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ABSTRACT

We use N-body simulations to test the dependence of cluster substructure on four cosmologies and
three initial power spectra. Our purpose is to quantify the amount of substructure in each model and
understand these results in terms of cluster merger histories as well as the behavior of the substructure
statistics. In order to test the robustness of the statistics to observational effects, we perform our analysis
not only using full three-dimensional information for each cluster, but also including projection and sub-
sampling. We find that the statistic that best distinguishes the models is a very simple measure of gross
deviations from symmetry in the projected mass distribution: the “center-of-mass shift” as a function of
overdensity. The Dressler-Shectman and Lee-Fitchett statistics perform relatively poorly as cosmological
indicators, even though they are quite sensitive to substructure. The substructure measured by these sta-

tistics relaxes in about a crossing time.

Subject headings: cosmology: theory — galaxies: clusters: general — methods: numerical

1. INTRODUCTION

During the last 15 years, astronomers have discovered
that at least a third of galaxy clusters are not dynamically
relaxed systems but contain substructure on scales of the
same order as the cluster itself (Beers & Geller 1983; Jones
& Forman 1984; Dressler & Shectman 1988). This implies
that clusters are currently forming or have formed recently
enough that they have not had time to undergo a significant
degree of violent relaxation and phase mixing. The degree of
subclustering is a quantity that can be used to constrain the
value of the cosmological density parameter Q within the
usual Friedmann models of the universe; in sufficiently
dense models (Q > 1) structure formation continues forever
until the entire universe itself collapses, whereas in low-
density models (Q < 1) it slows down and eventually shuts
off. Thus, the clusters we see today are older in a low-Q
universe. This effect was quantified by Richstone, Loeb, &
Turner (1992), who concluded that while cluster formation
is still reaching its peak in an Q = 1 universe, cluster forma-
tion in an Q, = 0.2 universe peaked when the universe was
a third its present age.

The statistics used to quantify substructure can be
divided into three categories: those that use galaxy redshifts
alone, those that combine galaxy redshifts and position
information, and those that depend only on projected
positions—whether in the distribution of galaxies, lensing
mass, or X-ray emission. An example of the first category
are the Gauss-Hermite polynomials used by Zabludoff,
Franx, & Geller (1993) to quantify deviations in galaxy red-
shift distributions from Gaussianity. The second category
includes the Dressler-Shectman “A” statistic (Dressler &
Shectman 1988), which measures velocity correlations
among neighboring galaxies in position space; the centroid
shift o (West & Bothun 1990), which detects position corre-
lations among neighboring galaxies in velocity space; and
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the projected mass statistic € (Bird 1995), which compares
the quantity Y, v}r; (where v; and r; are the velocity and
position of galaxy i with respect to the cluster average) for
neighboring cluster galaxies to the total mass of the cluster.
The sensitivity of these statistics to substructure is discussed
by Bird (1995), who finds that while all do a good job of
detecting substructure, A is the least noisy (although not as
sensitive as the others to certain types of substructure). The
third category of statistic includes axial ratios and the cen-
troid shift of isophotes (Mohr, Fabricant, & Geller 1993),
the Lee-Fitchett test for bimodality (Fitchett & Webster
1987), a technique using power ratios from multipole expan-
sion (Buote & Tsai 1995), and the “average two-point
correlation function” (Salvador-Sol¢, Gonzalez-Casado, &
Solanes 1993). These authors demonstrate that each sta-
tistic is a powerful indicator of substructure.

In order to use these measurements to constrain cosmo-
logical models, quantitative predictions have been made
using both analytic methods and computer simulations. In
addition to the spherical collapse approximation by Rich-
stone et al. (who conclude that Q, > 0.5), two groups extend
the Press-Schechter formalism, which includes information
about the initial power spectrum as well as the value of Q, to
describe merger histories of clusters in different models
(Kauffmann & White 1993; Lacey & Cole 1993). To go
from merger histories to substructure, an assumption must
be made about the duration of substructure after a merger
event. Most authors assume a duration of a cluster crossing
time—about a billion years.

Cosmological N-body simulations naturally model the
relaxation of substructure. West, Oemler, & Dekel (1988,
hereafter WOD) applied three statistics to simulations of
hierarchical and pancake models, and concluded that while
there is little substructure in the inner regions of clusters,
small-scale substructure in the outer regions reflects the
amount of small-scale power in each model. More recently,
Dutta (1995) performed simulations for Q = 1.0 and Q, =
0.2 CDM models and concluded that the “S” statistic—a
measure of symmetry in projected mass distribution—
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+ distinguishes the cosmologies well, while Gauss-Hermite
polynomials, A, €, and o do not. Mohr et al. (1995) find from
gasdynamic simulations that their centroid shift statistic is a
powerful cosmological indicator and points toward a value
of Q, near unity. Similarly, Jing et al. (1994) find that the
projected mass distributions from N-body simulations
show very different morphologies between flat and open
cosmologies (although not between Q = 1.0 and flat Q, =
0.2 models).

The purpose of this paper is to present the results of some
characteristic substructure statistics for a grid of cosmol-
ogies and initial conditions, to explain our results in terms
of both cluster merger histories and the behavior of the
statistics, and to discuss the feasibility of using substructure
as a cosmological test. In particular, we illustrate why some
statistics that are good measures of substructure are not
good measures of cosmology. In § 2, we describe our
methods and terminology. In § 3, we describe measurements
of substructure and show how well they indicate cosmology.
We discuss cluster merger histories in § 4 and show how the
substructure statistics reflect this dynamical activity in § 5.
In § 6 we present results that take into account projection
and subsampling, and we summarize our results and discuss
implications in § 7.

2. SIMULATIONS AND ANALYSIS

We have performed N-body simulations for a range of
cosmologies: an Einstein-de Sitter universe, an open,
Friedmann-Lemaitre model with Q, = 0.2, and a flat, low-
density model with Q, = 0.2, A, = 0.8, where A, = A/3H3
parameterizes the cosmological constant. For convenience,
we label these cosmologies as EdS, Op2, and F12, respec-
tively (Table 1).

We assume a Gaussian random, scale-free initial density
field specified by a power spectrum P(k) oc k", with spectral
indices n = —2, —1, and 0, a range that encompasses the
likely shape of the power spectrum on scales between gal-
axies and clusters of galaxies (Henry & Arnaud 1991;
Feldman, Kaiser, & Peacock 1994). We generate a random
realization of each spectrum by sampling 64> random
amplitudes and phases in the Fourier space of a periodic
cube of side L. The spectra are normalized so that the rms,
linear evolved amplitude of fluctuations is unity in a top-hat
sphere of radius L/8. For models with unbiased galaxy for-
mation, the volume then corresponds to 64 Mpc3, enough
to include approximately one large cluster and many
smaller clusters and groups. Crone & Geller (1995) showed
that the number distribution of clusters dN(m)/dm in these
models is consistent with cluster observations for all except
the unbiased Einstein—de Sitter model, for which cluster
number densities are too high. This discrepancy can be
resolved by introducing a bias of b ~ 1.6, thereby rescaling
our simulation to correspond to a smaller volume. The
results we present in this paper are not sensitive to such a

TABLE 1

LABELS FOR COSMOLOGICAL
MODELS

Label Model

Q=1
Q,=02,4,=0
Q,=0.1,4,=0
Q, =02, 4, =038
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change; although such a mass rescaling does slightly affect
collapse times, we find that no overall shift in the values of
substructure statistics is detectable over this range of
masses. These simulations are discussed in further detail in
Crone, Evrard, & Richstone (1994).

To examine the behavior of substructure statistics as
clusters evolve, we use the full three-dimensional informa-
tion available to us from the simulations. Inevitably, any
cosmological signal will be partially washed out in obser-
vations due to projection effects and the limited amount of
observational data available (for example, a few hundred
galaxies as opposed to thousands of particles). Therefore,
we perform both two- and three-dimensional versions of
our substructure analysis.

For the three-dimensional analysis, we identify cluster
members using a friends-of-friends algorithm that links
together particles closer than 0.15 times the mean inter-
particle separation. The resulting clusters have a mean inte-
rior overdensity of about 300.

In § 6 we discuss results when we attempt to include a
reasonable degree of projection and subsampling in the fol-
lowing way. Around each cluster, we impose a cylinder of
radius 1.5 h~! Mpc and depth 64 h~! Mpc (the depth of our
simulation volume) and select at random 500 particles
within this volume. We then identify members of the pro-
jected cluster using a two-dimensional friends-of-friends
algorithm. To determine the level of the background for
each cluster, we compare the number of particles in the
cylinder before subsampling to the average number of par-
ticles one would expect for a volume of that size. An obser-
vational equivalent of this procedure would be to compare
photometry of each cluster to that of a random patch of sky
within a given magnitude range determined by m, of each
cluster. A two-dimensional linking algorithm could then be
used to link together cluster galaxies closer than a constant
fraction of the mean intergalaxy separation in that magni-
tude range (and, thus, roughly at that redshift) We link
together particles that would be b = 0.1 times the mean,
projected background separation. This choice of linking
parameter yields clusters smaller than the actual virial
radius of the cluster, but minimizes linkage to projected
objects along the line of sight. We find that our results are
not sensitive to the specific choice of linking parameter
within the range 0.07-0.15. Figure 1 shows the appearance
and degree of contamination of a medium-sized cluster that
has been subsampled and projected in three orthogonal
directions. (For our analysis we use only one projection for
each cluster.) Included in the figure are the cluster members
identified in three dimensions (top row), all particles in the
projected cylinders (second row), and the cluster members
identified in two dimensions (third row). Only about 5% of
the clusters identified in two dimensions become linked to a
large projected object. We find it encouraging that clusters
with a virial radius of only 1/200 the length of our cylinders
can be successfully identified; we would expect to suc-
cessfully identify rich clusters even if our projected volume
were hundreds of megaparsecs deep.

Implicit in our analysis is the assumption that galaxies
are fair tracers of the mass distribution within clusters. The
issue of how biased is the galaxy population in clusters (and
the universe, in general) remains unresolved. Simulations
incorporating self-consistent galaxy and star formation
methods are expensive to generate, and the answers
obtained from a small number of realizations may not be
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Fic. 1.—Effect of projection and subsampling on a medium-sized cluster in the EdS, n = —1 model. For each orthogonal direction, we show cluster
members identified in three dimensions (top row), all particles in the surrounding cylinder (second row; see text for details), and cluster members identified in
two dimensions (third row). The fourth row gives the space distribution of particles along the line of sight; shaded histograms indicate particles that were
identified as cluster members in three dimensions. The fifth and sixth rows show line-of-sight velocity distributions, which include both peculiar velocities and
Hubble flow. Shaded histograms indicate particles that are not cluster members in three dimensions (fifth row), and which are cluster members in three

dimensions (sixth row). All distances are in units of h~* Mpc.

representative of the entire population. Still, early indica-
tions are that galaxies in clusters should be somewhat more
centrally concentrated and cooler than the dark matter in
clusters (Frenk et al. 1996), although indirect, observational
evidence to the contrary has been reported recently
(Carlberg et al. 1996). Because the magnitude of this effect
and its dependence on cosmological model remain uncer-
tain, we have not attempted to model it in our analysis. We
suspect that the issue of the relative merit of different sub-
structure statistics will be unaffected by biasing. In addition,
the conclusions reached here apply directly to substructure
measured using mass distributions obtained via weak gravi-
tational lensing.

3. MEASURES OF SUBSTRUCTURE AND THEIR SENSITIVITY
TO COSMOLOGY

In this section, we describe three different substructure
statistics and present the distributions of each for the 50

most massive clusters in each model. We begin by illustrat-
ing the qualitative appearance of clusters in our models.
Figure 2 shows the projected distributions of 10 clusters in
the EdS and Op2 cosmologies. The EdS clusters are visibly
clumpier and less centrally condensed. Upon examining the
50 clusters in each model, we find that EdS clusters typically
(~80%) appear either elongated or composed of multiple
major components, while those in the Op2 model are more
often regular in appearance (~ 50%). The FI2 cosmology
falls about midway between these two.

3.1. The A Statistic

The A statistic was introduced by Dressler & Shectman
(1988) as a means of incorporating galaxy redshift informa-
tion into substructure studies. This statistic is an example of
the class of statistics that uses both redshift and position
information and that compare the properties of a local
group of galaxies with the properties of the cluster as whole.
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FiG. 2—Appearance of the most massive clusters in the EdS and Op2 (n = — 1) models. Estimates of the total fraction of clusters that appear elongated or
bimodal are given in the text.
It is defined by and a dependence of the signal amplitude A on Ny,
. remains. The dependence of §; on N, . cannot be factored
1 & N out or normalized awa ing Monte Carl thod:

_ 2_Necr= -0 2 y using Monte Carlo methods,
A= N i; 9, o= a? [@G: =9 + (0. — 0], (1) because the degree of the effect depends on the amount of

where 9; and g, are the average velocity and the velocity
dispersion of the N, . nearest neighbors to each galaxy in
position space. Dressler & Shectman, who have a total of
30-200 redshifts per cluster, use N,,, = 10, and Bird (1995)
finds that the statistic is optimally sensitive for N, =
(N g/ If there is no correlation between the velocities and
positions of the galaxies, A is of order unity, but to quantify
the likelihood of substructure for a given cluster, one must
use Monte Carlo simulations with no correlation between
position and velocity.

We first show that this statistic has a quirk that weakens
its potential as a cosmological diagnostic. If positions and
velocities are uncorrelated, the terms (7; — 9)? and (g; — 6)?
are similar to statistical errors in a mean, because the local
values 9; and o; differ from the global values because of
sampling error only. Therefore, they are proportional to
1/N,,. and cancel the factor of N, in the definition of 62. If
there are correlations, the terms do not decrease as 1/N .,

substructure present. Figure 3 illustrates the seriousness of
this effect by showing A as a function of the number of
cluster particles for each cluster in the EdS, n = —1 model.
Solid circles give the values of A when all particles are used
in the calculation, and open circles give the values when
clusters are randomly subsampled to 100 particles. In all
cases Ny, is one-tenth of N,. The horizontal dashed lines
indicate 3 ¢ limits for a distribution of 1000 Monte Carlo
clusters for which velocities are shuffled and reassigned to
positions randomly. The Monte Carlo distributions for N,
of 100 and N, equal to all particles are found to be sta-
tistically identical for any given cluster; this is not sur-
prising, since we expect the dependence on N, to vanish in
the absence of correlations. The implication of this pecu-
liarity is that in order to compare observations with cosmo-
logical models, the same number of galaxies must be used
for every cluster in the sample. In addition, this must be the
same number of “ galaxies ” used to calculate A for the simu-
lated clusters.
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o L N B summarized in Figure 4, which gives the distributions of A
'é: 10 - o » for each of the 12 cosmologies. Each panel includes the K-S
s F o all particles - probability that the distribution is statistically equivalent to
L s oop ticl ] the EdS model with the same n. Most of the models are
2 ) r° 100 particles . marginally distinguishable. A more complete comparison of
o o - . each pair of models, using a sample of 50 clusters each, is
;ﬂ: = 6 o - ° ] given in the lower left of Figure 5. Checks indicate each pair
n r S e © ] of models that are distinguished at the 99% level using the

a 4F o e o > Kolmogorov-Smirnov test.
[ o3 o % ¢ ] If we use all particles available despite the dependence of
2L o * 3 h A on N, the models are more difficult to distinguish—for
- . 1 example, the EdS and Opl (n = —1) distributions differ at
[ b £30 only the 24% level. In § 5 we discuss why this statistic,

2.5 3 3.5
Log (number of particles in cluster)

FiG. 3—Dependence of the Dressler-Shectman A statistic on the
number of particles used to calculate it. Filled circles indicated values of A
when all particles are used to calculated A, open circles when only 100
particles per cluster are used. Dotted lines indicate +3 ¢ limits from 1000
Monte Carlo clusters (see text).

To investigate the intrinsic effectiveness of this statistic at
detecting substructure, we first calculate the statistic using
as much information available to us as possible. Three-
dimensional position and velocity coordinates are used to
calculated A for the most massive clusters in each model.
We use 300 particles per cluster (the maximum possible,
because there are between 300 and 1200 particles per
cluster), and N, equal to 30. The use of N,,, = 300*/% ~ 17
does not significantly change our results. The results are

which has been shown to be quite sensitive to various types
of substructure (Bird 1995), is not more effective at dis-
tinguishing cosmologies.

3.2. The Center-of-Mass Shift

We now consider a simple statistic that measures major
deviations from symmetry in the cluster mass distribution:
the center-of-mass shift as a function of density contrast.
Specifically, we define

|x; — x,|
R; ’
where x; and x, are the center of mass positions of a cluster
identified from the particle distribution using two different
values of the linking parameter. For our three-dimensional
analysis, we use the linking parameters b =0.15 and
b = 0.07 to identify regions with overdensities of about 300
and 3000, respectively, and normalize to the radius R; at
which the average overdensity within a sphere reaches 300.

C= ®)

EdS FI2 op2 Op1

10 - . IV//// 'Z {’////Z iy/// —; n=-2
vy i ' , : .
5 P, =0.37]

; T N e
£ L 18]
£ " """ M

W// h o E% h o E% a o_é n=0

IS T
=
..l.‘.,ul.” ]

("]

4 6

n

4 6

W~
]

3D A Statistic

Fic. 4—Distributions of the A statistic for each model, calculated using 300 particles per cluster. The K-S probability given in each panel is the
correlation between that model and the EdS model with the same spectral index n.
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Fi1G. 5—Comparison of distributions for C; (upper right) and A;y, (lower left). A check indicates that the K-S probability the two distributions are drawn
from the same parent distribution is less than 1%.

We will refer to this three-dimensional statistic as C,, and ogy. This statistic distinguishes EdS models from the open
the two-dimensional version described in § 6 as C,. A models if the spectral index n is specified or if n = 0 can be
smooth ellipsoid gives a C = 0 in the absence of sampling excluded. The EdS, n = 0 results are very similar to those
error. This statistic is similar to the centroid shift used by for Op2, n = —2. This is in line with expectations based on
Mohr et al. (1993) to analyze X-ray data. It is also remi- conditional Press-Schechter models (Lacey & Cole 1993). A
niscent of the S2_,, test of WOD, which measures the frac- redder spectrum (n = —2) produces more recent merging
tional mass of the second largest subgroup when a smaller than a blue (n = 0) spectrum. This offsets the reduced
linking parameter is used. merger rate arising from the stagnant, late-time, linear
Figure 5 provides a complete comparison of the models growth in the low Q, model. The F12 results are not as
and Figure 6 shows the distribution of C, for each cosmol- dramatically different from those of EdS, but if n =0 is
EdS F12 Op2 Op1
A DL & IR B & B L 5 LN I
40 = =+ - T 7
: T Pes=01% F P =2e-3% ¥ P, ;=7e-8% ]
30 | + + =+ =
20 1 3 {n-2
w 10F =+ =+ =+ =
S~ F I I I 3
3 ok 4 § :
v 40 - = - =
3 + 1 Py s=0.6% T Ig Py_s=3e-5% 4
S aof ES I = E
Gy r I I I 3
O 20 " = 4 4!
5 E 3 T ¥ 1
2 1h : 1 1 f
£ of = H &%—H—H—H—
2 40f ¥ + 5 ;
r T Py s=17% T Py s=06% 1§ P, =0.005% A
30 =+ + + -
: T T T 1 n=0
20 F =+ =+ + e
o} ! 1 -
I I I ]
0 ] I 1%, ]
0 0.5 0 0.5 0 0.5 0 0.5
Cs

Fic. 6.—Distributions of the center-of-mass shift C,, shown in the same format as Fig. 4
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EdS FI2 op2 op1
AL LR KL LRI RS AR RAM) AR RAM) MR AL SR RAt) LA AL MR ML S RAA) A LM AAM LAK:
30 [ 179 Pes=54% T P =96% I P =71% 3
" E ES g E
9 ] T Ty ]
(3) i & el i dp
+ i i i 1
0 r I T T .
3 3L T F  P=71% T P, ~86% 1
CH: i i 1, z
5wk 1 1 + i
5 I I E 3
Q 1 ¥ I :
3 T T 1
Z F+ p.=88% T E
1 i 1 n=0
2 46810 246810 246 810 2468 10
3D Lee-Fitchett Statistic L,
Fic. 7.—Distributions of the Lee-Fitchett Statistic L,,,, shown in the same format as Fig. 4
excluded, they are distinguished at the 99% level. Thus, if It is defined by
n = 01is ruled out as the effective power-law index d In P(k)/
dInk on cluster mass scales, the Einstein—de Sitter cosmol- Ly, = Maxpmiuons[<—%t—al) _ 1] ,
ogies can be distinguished from nearly all the others. The ' Oleft T Oright
exception is the comparison between the FL2 model with n
n = —2 and the EdS, n = —1 model. With a larger sample o= (x,—X? 3)
i=1

size, this degeneracy could also be removed.

3.3. The Lee-Fitchett Statistic

Encouraged by the results of C;, we turn to a more
sophisticated measure of major morphological features: the
Lee-Fitchett statisticc which was used to demonstrate
bimodality in the Coma cluster (Fitchett & Webster 1987).

where X = (1/n) Y7-, X;, and x; is the position of galaxy i
projected onto a line through the cluster center in the direc-
tion 6, ¢. Along this line, the x;’s are partitioned in each of
the n — 1 possible ways, and the maximum value of the
quantity in square brackets is assigned to L, 4. The statistic
for each cluster is found by calculating L, 4 for a grid of

Q, = 1.0 0, = 0.2
I ] I
0.5 -1 —
0 —
-0.5 -1 —
| | | | | |
-0.5 0 0.5 -0.5 0 0.5
h-! Mpc
FiG. 8.—Comparison of a typical bimodal cluster in models with different values of Q, (EdS and Op2, with n = —1). Clusters in open models are more

centrally concentrated, inflating the value of the Lee-Fitchett statistic.
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Fic. 11.—Distributions of the time since 50% of each cluster’s mass was assembled, for the 50 most massive clusters in each model.

directions through the cluster and taking the average value
L, maximum L., or some other related statistic.
Fitchett (1988) finds that while all these variations of L are
sensitive to bimodality, L ,, = L,,,/Ly.i. 1S the best.

We show the distributions of L,,, in Figure 7. The models
are all indistinguishable! However, this is not because L, is
a poor indicator of substructure; we see by examining the
clusters visually that it does an excellent job of finding
bimodal clusters (the clusters with L, = 3 are all dramat-
ically bimodal) and also of identifying more subtle substruc-
ture. The “ problem ” is that clusters in open models tend to
be much more compact, with steeper density profiles (Crone
et al. 1994). For visual reference, we show two similar
strongly bimodal clusters in Figure 8, one from the EdS
model and one from Op2. The two clusters are about the
same size, and the components in each case have about the
same mass ratio and are separated by the same distance.
However, L,,, is higher in the Op2 case because each com-
ponent is so centrally concentrated. Indeed, L ,, is inflated
in open models relative to flat models in general—so much
so that, although there is more merger activity in the flat
models, the ensemble values for L,,, are indistinguishable.

As summarized in Figure 9, the statistic L,,, is actually
much better than L., at distinguishing cosmologies
(although it is less sensitive to bimodality). This is because
although the maximum L, 4 is high for the more centrally
condensed clusters in open models, L, 4 is high for only a
small angular range, so that L,,, is not as inflated relative to
EdS clusters.

4. CLUSTER MERGER HISTORIES

To link the degree of substructure to dynamical history,
we first quantify the merger histories of clusters in each of

our models. We identify the history of each cluster by con-
structing “family trees,” which trace each cluster particle
back through time to the smaller predecessor groups from
which the cluster formed. The specific procedure used to
construct these histories is described in Evrard et al. (1994).
Briefly, for each final group, one compares the particle list
of that group to lists from groups at progressively earlier
times, creating a tree hierarchy based on a common mem-
bership criterion. Figure 10 shows family trees for seven
clusters, including all progenitor groups with at least 100
particles, for each n = —1 cosmology. The initial conditions
for each model are the same, so we can compare the same
clusters across the models. These cluster histories nicely
illustrate the fact that each cluster forms most recently in
the EdS model and that cluster formation times in the FI12
model fall between those in EdS and Op2.

To quantify characteristic formation times for each
model, we calculate the time since each cluster reached 50%
of its final mass. Figure 11 shows histograms of these values
for the 50 most massive clusters. Statistically, clusters do
indeed form earlier in the open models. The n = —2 forma-
tion times are “messier” that those for higher values of n
because, as n approaches — 3, cluster collapse times become
independent of mass; specifically, linear theory predicts that
the time at which rms mass fluctuations reach unity scales
as M(n+ 3)/4.

How do our results compare with analytic predictions ? If
our simulated cluster sample consisted entirely of rich clus-
ters, we could directly compare our results in Figure 11 to
those in Figure 13 of Lacey & Cole (1993). For a CDM
power spectrum with Q, = 1.0 Lacey & Cole calculate that
28% of rich clusters reach half their mass in the last 0.2¢,
where t, is the age of the universe. In our EdS, n= —1
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model, which approximates standard CDM on cluster
scales, only 10% of clusters formed in the last 0.2¢, (or 1.3
h~1! Gyr). Similarly, for Q, = 0.2, Lacey & Cole see that
38% of clusters reach half their mass in the last 0.5¢t,,
whereas we see only 24%. It is not surprising that our clus-
ters form earlier because our simulation volume is only
large enough to contain a few rich clusters and many
smaller clusters and, in hierarchical collapse scenarios,
smaller objects form earlier. Lacey & Cole quantify this
effect in their Figure 10, which shows the distribution of
formation times for dark matter halos of different masses in
a CDM universe.

5. ERASURE OF SUBSTRUCTURE

5.1. Results

The missing link in connecting the merger histories pre-
dicted by analytic models with substructure statistics is
knowledge of the length of time a substructure signal sur-
vives after a merger event. We examine this by calculating
substructure statistics at many outputs, finely spaced in
time, to watch how they behave as each cluster evolves. We
show one specific cluster in Figure 12 for the EdS and Op2
cosmologies (both withn = —1).

The top two rows of Figure 12 show the evolution of A
and C;, while the lower five rows illustrate the dynamical
activity of the cluster for comparison. Included are the evo-
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Iution in the cluster’s velocity dispersion, position disper-
sion, and the difference between the center of mass and most
bound position of the cluster (a more “theory-oriented”
version of C;). In addition, for each large accreted object we
show the radial velocity v, and radial separation r between
the centers of mass of the subclump and main cluster. The
dispersions in velocity and position of such accreted objects
(relative to their own centers of mass) are indicated by
dotted and dashed lines in rows three and four.

Two merger events in the lifetime of this cluster are indi-
cated by the vertical lines in Figure 12. During the first of
these, both A and Cj give a very clean signal, rising dramat-
ically and relaxing in about 0.5 Gyr. The Cj statistic reaches
a maximum as soon as the lump is identified as part of the
cluster and disappears as soon as the lump passes through
the center of the cluster. The A statistic peaks slightly later,
closer to the time when the relative velocities of the two
components reach a maximum. (Remember that A is sensi-
tive to velocities as well as positions.) This event is unusual
in that it is quite isolated from any other small mergers or
accretions; relaxation times for a single event are usually
much more difficult to estimate.

The second event, a slightly smaller merger, has the same
general characteristics but is messier and does not appear to
relax as quickly. Closer inspection of the cluster’s evolution
reveals that there is a small merger soon after this second
event that causes both statistics to remain high. Figure 13
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FiG. 12—The dynamical evolution of a single cluster. The first two rows show the behavior of the substructure statistics A and C;. Below are the
evolution in velocity dispersion, position dispersion, difference between center of mass and most bound position, and the orbital parameters ¥, and r for each
of the two large objects that are accreted at the times indicated by vertical lines. Solid lines show the evolution of the cluster as a whole, while the dotted and

dashed lines show that of the two large accreted objects.
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h-! Mpc

FiG. 13.—Particle distributions for the cluster described in Fig. 12, at the times indicated in Fig. 12 by arrows. Point size is proportional to the value of §;

for each particle.

illustrates this cluster at the times indicated by arrows in the
top right panel of Figure 12. Setting the point size to be
proportional to the value of §; for each particle nicely illus-
trates how A increases for the two major mergers and, as
seen in the last panel, for the small merger as well. In fact,
still closer inspection reveals that there are a number of
small mergers and accretions that take place all through the
cluster’s history, and that all coincide with small peaks in A;
much of what appears to be statistical noise in A is actually
caused by tiny mergers or accretions. This does not,
however, make it better at distinguishing among cosmol-
ogies; from the perspective of looking for a cosmological
diagnostic, such events are a source of noise.
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It is not straightforward to calculate an average response
curve for each statistic for a given type of merger event;
there are just too many events in each cluster’s development
to separate their effects. Nonetheless, it is possible to make
some general statements about the behavior of these sta-
tistics. Figure 14 illustrates the complicated evolution of the
A statistic and Cj for an ensemble of clusters. The signal of a
merger event is much cleaner for C; than for A. While it is
clear that C; relaxes in about a crossing time, not many
events are isolated enough to allow A to relax fully. For
those that are isolated, we see that the FWHM of the
signals as a function of time is about 0.5 h~! Gyr. Relax-
ation times may be slightly longer in open models—
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Fic. 14—Evolution of A and C, for an ensemble of clusters. C; produces a much cleaner signal of major merger activity.
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probably because clusters in these models are on average
more centrally concentrated and less dense—but this effect
is small. More striking is the tendency for C; to reach
higher maximum values for merger events in EdS models
than for those in Op2 models. This effect, which is caused by
the less compact density structure in EdS clusters, serves to
increase the cosmological signal of C; beyond that simply
due to the degree of merger activity.

5.2. Numerical Resolution and Cluster Relaxation

Because our results depend directly on the relaxation
time of substructure, we address the question of whether
our substructure evaporates artificially quickly due to lack
of adequate resolution. The primary difficulty is in model-
ing the dense inner cores of subclusters; if time steps are too
large, or force and mass resolution too coarse, these poten-
tial wells will be too shallow and disrupt artificially easily.

We directly test whether our time resolution is adequate
by performing the EdS, n = —1 simulations with different
numbers of time steps. Between redshifts of 8 and 0, the time
during which clusters are going nonlinear, we use 256, 512,
1024, 2048, and 4096 time steps. (Our other simulations use
512.) Figure 15 and Table 2 show the results of performing
the C, test for each simulation. Although there is some
variation in the distributions, they are not significantly dif-
ferent from each other. Most importantly, there is no sys-
tematic change as the number of time steps is increased.

Another concern is that the force softening introduced to
minimize two-body interactions produces shallower cluster
cores that are easy to tidally destroy. The effect of softening
on density profiles is discussed in detail in Crone et al.
(1994), where we find that within about 60 kpc (the value of
our Plummer softening parameter), our densities are seri-
ously underestimated. However, the types of substructure

TABLE 2

COMPARISON OF DISTRIBUTIONS FOR C; AMONG
SIMULATIONS WITH DIFFERENT NUMBERS
OF TIME STEPS SINCE z = §

512 1024 2048 4096

256 o) (B (B (%)
256....... 96 86 54 86
512....... 1 39 54
1024...... 86 86
2048...... 86

Note.—Percentages are the K-S probabilities
the two distributions were drawn from the same
parent distribution.

512
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that provide a useful cosmological signal reflect major mor-
phological features, not features as small as stripped cores.
Therefore, we do not expect our results to change due to
this effect.

Further support that our results are robust to these
numerical effects comes from the fact that they are consis-
tent with those of Gonzalez-Casado, Mamon, & Salvador-
Solé (1994), who use analytic and numerical methods to
calculate the survival times of accreted objects of given sizes
and orbits. They find that only very dense cores on quite
circular orbits can survive for more than a crossing time.
Similarly, Moore, Katz, & Lake (1996) use numerical
methods to determine that tidal heating is effective at dis-
rupting halos close to the cluster center except for small,
dense cores (on scales of tens of kiloparsecs).

6. RESULTS WHEN PROJECTION AND SUBSAMPLING
ARE INCLUDED

We have found that both C; and L, are viable cosmo-
logical diagnostics when we use the full, three-dimensional
position information available from our simulations. Here
we present results when projection and subsampling are
included in the manner described in § 2. The resulting pro-
jected clusters contain 100-400 particles each. For the two-
dimensional center-of-mass shift C,, we use a smaller
linking parameter of 0.10 and normalize to the radius at
which 8,5 = 10. Cluster radii selected using this choice of
parameters are on average slightly smaller than those in our
three-dimensional analysis, but this minimizes contami-
nation from background while retaining most cluster
members (as in Fig. 1, for example). Linking parameters in
the range 0.07-0.15 work equally well.

Our results are shown in Figures 16, 17, and 18. Only the
center-of-mass shift survives; the A and Lee statistics fail
entirely to distinguish the cosmologies. For a given n, C,
does distinguish EdS from Op2 models. Note that the F12
models are more similar to EdS than to Op2; C, can better
determine whether the universe is flat or not, than whether
Qs unity.

Why do projection and subsampling destroy L,,, but
leave C, relatively unscathed? The clusters in two dimen-
sions have a smaller density contrast (due to projection) and
more noise (due to subsampling), which makes them less
well defined. These effects are especially troublesome for
clusters in the EdS cosmologies, which have a shallower
density profile to begin with. Often, EdS clusters that were
clearly bimodal in three dimensions retain only one obvious
density concentration in our two-dimensional treatment
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Fic. 15.—Distributions of C, for simulations with different numbers of time steps. K-S comparisons are given inTable 2.
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F1G. 16.—Distribution of the two-dimensional center-of-mass shift C,, in the same format as Fig.4

because one of the dense centers is washed out by projection
and subsampling. This effect lowers L,,, in EdS cosmologies
relative to the others, wiping out the cosmological signal.
The C, statistic survives because even a long filament
without a distinct core can cause a significant shift in the
center of mass as a function of density contrast. The fact
that EdS clusters suffer more under our two-dimensional

treatment may also explain why it is easier to distinguish
the F12 models from Op2 than from EdS in two dimensions,
but not in three dimensions.

Although our N-body tests indicate that C, is useful for
constraining cosmological models, the specific procedure
necessary to compare our models with an observational
sample depends on the type of cluster observation. Because
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F1G. 17—Comparison of distributions for C, (upper right) and A, (lower left). A check indicates that the K-S probability the two distributions are drawn

from the same parent distribution is less than 1%.
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Fi6. 18.—Comparison of distributions for the two-dimensional Lee-Fitchett statistics L,, (upper right) and L, (lower left). A check indicates that the K-S
probability the two distributions are drawn from the same parent distribution is less than 1%.

our simulations do not model gas physics, the simplest com-
parison would be with lensing results, which measure the
projected mass distribution directly. Note that our simu-
lated sample is not made up of rich clusters only, but
includes medium to small clusters as well (with a total range
in velocity dispersion of about 500 km s~* to 1500 km s ).
From hierarchical formation theory, we expect smaller clus-
ters to form earlier than large ones, and indeed our forma-
tion times are a bit earlier than those predicted by Lacey &
Cole for a sample of rich clusters. The amount of sub-
clustering is therefore shifted lower in our sample relative to
a sample made up entirely of rich clusters. A comparison
with X-ray observations is slightly less direct; although the
distribution of gas approximately reflects the cluster poten-
tial, it is more spherical (due to its isotropic pressure tensor),
and its mode of relaxation is driven by shocks and therefore
differs from relaxation of collisionless matter.

Our method of using a friends-of-friends algorithm to
calculate C, is most directly applicable to galaxy distribu-
tions. We find it encouraging that the numerical values of
the center-of-mass shift are robust to projection and sub-
sampling (compare Figs. 6 and 16); it is unlikely that these
numbers will change much upon further refinement of the
projection and subsampling procedure. We point out that
there two effects that would tend to slightly shift our results
relative to that of a typical cluster sample: the fact that ours
are not all rich clusters (as discussed above), and the possi-
bility that the galaxy distribution is biased relative to the
mass (as discussed in § 2). The former we suspect is not
important, since the structure of dark halos in Gaussian
models is only weakly dependent on mass (Navarro, Frenk,
& White 1996; Cole & Lacey 1995). The latter problem
awaits refined treatment of galaxy formation in the simula-
tions along with empirical constraints on the mass-to-light
profiles in clusters, especially from gravitational lensing
(e.g., Kaiser & Squires 1993; Tyson & Fischer 1995; Smail
et al. 1995).

7. SUMMARY AND DISCUSSION

The substructure statistics that are the most promising
cosmological tests measure gross features in projected mass

distribution. In particular, we find that the center-of-mass
shift, a very simple measure of deviation from symmetry,
can distinguish flat models from open models even when the
information is limited by projection and subsampling. In
our two-dimensional analysis, flat, low-density models are
not well distinguished from Q =1 models. This result
agrees with those of Jing et al. (1995), who also use collision-
less N-body simulations. Meanwhile, Mohr et al. (1995),
who model individual clusters using a hydrodynamic plus
N-body code, find that flat, low-density universes are more
similar to open, low-density models than Q = 1 models,
which is what we find using full three-dimensional informa-
tion.

Some statistics that are very good at measuring substruc-
ture are actually poor cosmological tests. The Dressler-
Shectman A statistic, for example, is more sensitive to small
accretions than C;, making the cosmological signal noisier.
In addition, the dependence of A on the number of galaxies
used (and the fact that they must have measured redshifts)
seriously limits sample size. One might expect the Lee-
Fitchett statistic L,,, to be a powerful cosmological indica-
tor because it measures major features in projected
morphology, as does C;.

However, the steeper density profiles in the open models
inflate L, relative to closed models, washing away the
cosmological signal. The similar statistic L,,, performs well
when full three-dimensional information is used, but is not
robust to projection and subsampling.

Our results emphasize the idea that there are different
types of cluster substructure, each with different implica-
tions for the dynamical state of clusters—a point made by
many previous authors (for instance, by WOD and by
Buote & Tsai 1995). We find that for the purpose of deter-
mining Q,, it is most appropriate to consider major features
in the mass distribution (e.g., bimodality); smaller substruc-
ture typically represents small accretions that do not have a
strong dependence on Q and are more sensitive to Poisson
noise. In some cases, smaller substructure indicates the sur-
viving inner core of a large merged object, but it is rare that
these cores have the necessary orbital parameters to survive
much more than a crossing time.
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In addition, our results show that even statistics that one
might expect to measure the same “type” of substructure
can behave quite differently. This is illustrated by the failure
of L,,, to distinguish cosmological models, even though it is
a powerful measure of bimodality.

We emphasize that to constrain cosmological parameters
it is critical to use a statistic such as the center-of-mass shift

SUBSTRUCTURE IN CLUSTERS AS COSMOLOGICAL TEST 503

C,, which has proven to be sensitive to cosmology and
robust to observational effects.
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