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ABSTRACT

We apply the three-dimensional shape statistics developed in our previous paper to observations and
simulations. We also develop an improved way of presenting the structures detected by the shape sta-
tistics over the one in the previous paper. We find significantly different clustering properties between the
CfA survey and the Pisces-Perseus Supercluster survey on all scales we consider, implying that neither of
them is a fair sample of the universe. Our results demonstrate that the shape statistics are powerful tools
to detect clusters in a galaxy distribution, to distinguish filaments from pancakes, to discriminate differ-
ent models of the large-scale structure, and to probe the dynamic evolution of structure formation.

Subject headings: cosmology: theory — galaxies: clusters: general — galaxies: structure —

methods: statistical

1. INTRODUCTION

In a previous paper (Luo & Vishniac 1995, hereafter
Paper I), we introduced the line and plane shape statistics to
measure filaments and pancakes in a quantitative manner.
The line shape statistic is defined as (a repeated index in a
term means the index is summed over from 1 to 3)

1= 3 e (=2 T (M0, — MMM, — M, M)

2Tr (M
+ Tt (M)[Tr (M) — M, M,]?
+ 6M (M — M; M)(My — M; M,)

—3[Tr (M)_MkMk]Mij(Mij_MiMj)} > 6]

and the plane shape statistic is defined as

1
So =Ty ry (4 Tr (DM, — MMM, — M, M)

— 4 Tr (M)[Tr (M) — M; M;]?
— 12M (M, — M; M, )(M;, — M; M)

+ 12[Tr (M) — M M(IM(M;; — M; M)}, (2)
where M; and M;; are the first and second moments of the
point distribution in a window, and Tr (M) is the trace of
M;;. These shape statistics are constructed this way so that
they vanish if the distribution in a window is spherically
symmetric or constant except for a linear gradient across
the volume. The quantity S, (S,) is unity for a line (plane)
passing through the center of the window and zero for a
plane (line) passing through the center of the window.

For a galaxy distribution, we center a window on each
galaxy and compute the shape statistics, S, for the galaxies
within this window. To calibrate the signal, we also calcu-
late the values of the shape statistics, S,, if the galaxies in the
window obey a Poisson distribution. The signal of structure
is then S — §,. We take <{S — S,), the average of S — S, over
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all windows, as the final signal, and the standard deviation
of <S — §,) is used to compute the significance level of a
nonzero {S — §,).

Tests on toy models in Paper I have shown that these
shape statistics are sensitive to the morphology of structures
and the number and amplitude of filaments and pancakes in
a distribution. These statistics can also detect structures
from Poisson background points. In this paper, we apply
these new statistics to data sets from observations and
simulations. Our emphasis in this paper is still on the sta-
tistics themselves. That is, we are not going to construct a
model that fits the current observations best, but instead we
will study the behavior of the new statistics on more compli-
cated data sets to see the effectiveness of these shape sta-
tistics for detecting differences between realistic data sets.
Simulations allow us to study how the shape statistics
measure the difference between models of structure forma-
tion, as well as their sensitivity to the evolution of gravita-
tional clustering. We will also introduce the map of structure
orientation, a new way of presenting the structures detected
by these statistics. This method takes into account the rela-
tive strength of signals from different windows and gives the
orientation of structure units.

In the next section, we introduce the map of structure
orientation as a way of presenting the structure detected in
a point distribution. We also compare this with the presen-
tation we used in Paper 1. In § 3, we apply the shape sta-
tistics to the CfA survey and the Pisces-Perseus
Supercluster (PPS) survey. Our statistics show significant
differences between these two samples, on all scales we con-
sider. We also present the map of structure orientation for
the samples, which visualizes the difference between the two
samples detected by the shape statistics on different scales.
In § 4, we apply the shape statistics to simulated galaxy
distributions from four models of structure formation,
namely, the cold dark matter (CDM) models with Q, = 1
and 0.5, and the hot dark matter (HDM) models with Q, =
1 and 0.5. We compare the behavior of the shape statistics
for these models. We also study the sensitivity of the shape
statistics for tracing the dynamic evolution of structure
formation. Our results are summarized in § 5.

2. MAP OF STRUCTURE ORIENTATION

The presentation of the distribution of points given in
Paper 1 is useful for revealing the distribution of clusters

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...468...62L

-
Ly
N

3D I IAGBICS

P

(5q
(<]}
(=]
[=h

THREE-DIMENSIONAL SHAPE STATISTICS 63

and their members. It will be used to detect filaments and
pancakes in a galaxy distribution. However, in terms of
studying the shape statistics, it is not satisfactory in two
respects. First, each point has equal weight, although the
strengths of the signals from different windows can differ
significantly. Second, the information of the orientation of a
cluster in one single window is not revealed, although the
global orientation of a well-defined filament or pancake can
be inferred roughly from the relative positions of many
points.

In that presentation, we plotted the centers of windows
giving strong signals. Since each window is centered on a
point, this has the advantage of giving real positions of
points. However, it has the drawback that when a cluster is
off center in a window, the signal is presented by a point
away from the cluster. This will introduce extra scattering in
the detected structures. To better trace the underlying struc-
ture, a presentation independent of the position of the
window is desired. For this purpose, we replace the center of
a window by the mean position of the points in the window.
In this case, the positions are no longer real positions of
points in a distribution.

We can measure the direction of a cluster in a window
with the eigenvectors of the moment-of-inertia tensor of the
distribution, M;; — M; M ;. For a filament, its direction (the
major axis) is given by the eigenvector corresponding to the
largest eigenvalue. For a pancake, the direction of its norm
(the minor axis) is given by the eigenvector corresponding
to the smallest eigenvalue.

In Figure 1 and Figure 2, we place a line segment at the
mean position of the points in a window (the middle point
of the line segment coincides with the mean position) if the
signal I = (S — {8,))/o, > 2.5, where S is the shape statistic
from the data sample and <S,) and o, are the mean and
standard deviation of the shape statistic from calibrating
Poisson samples. The line segment is pointed to the direc-
tion of the structure measured by the eigenvector described
above. To reveal the relative strength of signals from differ-
ent windows, we scale the length of the line segment accord-
ing to the strength of the signal 1. We call such plots the
map of structure orientation.

The top panel, middle panel, and bottom panel in Figure
1 are for model A71 in Paper I with window diameters of
7.5, 20, and 40 units, respectively. In model A71, 10 pan-
cakes, each containing 200 points and with axes 20, 20, and
2.5 units, are added to 8000 background points in a cube of
size 100 units. The position and orientation of the pancakes
are random. These panels are to be compared with Figures
8c—8e in Paper I, respectively. The top panel in Figure 1
shows that the eigenvector corresponding to the smallest
eigenvalue of the moment-of-inertia tensor is a good mea-
surement of the orientation of a pancake. The eigenvectors
from windows covering a part of a pancake are perpendicu-
lar to the pancake. This can be seen most clearly from the
edge-on pancakes.

Comparison of the middle panel in Figure 1 here and
Figure 84 in Paper I shows that the mean positions of the
points in a window have a smaller scatter than the centers
of windows, as expected. Scaling a label by the strength of a
signal also helps reveal structures better. In Figure 1, points
away from a pancake have rather short length, as well as
random orientations, indicating that they are field points,
although they give signals above the threshold due to sta-
tistical fluctuations.
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F1G. 1.—Directions of pancakes with a window diameter of 7.5 (top
panel), 20 (middle panel), and 40 (bottom panel). The lengths of the line
segments are proportional to the signal I,..

The statistics become confused when the windows cover
multiple structures, as shown in the bottom panel in Figure
1. Yet the coherence in the orientation of the line segments
still clearly indicates the underlying structures.

The top, middle, and bottom panels in Figure 2 are for
model A72 in Paper I with window diameters of 5, 20, and
25 units, respectively, and are to be compared to Figure
9¢—9e in Paper I. In model A72, 10 spindles, each containing
50 points and with axes 20, 2.5, and 2.5 units, are added to
9500 background points in a cube of 100 units. The position
and orientation of the spindles are random. We see a behav-
ior similar to that for the case of pancakes: real structures
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F1G. 2—Directions of spindles with a window diameter of 5 (top panel),
20 (middle panel), and 25 (bottom panel). The lengths of the line segments
are proportional to the signal I,.

show strong signals with coherent orientation close to the
orientation of the built-in spindles, while background noise
shows weak signals with random orientation; the structures
are best revealed when the window diameter is close to the
thickness of the spindles.

These tests demonstrate that the combination of shape
statistics and directions of eigenvectors of the moment-of-
inertia tensor not only can detect clusters but also can help
distinguish filaments and pancakes and reveal their orienta-
tion, as long as the window size is close to the thickness of
the structures. Although we do not know beforehand the
intrinsic scale of structures in a galaxy distribution, we can
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vary the window size to produce more than one map from
the distribution. The map of structure orientation serves as
a nice geometric supplement to the algebraic shape sta-
tistics.

3. APPLYING THE SHAPE STATISTICS TO OBSERVATIONS

3.1. Data

The observational data sets we will use here are the first
two slices of the CfA survey provided by J. Huchra and the
PPS survey provided by R. Giovanelli. The CfA data
contain 1795 galaxies with velocities less than 15,000 km
s~1,in a 135° (right ascension) x 12° (declination) strip cen-
tered at 12230™ and 32°5. The PPS survey covers a much
larger region of the sky, a 120° (right ascension) x 50°
(declination) strip centered at 1® (right ascension) and 25°
(declination). There are 6612 galaxies with velocities less
than 15,000 km s~! in this survey. Although the total
number of galaxies in these two surveys is quite different,
the number densities are about the same. Hence, their shape
statistics can be compared directly. Figures 3 and 4 (top
panels) show the distributions of galaxies in the two
samples. The “ great wall” is the most predominant feature
in the CfA survey, while in the PPS survey, the coherent
structures are of much smaller scales and there are more
fingers of god produced by clusters.

3.2. Shape Statistics of the Surveys

The range of declinations for the CfA survey is only 12°,
corresponding to about 20 h~! Mpc at a distance of 100
h~! Mpc. To study structures on scales larger than 20 ™!
Mpc, windows of these sizes are not completely embedded
in the surveyed volume. To reduce edge effects, calibrating
random samples are generated according to the geometry of
the intersection of the window and the surveyed volume
whenever a window crosses an edge of the volume.

Since both surveys are magnitude limited, the calibrating
random samples should be generated according to a selec-
tion function determined from the observations. However,
numerical tests of the shape statistics show that the differ-
ence between using a pure Poisson sample and using a
Poisson sample modulated by a selection function is negli-
gibly small. This is due to two facts. One is that the shape
statistics, by construction, are insensitive to an overall con-
stant gradient in a distribution. The other is that the
Schechter form of the luminosity function is fairly smooth.
To reduce computing time, we use Poisson samples to cali-
brate the signal. Numerical results show that 10 Poisson
samples for each window are enough to reduce the variance
of the shape statistics from random samples to a negligibly
small level compared to the variance of the shape statistics
of the data sample among different windows. As in Paper I,
we use <S,) to denote the mean value of the shape statistics
over 10 calibrating samples. The signal from a window will
be S — <8,), where S is the shape statistics for the galaxies
in a window from the observation. We then take the
average of S — {S,) from all windows to give the final signal
of the shape statistics, <S — {S,>>.

In Paper I, we described a method for estimating the
variance of the mean shape statistics over windows in a
sample of point distributions. We refer to this as the internal
variance estimate since it is based on windows from one
sample. We also ran nine simulations for a CDM model
with Q, = 1 with different initial conditions and estimated
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FiG. 3.—The CfA survey. (top) The distribution of 1795 galaxies in the
CfA survey; (middle) the line (solid line) and plane (dotted line) shape sta-
tistics on different scales; (bottom) the logarithm (base 10) of the odds on a
positive line (solid line) and plane (dotted line) shape statistics on different
scales.

the variance of the shape statistics among different simula-
tions. This is referred to as the external variance estimate.
Numerical results show that the difference between these
two estimates is within a factor of 2, with the internal esti-
mate being greater than the external estimate, in good
agreement with what was expected from the uncertainty of
estimating the overlapping of neighboring windows, as
described in Paper I. We adopt the internal estimate of the
variance in this paper. Therefore, our estimation of the sig-
nificance for a given signal is conservative.

Figure 3 (middle panel) shows the mean line (solid line)
and plane (dotted line) shape statistics calibrated by Poisson
samples for the CfA survey with different window diameters
(2R,). Error bars show 1 g. Figure 3 (bottom panel) shows
the logarithm (base 10) of the odds on a positive signal (i.e.,
odds on <S — {S,>> > 0).

The mean value of the line shape statistic (in excess of
that for a Poisson sample) of the CfA survey is more or less
a constant all the way up to about 60 h~! Mpc, with a
broad peak around 20 5~ Mpc. It then decreases gradually

scale (2R,) (h™'Mpc)

F1G. 4—The PPS survey. (top) The distribution of 6612 galaxies in the
PPS survey; (middle) the line (solid line) and plane (dotted line) shape sta-
tistics on different scales; (bottom) the logarithm (base 10) of the odds on a
positive line (solid line) and plane (dotted line) shape statistics on different
scales.

toward scales greater than 60 h~! Mpc. The variance has a
minimum around 10 h~! Mpc. On smaller scales, the
variance is larger due to the intrinsic variation of the dis-
tribution from window to window. It increases toward
larger scales because of the smaller number of windows
being used. Thus, the significance decreases toward large
scales, with a peak around 10 h~! Mpc. This scale corre-
sponds to the thickness of the fingers of god in the CfA
survey. As we will see shortly, on scales less than 10 h~!
Mpc, the finger-of-god effects contribute significantly to the
signal; on scales much larger than 10 h~! Mpc, the signal
comes mainly from the “ great wall.”

The strong negative signal in the plane shape statistics on
scales greater than about 35 h~! Mpc is due to the small
scale of the volume of the CfA survey in the declination
direction, which is less than 20 h~* Mpc. In a window with
a large diameter (35 h~! Mpc or larger) and thus intersec-
ting with the surveyed volume, a uniform random distribu-
tion of points in such a planelike volume gives larger value
for the plane shape statistic than a distribution with strong
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clustering, and thus we have a negative value of
{8, —<8,>>. Even on smaller scales, the edge effects of
such geometry greatly reduce the signal by producing large
values of the plane shape statistic for the calibrating
random samples. Therefore, because of the limited survey
volume, the plane shape statistic is not appropriate for mea-
suring structures in the CfA survey. This problem disap-
pears in the PPS survey, which has large extension in both
directions of right ascension and declination. On the other
hand, the line statistic is not sensitive to a plane geometry,
and the shape of the surveyed volume of the CfA survey has
little effect on it.

Figure 4 (middle panel) and (bottom panel) shows the
shape statistics and the logarithm of the odds on positive
signals for the PPS survey. Because the declination range of
the PPS survey is much larger than that of the CfA survey,
the plane shape statistics show a real signal. There are many
more galaxies in the PPS survey than in the CfA survey.
Therefore, the variances of the shape statistics are much
smaller, yielding much higher significance level for the
signals. The plane shape statistic peaks at ~15 h~! Mpc.
On that scale, the filaments generated by the finger-of-god
effect are well aligned to define a plane, resulting in a large
value for the plane shape statistic. On smaller scales, a
window is too small to cover two separated clusters, and the
plane shape statistic goes down. On larger scales, the signal-
to-noise ratio drops due to more field galaxies covered by a
window. The line shape statistic of the PPS survey decreases
monotonically as scale increases, indicating that the fila-
mentary clustering is strongest on scales <5 h~! Mpc. On
scales less than 10 h~! Mpc, the line shape statistic for the
PPS survey has greater values than that for the CfA survey
because there are more small scale clusters in the PPS
survey which produce more fingers of god. On scales greater
than 10 h~! Mpc, the line shape statistic for the PPS survey
has smaller values than that for the CfA survey, due to the
fact that there is no large-scale coherent structure in the
PPS survey like the “ great wall ” in the CfA survey. Overall,
the two surveys show significantly different structures on all
scales considered here. It implies that neither of these two
surveys is a fair presentation of the large-scale structure in
the whole universe.

These results show that the shape statistics are efficient in
distinguishing the difference between galaxy distributions
on different scales.

3.3. Maps of Structure Orientation

To demonstrate the effectiveness of the shape statistics for
detecting structures in a galaxy survey, we plot the map of
structure orientation introduced in § 2 for the CfA survey
and the PPS survey. Since the plane shape statistic is not a
good measurement of pancakes for the CfA survey, we only
plot the maps from the line shape statistic for the CfA
survey in the top, middle, and bottom panels in Figure 5,
with the diameters of windows being 10 h~! Mpc, 20 h~!
Mpc, and 30 h~! Mpc, respectively. Figures 6 and 7 show
the maps from the line and plane shape statistics for the
PPS survey, using the same values of window diameter. The
lengths of the line segments are proportional to the signal
I=(S —<{S,))/o,, but the absolute normalizations from
figure to figure are different.

From the top panel in Figure 5 we can see that the contri-
bution to the line shape statistics in the CfA survey on scale
of 10 h~! Mpc comes mainly from the finger-of-god effects
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F1G. 5—The map of structure orientation from the line shape statistic
for the CfA survey with a window diameter of 10 A~ Mpc (top panel), 20
h~* Mpc (middle panel), and 30 h~* Mpc (bottom panel).

of the clusters, especially the Coma cluster. On larger scales,
the contribution of the “great wall” becomes more and
more important. In Figure 6, the PPS survey, on one hand,
shows a lot more fingers of god but, on the other hand, has
a much more complicated interconnected filamentary
network compared to the CfA survey. This explains why the
line shape statistics for the PPS survey have larger values
than the CfA survey on small scales. With larger window
sizes, the linear ridge discussed by Wegner, Haynes, & Gio-
vanelli (1993) is clearly revealed, but the PPS survey still
shows a rather complicated structure with shorter coher-
ence scales than that in the CfA survey. This accounts for
the fact that the line shape statistics have smaller values for
the PPS survey than for the CfA survey on large scales. The
orientation maps help visualizing the difference between the
CfA survey and the PPS survey measured by the shape
statistics on different scales.

In the maps for the PPS survey, the directions of line
segments from the line shape statistic within a cluster are
well defined, while those from the plane shape statistic are
rather poorly defined. This indicates that the PPS survey is
dominated by filamentary structure. As our toy model tests
in Paper I have shown, a strong signal of plane shape sta-
tistic alone does not mean a strong signal for pancakes due
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F16. 6.—The map of structure orientation from the line shape statistic
for the PPS survey with a window diameter of 10 h~* Mpc (top panel), 20
h~* Mpc (middle panel), and 30 h~! Mpc (bottom panel).

to the sensitivity of the plane shape statistic to poorly
defined spindles. If the planelike structures suggested by a
large value of the shape statistics were real, the orientation
of the line segments in the cluster would be coherent. There-
fore, the map of structure orientation helps distinguish true
detections from false detections of planelike structures.

These maps show that the shape statistics can detect clus-
ters in a galaxy survey on different scales. They also tell the
nature of the structures, namely, whether they are filamen-
tary or pancake-like. They reveal the contributions to the
shape statistics from components on different scales in a
distribution.

4. APPLYING THE SHAPE STATISTICS TO SIMULATIONS

4.1. Simulation

All N-body simulations presented in this paper were done
using the Particle-Particle/Particle-Mesh (or P3*M) algo-
rithm (Hockney & Eastwood 1981; Efstathiou & Eastwood
1981; Klypin & Shandarin 1983; Efstathiou et al. 1985,
hereafter EDFW). The calculations evolve a system of
gravitationally interacting particles in a cubic volume with
triply periodic boundary conditions, comoving with Hubble
flow. The forces on particles are computed by solving the

X

F1G. 7—The map of structure orientation from the plane shape statistic
for the PPS survey with a window diameter of 10 h~! Mpc (top panel), 20
h~* Mpc (middle panel), and 30 h~! Mpc (bottom panel).

Poisson equation on a 64 x 64 x 64 grid using a fast
Fourier transform method. The resulting force field rep-
resents the Newtonian interaction between particles down
to a separation of a few mesh spacings. At shorter distances
the computed force is significantly smaller than the physical
force. To increase the dynamical range of the code, the force
at short distance is corrected by direct summation over
pairs of particles separated by less than some cutoff distance
r.. With the addition of this so-called short-range correction,
the code accurately reproduces the Newtonian interaction
down to the softening length #. In all calculations,  and r,
were set equal to 0.3 and 2.7 mesh spacings, respectively.
With these particular values, the code has a dynamical
range of 3 orders of magnitude (EDFW). The particular
version of P*M we used in this paper uses the so-called tilde
coordinates (Shandarin 1980). The system is evolved
forward in time using a Runge-Kutta time-integration
scheme with a variable time step. We define a system of
units by setting the mass M of the system, the comoving
side L,,, of the computational volume, and the gravita-
tional constant G equal to unity.

We consider two different cosmological models, the cold
dark matter (CDM) model and the hot dark matter (HDM)
model. For both models, we ran simulations with Q, = 1
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and Q, = 0.5. We set the present value H, of the Hubble
constant equal to 50 km s~ Mpc~ 1. In all cases, we set the
comoving length of the computational volume L, = 200
Mpc (present length units). The total mass of the system
is M, =3H}Q,L3,/87G = 5.55 x 10'7Q, M. We use
323 = 32,768 equal mass particles. The mass per particle is
therefore M., = M,,./32° = 1.694 x 10'*> M, for the flat
models and 3.388 x 10'? M, for the open models. These
masses are comparable to the mass of a few galaxies. We
therefore equate our particles with galaxies in what follows,
although a more realistic approach would have to take into
account the difference between the galaxy distribution and
the mass distribution.

The method we use to set up initial conditions is fairly
standard. We lay down 323 = 32,768 particles on a uniform
grid and displace them from their initial position in order to
represent the initial density fluctuations. We then compute
the initial peculiar velocities using the linear perturbation
solution for a pure growing mode.

We assume that the initial fluctuations originate from a
Gaussian random process. The initial density contrast can
then be expressed as a superposition of plane waves with
random phases:

5(x) = Ja;m“ e"* *dk, )

where J, is the amplitude of the k-mode. The integration in
equation (3) is performed over all k-space (hence the super-
script “cont” that stands for “continuous ™). Our simula-
tions assume periodic boundary conditions. This restricts
the range of possible values for the wavenumber & to multi-
ples of the fundamental wavenumber k, = 2n/L,,. We
must therefore replace the integral in equation (3) by a sum
over all modes that are allowed,

5(x) — Z 5;‘iisce—ik X , (4)
k

where the sum is over all values of k = (I, m, n)k,, with [, m,
and n integers. The discrete and continuous amplitudes are
related by

Vi 0X isc
B = oy O (5)

where V,,,,/(27)® = (Ly,,/2m)° = kg 3 is inverse of the density
of discrete modes in k-space. Notice that the discrete ampli-
tude is dimensionless, while the continuous one has dimen-
sions of (length)®. The requirement that &(x) is real implies
5k = 5t k-

The discrete amplitude is related to the power spectrum
by

Vs ‘
P = 0X disc |2 .
() = o 1381 ©)
The power spectrum is often expressed as
P(k) = AkT(k)* , ()

where A is the amplitude and has dimension of (length)*
and T(k) is the transfer function. In most models, T(k) goes
to unity at high redshift, and we recover the Harrison-
Zeldovich power spectrum P(k) oc k. The value of the ampli-
tude is fixed by the value of the cosmic microwave
background temperature anisotropy, as measured by

Vol. 468
COBE (Smoot et al. 1992),
1 6n?
“@r s Q3R%, ®)

where Q, is the temperature quadrupole anisotropy and Ry
is the radius of the horizon. For all simulations, we used the
value A =6.54 x 10° h™* Mpc* = 1.0464 x 107 Mpc*
given by Bunn, Scott, & White (1995) for standard CDM
models (that value was published in a preprint; the
actual value given in their final paper was 4 = 8.16 x 10°
h~* Mpc*).

For the CDM simulations, we used the transfer function
given by Bardeen et al. (1986):

In(1 + 2.34g)
2.34q

+ (5.469)° + (6.719)*]**, ©

where #(z) is the linear growth factor between the initial
state and the present [£(z) = 1 + z for Q = 1 models], g =
k0'?/(Q, h* Mpc), with Q, being the density parameter of
the dark matter (nonbaryonic) component, which we set to
15/16, and 6 = 1 for models with three flavors of relativistic
neutrinos. For the HDM models, we used

T(k) = L(z) x 107 *k"* (10)

T(k) = Z(2) [1 + 3.89g + (16.19)*

where k is in units of Mpc~! and k, = 2n/A,, where A, =
56 Mpc is the damping length of the neutrinos (Kolb &
Turner 1990).

Once these power spectra are specified, we can compute
the initial positions of the particles. We lay down particles
on a uniform grid 32 x 32 x 32 and then displace each par-
ticle according to

Ax = =)
X

where ¢, is a random number between 0 and 2z. The initial
peculiar velocities are given by

_ o
b0

where b(f) is the linear growing mode of the perturbation.
Figures 8a—8d show the galaxy distributions at redshift of
zero for the four models, namely, C10 (CDM model with
Q, = 1), H10 (HDM model with Q, = 1), C05 (CDM model
with Qg = 0.5), and HO5S (HDM model with Q, = 0.5). We
used the same ensemble of random phases ¢, for all models.
The general visual impression of these simulations is that
the CDM models have stronger clustering on small scales,
while the HDM models have structures with greater coher-
ent length. The models with Q, = 1 are more clustered than
the models with Q, = 0.5. However, the small clusters in the
CDM models more or less outline the structures
(presumably pancakes) of large sizes in the HDM models. A
similar result was obtained by Melott & Shandarin (1993)
in a series of N-body simulations. This feature is not
obvious to the eye when we look at the galaxy distributions
of the CDM models alone, but it becomes quite clear when
we compare the galaxy distribution of a CDM model with
its HDM counterpart side by side. We will see below that
this is detected by the shape statistics, demonstrating that

I 52isc ‘ k
2nk?

sin 2nk — ¢,) , (11)

v; Ax, (12)
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Fi1c. 8.—The distributions of 323 galaxies at redshift z = 0 from (a) a CDM model with Q, = 1; (b) an HDM model with Q, = 1; (c) a CDM model with

Q, = 0.5;(d) an HDM model with Q, = 0.5.

the statistics can successfully detect features that could
easily be missed by visual inspection.

It is also apparent that, even at redshift of zero, a large
number of points in the HDM models are still close to their
initial positions. The regularity of the initial condition (the
lattice) is largely preserved. This indicates that the low-
density regions are still in the linear regime of gravitational
evolution. The shape statistics can “see” this regularity as
well.

4.2. Shape Statistics of Different Models

To reduce computing time, we only use one-sixth of the
galaxies in a simulation to compute the shape statistics.

Compared with a full sampling of 323 galaxies, this sparse
sampling tends to give a smaller value of (S — {S,)), since
<8, is greater for a smaller number of galaxies in a window.
Also the variances tend to be larger due to the smaller
number of windows used. Therefore, the signal is weaker
than that for a full sampling. Nevertheless, as we will see
below, it is still strong enough for us to extract useful infor-
mation about clustering in the simulations.

Figures 94-9b show the line and plane shape statistics,
respectively, at redshift of zero as a function of window
diameter for the four models. Error bars show 1 a. We
notice that the shape statistics for , = 1 models (C10 and
H10; solid and dotted lines, respectively) are generally
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FiG. 9.—The shape statistics of galaxy distributions from four models at redshift z = 0. (a) The line shape statistics; (b) the plane shape statistics.

larger than those for Q, = 0.5 counterparts (C05 and HOS;
short dashed and long dashed lines, respectively). This is in
good agreement with the fact that the structures are much
more evolved and the clustering is stronger in the Q, = 1
models due to stronger gravitational interaction.

Our tests in Paper I show that the shape statistics peak
on scales of a few times the typical scale of the underlying
structures. The cluster size in the Q, = 1 models is generally
greater than that in the Q, = 0.5 models. Except for the
plane shape statistics for the CDM models, the shape sta-
tistics for the Q, = 0.5 models generally peak on a smaller
scale. They also drop faster than their Q, = 1 counterparts
as the scale increases because galaxy distributions in the
Qo = 0.5 models approach a homogeneous distribution on
scales smaller than those in the Q, = 1 models. The plane
shape statistics for the CDM models behave differently
because the structures in a CDM model are clusters and
filaments. There is no well-defined planelike structure in a
CDM model. Therefore, there are no well-defined peaks in
the curve for the plane shape statistics of the CDM models.

Another predominant feature in Figure 9 is that the
shape statistics of the CDM models decrease from interme-
diate scales to the largest scales, while the shape statistics of
the HDM models increase from intermediate scales to the
largest scales. It is a clear signature of the difference between
these two kinds of models. The coherence length in a HDM
model is comparable to the size of the simulation box, while
that in a CDM model is much smaller. With a CDM model,
when the diameter of windows increases, more field galaxies
and clusters of random orientation are included in a
window, and thus the signal is gradually washed away by
increasing background noise. On the other hand, the signal
from a HDM model remains strong since a larger window
also covers more of a pancake due to the large size of the
pancakes, and thus the signal-to-noise ratio remains more
or less the same. This demonstrates that the two families of
models (CDM and HDM) have significantly different
behavior in terms of the global dependence of the shape
statistics on window diameter.

From Figure 9b we see that the plane shape statistics for
the CDM models are greater than their HDM counterparts
over a large range of scales. This is caused by the large-scale
alignment of the small-scale filaments in the CDM models
we mentioned in the previous section. As was demonstrated
in Paper I, two aligned filaments being covered by one large
window form a plane and produce a large signal for the
plane shape statistics. Figures 4b and 5b in Paper I show
larger plane shape statistics on large scales for model A4
consisting of spindles than for model AS consisting of pan-
cakes. On the other hand, the plane shape statistics for A5
are larger than A4 on scales a few times the thickness of the
built-in pancakes. In our simulations, the combination of
the alignment of filaments in the CDM models mimicking
the structure of pancakes in the HDM models and the high
density of the clusters being aligned produces large values
for the shape statistics. However, on scales less than about
20-30 Mpc the plane shape statistics for the HDM models
are greater than those for the CDM models, as shown in
Figure 9b. On such scales, the window size is a few times of
the thickness of pancakes in a HDM model, and this gives a
strong signal for the plane shape statistic. On the other
hand, the signal of the plane shape statistic from a group of
clusters in a CDM model is small. Therefore, CDM models
and HDM models have rather different behavior on all
scales in terms of the shape statistics.

At first sight, it is counterintuitive to see a stronger plane
shape statistic for a CDM model than for an HDM model.
One would expect otherwise because there is more power
on intermediate to large scales in an HDM model. Our tests
demonstrate that the morphology of large-scale structure is
not related to the power spectrum of density perturbations
in as simple a way as the two-point correlation function,
which is not surprising since only for a Gaussian field does
the two-point correlation function (or equivalently the
power spectrum) reveal all the information about the under-
lying field. The shape statistics involve up to the six-point
correlation function and thus carry much more information
about the large-scale structure.
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Figure 9 also shows that the shape statistics are negative
on very small scales. This is because on such scales the
clusters are more or less spherical. They produce shape sta-
tistics less than those from a Poisson sample and yield a
negative <S — <S,>). This effect is stronger for the plane
shape statistics since <S,,» > <S,,», while both {S,> and
{S§,) are small.

The dip in the shape statistics of the HDM models is due
to the semiperiodicity of the field galaxies preserved from
the initial condition, as we saw visually in Figures 8b-84. A
distribution of points “more uniform” than a Poisson dis-
tribution will produce a negative signal for the shape sta-
tistics since {(S) < {S§,). A window with diameter a few
times the period of the regular distribution has the highest
sensitivity to the regularity. On very small scales, a window
cannot cover a unit of the periodic structure, and, on large
scales, such regularity is averaged out.

Our results demonstrate that the dependences of the
shape statistics on scale are very different for the CDM and
HDM models. The shape statistics are also rather different
for models with different values of Q,. They are very power-
ful tools to discriminate different models for structure for-
mation.

It is interesting to compare the shape statistics from the
simulations with those from the observations. We see from
Figure 3b and Figure 9a that the shape of the curve for the
line shape statistic for the CfA survey is rather different
from those for models C10, C05, and HOS5, but quite similar
to that for model H10. On the other hand, the shape sta-
tistics for the PPS survey are similar to those for CDM
models as shown in Figure 4b and Figure 9. The fact that
the CfA survey and the PPS survey seem to suggest quite
different origins for the observed structures implies that
they are not fair samples of the universe. Therefore, the
various challenges to the standard model based on current
redshift surveys should be taken with caution. Deeper red-
shift surveys are needed to provide a fair presentation of the
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universe. Only then could we pin down the correct model
for structure formation.

4.3. Evolution of Shape Statistics

In the previous subsection, we saw that the shape sta-
tistics are sensitive to the difference between the morphol-
ogies of the structures produced by CDM and HDM
models. They also depend on the value of Q. Thus, they are
powerful tools to discriminate theories of structure forma-
tion. In this subsection, we investigate the possibility of
using the shape statistics to trace the dynamic evolution of
structure formation. We compute the shape statistics for the
simulations of the four models at different redshifts to study
their time evolution. Our results show that the Q, = 0.5
models have similar behavior to that of the Q, = 1 models.
We only present the results for the Q, = 1 models (i.e.,
models C10 and H10) here.

Figures 10a—10b show the mean line and plane statistics,
{8 —<8,>>, of simulations of model C10 at redshifts of 0,
0.05,0.1,0.2,0.5, 1, and 2 as a function of the diameter of the
windows. Error bars are 1 ¢. From these figures we see in
the curve for z =2 a dip in the shape statistics at 2R, ~
30 Mpc, a few times the mean distance between galaxies in
the simulation. This negative signal is produced by the
semiregularity in the galaxy distribution inherited from the
initial condition. As clustering evolves, the regularity is
erased gradually, and the dip disappears in the curve for
z = 1. For distributions at high redshifts, the standard devi-
ation of the shape statistics on small scales is rather large
because at high redshifts clustering is very weak and, with a
small size, only a few windows contain more than two
points to yield meaningful shape statistics. Actually, on
scales smaller than 20 Mpc, most of the windows contrib-
uting to the shape statistics contains only two or three
points. These windows would give large values for the shape
statistics if the line (plane) formed by the two (three) points
happens to pass through the center of the window. There-

<S,-<§,>>

3
L
r-.l;:J‘g.(.-.l
0

20 40 60 80 100
2R, (Mpc)

Fi1G. 10b

F16. 10.—The shape statistics at different redshifts for the simulation of a CDM model with Q, = 1. Error bars show 1 o. (a) The line shape statistics;

(b) the plane shape statistics.
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FiG. 11.—The logarithm (base 10) of the odds on the evolution of the shape statistics between redshifts of 0 and 0.05, 0 and 0.1, ..., and 0 and 1, for the
simulation of a CDM model with Q, = 1. (a) The line shape statistics; (b) the plane shape statistics.

fore, on such small scales, the shape statistics of galaxy
distributions at high redshifts tend to be the greatest with
large uncertainty.

In Figure 10a, the peak in the curve moves toward large
scales from z = 2 to z = 0, indicating that the size of clusters
in the simulation grows as the structure evolves. The width
of the peak also increases as the structure evolves from high
redshifts to low redshifts, an indication that the distribution
of the size of the clusters is broadened and more and more
clusters of different sizes are generated during dynamical
evolution.
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During gravitational evolution, more structures form and
the density contrast increases, and thus the shape statistics
increase monotonically on scales greater than 20 Mpc as
clustering evolves. Figures 11a and 11b show the signifi-
cance of the evolution, that is, the logarithm of the odds
that <(S —<S,)) at z=0 is greater than (S — {S§,)) at
z = 0.05, 0.1, 0.2, and so on. It is obvious from these figures
that the shape statistics evolve significantly during structure
formation. Even from the distribution at z = 0.05 to that at
z = 0, the odds on an increased signal are greater than 1 on
all scales greater than 15 Mpc. The morphological differ-
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F1c. 12—The shape statistics at different redshifts for the simulation of an HDM model with Q, = 1. Error bars show 1 . (a) The line shape statistics;

(b) the plane shape statistics.
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F1G. 13.—The logarithm (base 10) of the odds on the evolution of the shape statistics between redshifts of 0 and 0.05,0 and 0.1, ..., and 0 and 1, for the
simulation of an HDM model with Q, = 1. (a) The line shape statistics; (b) the plane shape statistics.

ence between galaxy distributions at z =0 and z = 0.2 is
readily detected by the shape statistics.

These results are in good agreement with the bottom-up
picture presented by the CDM scenario. Gravity first gener-
ates clusters on small scales from some initial density fluc-
tuation. Then the clusters grow, and the galaxy distribution
becomes more and more filamentary toward larger scales in
a hierarchical manner.

Figure 12 and Figure 13 are for the shape statistics for
model H10. The general features of the evolution of the
shape statistics are similar to those of model C10. The dif-
ference is that for model H10, the plane shape statistics peak
on scale around 20 Mpc, while there is no such peak with
model C10. This is due to the planelike structure in a HDM
model. The peak moves to larger scales as the structure
evolves, and the peak width is also broadened.

Our results show that the shape statistics are very sensi-
tive to the morphological difference caused by clustering
evolution of a galaxy distribution. They can thus be applied
to surveys at different redshifts to study the evolution of
gravitational dynamics. It is important to remember that
these results may be affected by our failure to include
biasing, especially at epochs when galaxy formation is still

an ongoing process.

5. SUMMARY

In this paper, we have shown an improved way of pre-
senting structures detected by the shape statistics in a
galaxy distribution. The new method presents the orienta-
tion of detected structure units. It can reveal structures with
less scatter than the old method in Paper I and helps dis-
tinguish filaments from pancakes. It gives a way to visualize
the difference between galaxy distributions detected by the
shape statistics and serves as a geometric supplement to the
algebraic shape statistics. We have applied the shape sta-
tistics to the CfA survey and the PPS survey, as well as
numerical simulations of CDM and HDM models with
Q, =1 and 0.5. Our results show that the shape statistics

are very sensitive tools for detecting clusters in galaxy
surveys on different scales. They are efficient in revealing
differences between galaxy samples. We find that the struc-
tures in the CfA and PPS surveys are significantly different
on all scales we consider. The PPS survey has stronger
clustering on small scales, consistent with CDM models.
The CfA survey has coherent structures on very large scales,
consistent with HDM models. This suggests that neither of
these two surveys is a fair sample of the universe. Therefore,
challenges to the standard model for structure formation
based on current redshift surveys should be taken with
caution. Of course, the fact that such a large variance exists
on the scale of current surveys may serve as a useful con-
straint on structure formation models. Redshift surveys on
scales much larger than 100 A~ Mpc are needed to resolve
the problem of structure formation. Our results also
demonstrate that shape statistics are sensitive to the differ-
ence between the morphology of structures from CDM and
HDM models with different density paraineters. They trace
the clustering evolution faithfully from a few Mpc to over
100 Mpc. Therefore, the shape statistics are very useful to
constrain theories of structure formation. They can also
serve as tools to study gravitational evolution of the large-
scale structure. On the other hand, from the point of view of
observational cosmology, they can detect and measure the
amount of filaments and pancakes in galaxy surveys sys-
tematically and quantitatively.
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