m/M, the fraction f,, of gas that is semi-
convective for six of our merger remnants. In all cases no
semiconvective instability exists in the outer ~20% of the
mass, so that we do not expect this mixing mechanism can
increase the helium abundance of the outer layers. Figure 18
does demonstrate, however, that some merger remnants
(those of cases A, D, and J) have an unstable region that
extends to the center, and these remnants therefore have a
means of mixing hydrogen into their cores. For instance in
case A, we see that the inner~40% could be significantly
affected. In addition, the right-hand side of equation (25)
changes as the fluid mixes, so that the details of this compli-
cated process can only be followed numerically with a
stellar evolution code.
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F1G. 18.—The fraction f,, of gas unstable to semiconvection as a func-
tion of the mass fraction m/M in the merger remnants of the head-on cases
A (solid line), D (long-dashed line), G (short-dashed line), J (short- and long-
dashed line), M (dotted and short-dashed line), and U (dotted line).

For a rotating, chemically homogeneous star, stable
thermal equilibrium requires dQ/dz = 0, where Q is the
angular velocity and z is measured parallel to the rotation
axis (the Goldreich-Schubert stability criterion; see, e.g.,
Tassoul 1978, chap. 7). From the representative set of spe-
cific angular momentum contours presented in Figure 12, it
is therefore evident that the merger remnants of cases Q, R,
S, and T (which are chemically homogeneous, since their
parent stars were fully mixed) cannot be in thermal equi-
librium. In chemically inhomogeneous stars, regions with a
sufficiently large and stabilizing composition gradient
(du/dr < 0) can in principle still be thermally stable even
with dQ/dz # 0. However, it seems unlikely that the com-
position profiles generated dynamically by a collision
would conspire to keep the remnants everywhere thermally
stable.

The angular momentum distribution in a star can have
significant effects on its characteristics (e.g., Deupree 1990).
For instance, a star with a rapidly rotating core can have its
MS lifetime extended beyond that of its nonrotating
counterpart (e.g., Clement 1994). The fact that much of the
angular momentum is hidden deep in the remnant’s interior
suggests a possible explanation for why observations of
blue stragglers in open clusters such as M67 find no signs of
rapid rotation (Peterson, Carney, & Latham 1984; Mathys
1987). Recently, Leonard & Livio (1995) have argued that
the spin-down timescale of blue stragglers due to magnetic
breaking is only ~10° yr, so that initially rapidly rotating
merger remnants may not be a problem for the collisional
formation scenario.

Stellar encounters with pericenter separations r, larger
than those considered in this paper are difficult to compute
directly with SPH, since the amount of orbital energy AE
dissipated during the first interaction is then so small that
the integration time until the next pericenter passage can be
several orders of magnitude larger than the hydrodynamic
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time. We believe that our results can be safely extrapolated
all the way to values of r, ~ 1.2(R; + R,). For instance,
from our results for collisions of equal-mass stars, it seems
very likely that the helium profile of the merger remnant
will always mimic that of the parent stars. In Figure 13f,
note that the density, entropy, and temperature profiles also
seem to be converging onto a fixed profile, and that the
profiles for the r, = 0.5, 0.75, and 0.95(R; + R,) cases all
look very similar. For r, 2 1.2(R; + R,) the encounter is
better described as a tidal capture than a collision, i.e., the
amount of energy dissipated is sufficient to form a bound
system, but no direct collision occurs, even in the outer
layers of the stars. The maximum value r, = r,,, for tidal
capture can be calculated accurately from linear pertur-
bation theory (Press & Teukolsky 1977; McMillan, McDer-
mott, & Taam 1987). For two identical 0.8 M, MS stars
and a relative velocity at infinity v, =10 km s !,
McMillan et al. (1987) find r,,/(R; + R;) = 1.4, which
leaves little room for “clean ” tidal captures. In addition, the
long-term evolution of a tidal-capture binary may well lead
to merging of the two stars even if the initial interaction is in
the linear regime (for recent discussions, see Mardling
1995a, 1995b, and Kumar & Goodman 1996).

It must be stressed that the amount of mixing determined
by SPH calculations is always an upper limit. Indeed, some
of the mixing observed in a calculation will always be a
numerical artifact. Low-resolution SPH calculations in par-
ticular tend to be very noisy, and the noise can lead to
spurious mixing of SPH particles, independent of any real
physical mixing of fluid elements. The degree of spurious
mixing in our calculations is evaluated by two simple,
approximate methods in § 4.5. The diffusion coefficients
used in Method I have been measured in the absence of
shocks and artificial viscosity, effects that could alter the
degree of spurious mixing. Method II works only for
head-on collisions and assumes that we can safely neglect
any nonaxisymmetric instabilities. Furthermore, both
methods assume that spurious transport is isotropic, which
may not be true in the presence of strong entropy gradients.
Despite these simplifying assumptions, the reasonable
agreement between the two methods (see Table 5) gives us
confidence that they do yield correct order-of-magnitude
error estimates of spurious mixing. The results demonstrate
that spurious mixing does not significantly corrupt our
simulations, as can be seen by the near agreement of
numbers in the last two columns of Table 5. The general
question of spurious transport in SPH calculations will be
addressed in a separate paper (Lombardi et al. 1996).

BH performed the first fully three-dimensional calcu-
lations of colliding MS stars. In contrast to the present
work, they considered only identical n = 1.5 polytropes,
which are mostly relevant for collisions of low-mass stars
(M; =M, 504 Mg). The results of their parabolic colli-
sions agree qualitatively with our analogous calculations
(cases P, Q, R, S, and T). The agreement is especially good
for the innermost region of a merger remnant formed from a
head-on collision (case P in this paper): the short total inte-
gration time and the locally high density together keep spu-
rious mixing small in both BH and our calculations.
Typically, BH finds a somewhat higher degree of mixing
than we report in our Table 4. For instance, in our case P,
74% of the particles in the outer quarter (by mass) of the
merger remnant began in the outer quarter of a parent star,
while in BH’s analogous collision only about 55% of the
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particles remain in the outer quarter. In our case T, a
grazing collision, 60% of the particles that began in the
inner quarter of a parent star ended in the inner quarter of
the merger remnant, while that number is less than 50% in
BH’s analogous collision. Also note, again for case T, that
only 3% of the fluid in the inner quarter of the remnant
originated in the outer quarter of a parent star, as opposed
to over 10% in BH. We have also simulated a number of
collisions analogous to cases P, Q, R, S, and T, but with
N = 1024 particles, as in BH, instead of N = 3 x 10* We
find levels of mixing consistent with BH and conclude that
the differences in results between our n = 1.5 polytrope col-
lisions and those of BH arise from a lower degree of spu-
rious mixing in our calculations due to the larger particle
number.

From the final column of Table 5, note that our collisions
of n = 1.5 polytropes (cases P, Q, R, S, and T) generally
exhibit a somewhat higher degree of mixing than observed
in our other calculations, especially collisions involving two
TAMS stars (cases A, B, and C). This is not surprising since
parent stars of constant entropy, which are only marginally
stable against convection, should be easier to mix than
those with significant positive entropy gradients (stable
stratifications). In addition, the more homogeneous density
profile of n = 1.5 polytropes leads to a better distribution of
the impact energy throughout the entire mass of fluid.
Therefore, the generally lower degree of mixing in our
results, as compared to BH, can be understood not only
from the better resolution in our simulations, but also
because the structure of our higher mass parent stars makes
the fluid more difficult to mix.

Benz & Hills (1992) have performed calculations of colli-
sions between n = 1.5 polytropes with a mass ratio
M,/M, =0.2. Given the low masses of the MS stars
involved (M; < 0.4 M, hence M, < 0.1 M), these calcu-
lations are not directly relevant to blue straggler formation.
Since none of our simulations model such low masses, no
direct comparison with our results is possible.

Our results could be improved upon or extended in a
number of ways. For instance, although ideal gas pressure
dominates, the equation of state could be extended to
include radiation, partial ionization, and electron degener-
acy corrections. More accurate initial composition profiles
could also be implemented. Note, however, that our results
can be applied to arbitrary initial profiles by the method of
§ 4.4. Incidentally, profiles of ’Li would be particularly
interesting to consider, since this element is destroyed at
temperatures T 2 10° K and is therefore an observationally
measurable indicator of mixing (see, e.g., Hobbs & Mathieu
1991 and Pritchet & Glaspey 1991). Our dynamical calcu-
lations and the determination of hydrodynamical mixing
are only the first step in modeling blue straggler formation.
The merger remnants, which are much larger than normal
equilibrium MS stars of the same mass, will recontract to
the MS on a thermal timescale (~10° yr). As they evolve,
mixing processes such as meridional circulation, semi-
convection and convection may well be important. Calcu-
lations of this thermal relaxation phase using the results of
dynamical calculations, such as those presented in this
paper, as initial conditions will be necessary in order to
make detailed predictions for the observable parameters of
blue stragglers.

Recently, Sills, Bailyn, & Demarque (1995, hereafter
SBD) have begun to investigate the consequences of blue
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stragglers being born unmixed, ie., with composition
profiles matching those of their parents. To create an
unmixed model of a nascent blue straggler formed by the
collision of two TAMS stars, SBD relaxes a nonrotating
TAMS star whose mass has been artificially doubled but
which is otherwise unchanged. The subsequent stellar evol-
ution is contrasted to that of a fully mixed (i.e., chemically
homogeneous) blue straggler. SBD finds that the high
central helium concentration in the unmixed models causes
the time spent on the MS (~5 x 107 yr) to be drastically
shorter than for the fully mixed counterparts (~5 x 108 yr),
making it difficult to account for the number of observed
blue stragglers in the core of NGC 6397. In addition, the
color and brightness of such unmixed blue stragglers do not
match these observations. A blue straggler population com-
posed solely of nonrotating, unmixed merger remnants of
two TAMS parent stars is therefore not sufficient to explain
the core blue stragglers in NGC 6397. On the other hand,
preliminary results of a study by Ouellette & Pritchet (1996)
for about 300 blue stragglers in 16 different clusters suggest
that unmixed initial models may better explain the observed
properties of some blue stragglers.

Additional work following the approach of SBD and
Ouellette & Pritchet (1996) would clearly be beneficial. A
number of factors need to be considered in more detail. For
instance, the profiles of Figure 13 can be used to specify the
structure of a (zero-age) blue straggler and thereby improve

upon the initial models adopted in SBD. In addition, it is
unrealistic to expect that all collisional blue stragglers are
born only from head-on collisions of TAMS parent stars:
most blue stragglers will be formed from off-axis collisions
and will consequently be born rapidly rotating, especially in
their cores, which affects their observable characteristics
and extends their lifetime on the MS (e.g., Deupree 1990;
Clement 1994). Attention must also be given to collisions
between unequal-mass parent stars, which form merger
remnants with profiles that are neither homogeneous nor
like that of the parents (i.e., such remnants are neither fully
mixed nor unmixed). Since these blue stragglers have a
greatly enhanced (and even possibly primordial) hydrogen
abundance in their cores, they are excellent blue straggler
candidates: they are expected to remain on the MS for a
much longer time than their unmixed counterparts con-
sidered by SBD.
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