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ABSTRACT

The redshift-space correlation function ¢ for projected galaxy separations <1 h™! Mpc can be
expressed as the convolution of the real-space correlation function with the galaxy pairwise velocity dis-
tribution function (PVDF). An exponential PVDF yields the best fit to the & measured from galaxy
samples of different redshift surveys. We show that this exponential PVDF is not merely a fitting func-
tion but arises from well-defined gravitational processes. Two ingredients conspire to yield a PVDF with
a nearly exponential shape: (1) the number density n(¢) of systems with velocity dispersion ¢ and (2) the
unrelaxed dynamical state of most galaxy systems. The former ingredient determines the exponential tail,
and the latter determines the central peak of the PVDF.

We examine a third issue: the transfer of orbital kinetic energy to galaxy internal degrees of freedom.
Although this effect is of secondary importance for the PVDF exponential shape, it is detectable in
galaxy groups, which indicates that galaxy merging is an ongoing process in the present universe.

We compare the £, measured on nonlinear scales from galaxy samples of the Center for Astrophysics
redshift surveys with different models of the PVDF convolved with the measured real-space correlation
function. This preliminary comparison indicates that the agreement between model and observations
depends strongly on both the underlying cosmological model and the internal dynamics of galaxy
systems. Neither parameter dominates. Moreover, the agreement depends sensitively on the accuracy of
the galaxy position and velocity measurements.

We expect that & will pose further constraints on the model of the universe and will improve the
knowledge of the dynamics of galaxy systems on very small scales if we improve (1) the galaxy coordi-
nate determination and (2) the measurement of relative velocities of galaxies with small projected separa-
tion. In fact, the redshift-space correlation function &; depends sensitively on the internal pairwise
velocity distribution of individual galaxy systems for projected pair separations <0.5 h~! Mpc and rela-

tive velocities © < 300 km s L.

Subject headings: cosmology: theory — galaxies: distances and redshifts — galaxies: interactions —
galaxies: kinematics and dynamics

1. INTRODUCTION

The pairwise velocity distribution function (PVDF) of
galaxy systems has been studied since Geller & Peebles
(1973) first used it to determine the mean mass of galaxy
groups statistically. The PVDF assumed clear importance
in cosmology when Peebles (1976) used it to determine the
pairwise velocity dispersion o4 ,(r) of galaxy pairs separated
by a projected distance r S 1 h~! Mpc! and ultimately to
determine the mean mass density of the universe.

Davis & Peebles (1983) first computed the redshift-space
correlation function & as a convolution of the real space
two-point correlation function with the galaxy PVDF.
Recently, Fisher et al. (1994b) and Marzke et al. (1995) used
the same “convolution method” to determine £, and the
pairwise velocity dispersion o4,(r) on nonlinear scales. All
of this work, starting from Peebles (1976), assumes an expo-
nential PVDF. Bean et al. (1983), Fisher et al. (1994b), and
Marzke et al. (1995) demonstrate quantitatively that this
shape fits the observations better than other distributions.
However, so far the exponential shape has been a fitting
function without any physical justification.

It is not clear what PVDF we should expect on nonlinear
scales where nonlinear gravitational clustering erases infor-

! Hy =100 hkm s~ Mpc ™1 is the present Hubble constant, and we use
h = 0.5 throughout.
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mation about the initial conditions. On linear scales (r = 10
h~' Mpc), if the standard inflationary model is valid, we
expect a Gaussian PVDF (see, e.g., Nusser, Dekel, & Yahil
1995). As a two-point distribution, the PVDF is a more
powerful tool than one-point distributions to determine
whether the density fluctuations are Gaussian or non-
Gaussian (see, e.g., Kofman et al. 1994; Catelan & Scherrer
1995). If the PVDF is indeed Gaussian on linear scales, we
need a link between the observed exponential PVDF on
nonlinear scales and the expected Gaussian in the linear
regime (Fisher 1995).

Numerical work devotes attention mainly to the pairwise
velocity dispersion a,,(r) rather than to the shape of the
PVDF (see, e.g., Couchman & Carlberg 1992; Gelb &
Bertschinger 1994). Efstathiou et al. (1988) simulate a flat
universe with scale-free initial conditions; by analyzing the
particle velocity field, they find a skewed PVDF with expo-
nential tails but a flatter core at small relative velocities.
Cen & Ostriker (1993) implicitly find the same result by
simulating a standard CDM universe including dissipative
galaxy formation. Their single-galaxy peculiar velocity
exponential distribution implies a PVDF similar to the one
found by Efstathiou et al. (Marzke et al. 1995). A variety of
CDM models (Fisher et al. 1994b) confirm this behavior. All
of this work has a dynamic range of roughly 3 orders of
magnitude. With an order of magnitude increase in
dynamic range, Zurek et al. (1994) study the massive halo
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+ velocity field and find an exponential skewed PVDF at all
. projected separations between 0.5 h~! Mpc and 5.5 h™1!
' Mpc and for all relative velocities, which indicates that the
. flat core of previous simulations probably arose from an
inadequate treatment of gravitational interactions on small
scales.

All previous work, both observational and numerical,
does not explain the physical origin of the exponential
shape of the PVDF. Here we propose a simple physical
argument for the observed exponential PVDF for galaxy
~separations <1k~ Mpc.

If n(o) is the number density of galaxy systems with veloc-
ity dispersion o, we show that the exponential tail can be
obtained from the integral of Gaussian internal velocity
distributions for each galaxy system weighted either with
the observed n(c) or with the n(o) predicted by the Press &
Schechter (1974) theory (§ 2).

Section 3 shows that the central peak of the PVDF
requires the presence of unrelaxed systems with a non-
Gaussian internal velocity distribution. In § 4 we examine a
further process that can peak up the PVDF at small relative
velocities: the transfer of orbital kinetic energy to galaxy
internal degrees of freedom. In § 5 we compare various
models of the PVDF with the redshift-space correlation
function measured for the Center for Astrophysics (CfA)
magnitude-limited redshift surveys.

2. THE PVDF FROM n(o)

Suppose that the probability of measuring one com-
ponent u of the relative velocity of two galaxies within a
particular system is a universal function A(u, g), where o is
the velocity dispersion of the system and u is independent of
the galaxy separation distance. Assume that n(c) is the
number density of systems with dispersion . Moreover,
assume that the number of galaxies v within a system with
dispersion ¢ depends only on ¢: v = v(¢). The probability of
choosing a single galaxy is n(o)v(s), and the probability of
picking a galaxy pair within a single system is n%(a)v*(s)/
n(o). Assume, for the sake of simplicity, that all the systems
are disjoint with separation =1 h~! Mpc. Thus, the contri-
bution to the pairwise velocity distribution p(u) for galaxy
separation <1 h™' Mpc comes only from galaxy pairs in
the same system. Therefore, we can neglect the relative
velocities of systems. Then we have

P, G, G )t oC du f T em(o)Aw, oo . (2.1)

Hereafter, we refer to equation (2.1) as the PVDF. Let us
now make a few hypotheses that roughly approximate the
internal properties of galaxy systems. Let us assume that
systems have relaxed violently (Lynden-Bell 1967; Shu
1978). We can then assume that systems approximate trun-
cated singular isothermal spheres with density profile
p(r) = 6*/2nGr?. N-body simulations (Crone, Evrard, &
Richstone 1994; Carlberg 1994; Navarro, Frenk, & White
1996; Cole & Lacey 1996) show that this profile is not
correct at very small and very large radii. However, the
slope r~2 fits the dark halo density profile at least over the
range 0.1 S r/r,;, S 1, where r;, is the radius containing an
overdensity of 200 (Navarro et al. 1996).We are interested in
the relation between the galaxy number v and the velocity
dispersion ¢; thus, the assumption v(s) oc ¢ is reasonable.
The isothermal model has a Gaussian velocity distribution.
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Thus,

1 u?
A(u, a)du = W €xXp (— 4T_z>du . (22)

We have two choices for the number density n(s): (1) we
can assume the distribution derived from the Press &
Schechter (1974) theory that approximates the number
density of massive halos in N-body simulations of a flat
universe with scale-free initial conditions (see, e.g., Efsta-
thiou et al. 1988; Lacey & Cole 1994), or (2) we can use the
observed distribution.

The Press-Schechter n(o) can be easily derived for a flat
CDM universe dominated by dissipationless dark matter.
Following White & Frenk (1991), consider spherical pertur-
bations with comoving radius r, that have already col-
lapsed into isothermal spheres by redshift z. For singular
isothermal halos, the velocity dispersion is 6% = GM(r)/2r,
independent of radius r. If the halo mass is M = 4np,r3/3,
where p,, is the present density of the universe, the velocity
dispersion can be expressed in terms of the redshift and the
initial size of the perturbation: ¢ = 1.68(1 + z)Y/2H,ry/2'/?,
where H, is the present Hubble constant (however, see, e.g.,
Jing & Fang 1994 or Crone & Geller 1995 for mass-
dispersion relations when the isothermal sphere approx-
imation is not valid). The number of halos with dispersion &
per comoving volume at redshift z is then

_ 3(L68PH3(1 + 22 dIn A
(4m)326* dlneo

where v = 6,(1 + z)/A, and 6, = 1.69 is the mean linear inte-
rior mass overdensity when each spherical shell recollapses
to the origin (Narayan & White 1988). The rms linear mass
overdensity in a sphere of radius r is

A(ro) = 163 05(1 — 0.390973-1 + 0.4814r3:3)71° | (2.3b)

where o3 is the usual ratio of the variances of the mass and
galaxy fluctuations within randomly placed spheres of
radius 8 h~ ! Mpc. Equation (2.3b) approximates the correct
A(r,) to within 10% over the range 0.03 A~ Mpc < r, < 20
h™! Mpc. The correct A(r,) is obtained through the convol-
ution of the CDM linear power spectrum with the spherical
top-hat window function of radius r,. The power spectrum,
assuming Q, =1, h = 0.5 and a cosmic microwave back-
ground temperature § = 2.7 K, is (Davis et al. 1985)

k Mpc
(1 + 68k + 1257 + 16k%2 P

(2.3¢)

The only free parameter is now the nomalization parameter
og.

A sample of 25 Abell clusters with velocity dispersion
¢ > 300 km s~ and 31 galaxy groups in the CfA redshift
surveys with ¢ > 100 km s~ ! (Zabludoff et al. 1993b) yields

n(o)de oc 10™* do 2.4)

where a = 0.0015. Equation (2.4) holds for ¢ > 700 km s~ 1.
Mazure et al. (1996) analyze a volume-limited sample of 128
Abell clusters with richness R > 1. They find a similar n(s)
with o ~ 0.0016 for ¢ > 800 km s~ !. In both cases, the
distribution is shallower for smaller ¢. Thus, using equation
(2.4) for the whole range of o overestimates the number of
system with small velocity dispersion. However, such an

n(o)do = ve ?de, (2.3a)

P(k) = 1.94 x 10* o2
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overestimate does not affect our analysis. In fact, we shall
see that we need even more systems with ¢ < 700 km s~ ! to
obtain an exponential PVDF.

With these assumptions, the integral in equation (2.1) at
z = 0 yields the PVDFs in Figure 1 for different values of
Omin and for a3 = 0.5, 1.0, and 1.5, to map the range of

& COBE normalizations for different CDM models (Bunn,

Scott, & White 1995). We set 6,,,, = 1500 km s ™1,

If we decrease o0,,,, the Press-Schechter n(o) includes a
larger fraction of halos of small size and peaks up the center
of the distribution. However, most halos with ¢ < 150 km
s~ ! are likely to contain at most one galaxy as luminous as
the Milky Way. Systems of galaxies with ¢ < 100 km s~*
are only a small fraction of the total number of systems
predicted by the Press-Schechter theory at these velocity
dispersions. Moreover, it is well known that the Press-
Schechter n(s) for a flat CDM universe overestimates the
observed number of single galaxy halos with ¢ < 100 km
s~ 1 (see, e.g., White 1996). If we set 6,,;, ~ 100 km s~ ! as the
lower limit of integration in equation (2.1), we mostly
exclude halos containing only a single galaxy.

The observed n(c) does not include individual galaxies by
definition and does not overestimate the number of galaxy
systems with small ¢. Therefore, the PVDF does not change
appreciably for any choice of 7 ;.-

Figure 1 shows that for reasonable values of g, = 100
km s ™%, equation (2.1) predicts a PVDF that is almost expo-
nential at large relative velocities u. However, the PVDF
bends over at smaller u. In order to obtain an exponential
core, we need a different model for A(u, o).

GALAXY PAIRWISE VELOCITY DISTRIBUTIONS 21

3. A(u, o) OF UNRELAXED SYSTEMS

It is well known that steady state self-gravitating systems
cannot have exactly Gaussian velocity distributions because
escaping stars deplete the high-velocity tails (see, e.g., King
1965, 1966). In fact, the isothermal sphere is the only self-
gravitating system with a Gaussian velocity distribution.
However, its mass is infinite, and real steady state systems
tend only asymptotically to the Gaussian distribution (see,
e.g., Padmanabhan 1990).

We should not expect a Gaussian distribution in galaxy
systems for another reason: many observed galaxy
systems—from groups to clusters—are unlikely to be
relaxed. Most galaxy groups are still collapsing (see, e.g.,
Diaferio et al. 1993; Doe et al. 1995), and many clusters
contain substructures that indicate that they are far from
equilibrium (see, e.g., West, Jones, & Foreman 1995; Colless
& Dunn 1996). Therefore, a single Gaussian is not a good
approximation to their velocity distribution. Velocity dis-
tributions will depend on the initial conditions and on the
dynamical state of the system. In general, there will not be a
universal A(u, o) for all galaxy systems.

These arguments apparently show that the assumptions
about the shape and the uniqueness of the distribution A(u)
in § 2 are inadequate. However, we can investigate what
shape A(u) tends to assume in a hierarchical clustering sce-
nario, where either systems are virialized or they are still
forming through the aggregation of virialized subunits.

To model the evolution of a cluster by accretion of sub-
units, the excursion set formalism (see, e.g., Bower 1991;
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FiG. 1.—PVDF computed through eq. (2.1) with a Gaussian internal pairwise velocity distribution A(u, ¢). The number density of galaxy systems is the
observed n(c) (eq. [2.4]) or the Press-Schechter n(o) for a flat CDM universe (eqs. [2.3]) with different normalization a. We take o, = 1500 km s™*. At
large relative velocities u, from top to bottom, the curves in each panel have o, = 500, 400, 300, 200, and 100 km s, respectively.
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Bond et al. 1991; Kauffmann & White 1993; Lacey & Cole
1993) extends the Press-Schechter formalism to estimate the
number density of halos with mass M, at redshift z; which
will merge at different times to form a single halo of mass
M, > M, atredshift z, < z,. We have

dinA,
dM

(6, — 5,)A2
(87 — Ay

2\'? Po
WMy, zy | My, z,)dM | = <;) E

8, — 8,)?
X exp [— ;(Alf——zA)ﬁ—)]dMl , (3.1a)

where p, is the present density of the universe, A? (i = 1, 2)
is the variance of the linear overdensity in a sphere contain-
ing the mass M;, and J; = 1.69/D(z,) is the extrapolated
linear critical overdensity for which perturbations with
overdensity 0 > J; have collapsed at redshift z;. D(z;) is the
perturbation growth factor.

Following the procedure used to obtain the number
density of halos with velocity dispersion ¢ (eq. [2.3a]), we
can use equation (3.1a) to express the number density of
halos with velocity dispersion ¢, at redshift z, that will form
a halo with dispersion ¢, at redshift z, < z,. In a flat CDM
universe, D(z;) = (1 + z;)~1. Mass and dispersion of each
halo are related by M; = 4np,(r¥)3/3 and o; = 1.68(1
+ z)Y2Hr/21/2, Equation (3.1a) becomes

3(L68H3( + z,)*2
(4n)**ot

dinA;, A} | 5272
dino, A2 — A2 Ve do,, (3.1b)

where ¥ = 1.69(z; — z,)/(A? — A2)'/?, and we express A,
with the approximation of equation (2.3b).

Let us now suppose that we observe a galaxy system at
redshift z;, = z that has not yet collapsed but that still con-
tains different substructures that will merge to form a single
halo with velocity dispersion ¢, = a,,,, at a later epoch, e.g.,
z, = 0. We want to compute the probability A(u) of measur-
ing a velocity difference u between two galaxies within this
collapsing system at redshift z.

If we assume that each subunit has a velocity distribution
¥ (v, o), the probability of choosing a galaxy with velocity v
within the system is

ney, 21|05, z;)do, =

X

Om:

Omin

UV, O pmins Omax> 2)AV oC dv J axn(o', Z| G max> V(W (v, 6)do ,

(3.22)

where n(0, z| 0, 0) is given by equation (3.1b) and v(o) is
the number of galaxies within each substructure as in § 2.
For the sake of simplicity, equation (3.2a) ignores the rela-
tive velocities of the subunits. The inclusion of this effect will
probably broaden the velocity distribution «. Thus, equa-
tion (3.2a) is conservative with respect to our purpose of
investigating the departure of o from a Gaussian. Here,
however, we limit our analysis to the simplest case.

We notice that equation (3.2a) is a velocity distribution
decomposition if we look at it the other way around. In
other words, we “build ” the velocity distribution instead of
decomposing it. For example, van der Marel & Franx
(1993) decompose line profiles of elliptical galaxies in
orthogonal Gauss-Hermite functions to quantify departures
from Gaussian line profiles. Zabludoff, Franx, & Geller
(1993a) apply a discrete version of this technique to the
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velocity distributions of eight rich Abell clusters. Here, we
point out that the hierarchical clustering scenario naturally
predicts that a(v) is a sum of elementary distributions.

Equation (3.2a) quantifies the degree of subclustering in a
galaxy system. Comparison of equation (3.2a) with velocity
distributions of real clusters may provide constraints on the
density of the universe (see, e.g., Evrard et al. 1993; Jing et
al. 1995). Moreover, extensions of equation (3.2a) can deter-
mine the rate of growth of clusters as a function of redshift
(Lacey & Cole 1993).

Now we can write the pairwise velocity distribution A(u)
as

A(u’ O min> Tmax> Z)du

oc du ja(vl)a(vz)é(lvl — v, | —w)dv,dv,

=du foz(vl)oc(vl + u)dv, . (3.2b)

Let us assume that the subunits are virialized and that
each approximates an isothermal sphere. Therefore, Y(v, o)
is Gaussian and v(¢) oc ¢ as in § 2. Integration of equation
(3.2b) yields the curves in Figure 2 for different values of
O maxs 1-€-, fOr different masses of the final dark halo, and for
Omin = 100 km s~*. Figure 2 shows that as we decrease the
redshift z, i.e., as we come closer to the formation of the final
system, A(u) approaches a Gaussian, as expected. At high
redshift, the system is far from equilibrium, and A(u) is more
centrally peaked.

Is the presence of substructure the only physical process
responsible for more centrally peaked A(u)’s? Formally, the
presence of substructures implies that A(u) is a weighted
integral of elementary distributions (eqs. [3.2]). This
assumption is common to other fields: weighted integrals of
Gaussian distributions are also invoked to explain the
exponential shape of molecular cloud emission lines (see,
e.g., Ida & Taguchi 1996; but see also Miesch & Scalo 1995)
or the small-scale velocity gradient distribution in turbulent
flows (Castaing, Gagne, & Hopfinger 1990, see also She
1991).

However, there is a very simple example in gravitational
dynamics, where a centrally peaked A(u) does not originate
from a weighted integral. Consider a collapsed region
subject to secondary infall (Gunn & Gott 1972): infalling
galaxies have small relative velocities and peak up the
center of the distribution, whereas galaxies in the viralized
region populate the exponential tails.

An N-body toy model illustrates this issue. Consider an
isolated mass sphere with initial radial density p(r) =
(M/4nR3\(R/r)?, where R is the radius and M is the total
mass of the sphere. If each shell is initially expanding
according to the Hubble flow #0) = H,r,, the maximum
expansion radius iS rp,, =71 exp (B) at time f,,, =
H '(zB)'/? exp (B)P(1/2, B), where B = H2r3 R/2GM and
P(e, x) is the incomplete gamma function.

We choose this density profile for two reasons: (1) The
difference between the time and the radius at maximum
expansion of two different shells grows exponentially and
distinguishes the infall and the virialized regions clearly for
our illustrative purpose, and (2) the viralized region has the
quasi-equilibrium density profile »~2. Thus, at the same
time, we mimimize the relaxation process and isolate the
effect due to the infall region.
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Fic. 2—Pairwise velocity difference distribution A(u) for a single unrelaxed galaxy system (eq. [3.2b]) at different redshift z and with different normal-
ization o4. We take o,;, = 100 km s~ 1. At large relative velocities u, from top to bottom, the curves in each panel have ¢,,,,, = 1500, 1300, 1100, 900, 700, 500,

and 300 km s~ !, respectively.

We follow .the evolution of an isolated spherical system
with N = 4096 particles initially expanding with the Hubble
flow. In numerical units, the gravitational constantis G = 1,
the system has total mass M = 1 and radius R = 1, and the
initial Hubble constant is H, = 1.2. We use the TREE-
CODE by Hernquist (1987) with softening parameter
€ = 0.02R and tolerance parameter § = 0.8. We integrate
the particle equations of motion for two collapse times ¢, =
2m(3/10)>2GM>'%/| E |2, where E is the total energy of the
system. The integration time step is At = 10~ %¢,.

Figure 3a shows the evolution of the distribution of the
velocity component v,. We show three distributions at each
time: the total distribution (solid histogram), the virialized
region distribution (bold histogram), and the infall region
distribution (dashed histogram). At each time t, particles
with 4t,,,, <t belong to the virialized region, and particles
with 4t,,,, > t belong to the infall region. We superimpose
the best Gaussian fit on the virialized region distribution to
show that virialization indeed took place in the central
region. We choose the time limit 4¢.,, > 2¢t,.,, to suppress
oscillation effects. Figure 3a clearly shows that the infall
region is responsible for the central peak, and the virialized
region is responsible for the tails of the total distribution.
Figure 3b show that the total distribution in Figure 3a yield
nearly exponential A(u)’s.

We also ran a simulation similar to the one above but
with an initial density profile p(r) = (M/2rR3)(R/r) that
yields 7. = H273/2B + 1o and fn,, = Horo/B, where

B = GM/R?. The system relaxes faster than with an initial
r~2 density profile, and secondary infall lasts for only a
small fraction of the collapse time (Fig. 3c). However, when
secondary infall involves a large mass fraction of the sphere,
A(u) is exponential (Fig. 3d).

Velocity distributions like those in Figure 3a are difficult
to observe in individual real systems. Infall regions in which
galaxies have small velocities relative to the center of mass
of the cluster are close to the turnaround radius, which is
21 h™! Mpc for a typical Abell cluster with mass ~10'*
h™' Mg, ie., richness R = 1. Those regions are contami-
nated by foreground and background objects, and they are
generally poorly sampled. Therefore, when systems are
observed individually, observational biases imply that
departures from Gaussian velocity distributions in observed
clusters are more likely due to subclustering rather than to
infall region effects. However, both effects are present in
redshift surveys in which large regions of the universe are
sampled.

The preceding discussion shows that unrelaxed systems
imply that A(u)’s differ from Gaussians. The A(u)’s for unre-
laxed systems tend to have a more pronounced central peak
than Gaussian distributions. A combination of substruc-
tures and infall regions contribute to this shape.

It is now clear that a unique and universal A(u, o) does
not exist, but rather each system has a distribution depend-
ing on its particular dynamical state. However, for the sake
of investigation, we persist in the assumption of a universal

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...467...19D

o
]

ALY S |

2
1S{]
Oy
(=]

!

3000
1000

300

N(v,)dv,

100

30

10 {
3000

1000
300
100

N(v,)dv,

30
10

F1G. 3a

2 _'lIIII'II'IIlllllfll—']—-lllllll[I"T’rrTnTll—LllI]Illll‘llll’l]I]‘I—.—Illl"llllllllllllllr‘

t=0.00 t=0.50 t=0.75

| |l lllllll

' T I]’l"lr

A(u,0)du
lJ_l I 1 llll

pu
-

A(u,0)du
™
|
| Ll IIIIII l
|
|
I 11 llllll

IIIIl
uul

11'”‘

T

ljllllllllllllllllll

N ETETE PR ST FiY a !

0 5 1 16 2 0 5 1 16 2 0 5 1 15 2 0 5 1 16 2
u u u u
FiG. 3b

Illllllljlllll‘lllll]ll 111

3000
1000

300

N(v,)dv,

100

30

10 4
3000

1000
300
100

N(v;)dv,

FiG. 3¢

Fic. 3.—Evolution of the distribution of the velocity components v, for an isolated spherical system of particles initially expanding with the Hubble flow
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distribution, the bold histogram is the distribution for particles within the virialized core, and the dashed histogram is for particles within the infall region.
The curves are the best Gaussian fits to the viralized core distributions. Panels (b) and (d) show the evolution of the pairwise velocity difference distribution
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A(u), and we examine the way the PVDF p(u) in equation
(2.1) changes when A(u, o) differs from a Gaussian, Figures 2
and 3 suggest that systems far from equilibrium may have a
distribution similar to an exponential:

1 —/21u]
aﬁ exp ( - )du . (3.3)

With an exponential A(u), the integral in equation (2.1)
yields the curves in Figure 4. We clearly see that the central

Ay, o)du =

peak is more pronounced than in the Gaussian case (Fig. 1)
yielding a better approximation to an “exponential” shape
for the PVDF.

We stress here that the results of Figures 1 and 4 are
based on the generic assumption that all galaxy systems
have the same internal pairwise velocity distribution A(u, o).
However, the use of a unique A(y, o) is still meaningful if we
interpret A(u, o) as a convolution of different internal pair-
wise velocity distributions of individual systems at different
dynamical states but with the same 6. Thus, the results of
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FiGc. 4—Same as Fig. 1, but with an exponential A(u, o) (eq. [3.3])
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Figures 1 and 4 allow us to conclude that if the real PVDF
is indeed exponential over a wide range of relative velocities
u, the blend of different internal pairwise velocity distribu-
tions must contain a large fraction of distributions more
centrally peaked than a Gaussian. In other words, the expo-
nential shape of the PVDF is a signature of the presence of a
large fraction of unrelaxed systems.

4. A(u, o) OF DISSIPATIVE SYSTEMS

In § 3 we show that unrelaxed systems have internal pair-
wise velocity distribution A(u, o) more centrally peaked
than a Gaussian. This shape arises from secondary infall
and the presence of substructures. Here, we investigate a
third physical process that can peak up the A(u) distribution
at small relative velocities: the transfer of orbital kinetic
energy to galaxy internal degrees of freedom. In fact, this
effect has only a secondary impact on the velocity distribu-
tion.

To examine this issue, one should solve the complete
Boltzmann equation for the evolution of the phase space
density of the galaxy system including a collisional term.
Fusco-Femiano & Menci (1995) study how the velocity dis-
tribution evolves in the presence of binary mergers in an
external gravitational potential. In other words, they
compute the decrease of orbital kinetic energy when
binaries disappear by merging. Here, we want to include the
orbital kinetic energy loss due to tidal perturbations, thus
computing the energy loss when mergings do not take place.

We assume a simple physical model to derive an analytic
expression for the expected A(u). Assume an initially stable
self-gravitating gas of particles. Imagine switching on the
particle internal degrees of freedom at a time t,. Now,
during the motion of particles within the system, tidal
effects increase the particle internal energy at the expense of
the orbital kinetic energy of the particles. This system is
apparently unstable, tending ultimately to a general
merging of “hot” particles. This process indeed occurs in
galaxy groups (see, €.g., Mamon 1992b; Diaferio et al. 1993;
Doe et al. 1995; Weil & Hernquist 1996).

The most serious shortcoming of this model is that we
assume a constant particle mass, clearly incorrect because
merging and tidal stripping are ongoing processes. Both
processes increase the kinetic energy loss. When galaxies
merge, a binary system disappears, and its relative kinetic
energy is completely transferred to the internal energy of the
remnant. Tidally stripped matter forms a common back-
ground envelope. Particle cores also lose kinetic energy
through dynamical friction against this background. There-
fore, the main consequence of ignoring mass loss is to
underestimate the kinetic energy loss.

However, with these hypotheses and the assumption that
the unperturbed velocity distribution is Gaussian, we derive
the perturbed distribution (see the Appendix)

2
Ay, o)du = C(o, a, @) exp <— %)

x [1 - aﬁ<;\“7§ : (p):ldu . (41a)

where € is the normalization constant, and the function H
can be expressed in terms of the modified Bessel functions.
In addition to the velocity dispersion o, this distribution
depends on two parameters « and ¢. If we identify particles
with galaxies, both « and ¢ contain information about the
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similarity of the galaxy internal dynamics to the galaxy
system dynamics. In fact,

O; Pmin
— 4.1b
Qo ", (4.1b)
and
o \* r
-] = 4.1
o oC <a) R’ 4.1¢c)

where o; is the velocity dispersion of the stars within an
individual galaxy; r. and R, are the galaxy and the system
size, respectively; and p,,;, is the maximum separation at
which two interacting galaxies are considered a merger
remnant.

In order to test the hypotheses leading to equations (4.1),
we follow the evolution of a King sphere (King 1966) with
Hernquist’s (1987) N-body code. King spheres have a trun-
cated Gaussian velocity distribution and are stable self-
gravitating systems. Therefore, they approximate the
boundary conditions of our physical model.

We sample two King spheres with central gravitational
potential ¢(0)/c> = —12. The system sphere contains N, =
50 particles; the galaxy sphere contains Ny = 100 particles.
We evolve each sphere in isolation for 4.8 collapse times ¢,.
We set the tolerance parameter § = 0.8 and the time step
At = 107 3¢,. A softening parameter € = 0.1r,, where r, is the
tidal radius of the sphere, ensures suppression of two-body
relaxation effects. As expected, the spheres are dynamically
stable, and their velocity distributions remain remarkably
Gaussian for the entire integration.

We then replace each particle of the final system sphere
with a 100 particle final galaxy sphere. In other words, the
50 single particles become resolved “galaxies” containing
100 particles each. We opportunely rescale particle veloci-
ties and relative positions to ensure dynamical equilibrium
and to suppress two-body relaxation within each galaxy.
This procedure is equivalent to switching on the particle
internal degrees of freedom. We evolve the system for 2.4t¢,.
Simulation units are G = M = R = 1, where G is the gravi-
tational constant, M is the total mass, and R is the radius of
the system. At each time, we identify galaxies from particle
positions through a generalization of the friends-of-friends
algorithm (Diaferio, Geller, & Ramella 1994). After 2.4¢t, the
galaxy number usually decreases from 50 to ~ 30.

We ran five simulations with different random number
seeds. Figure 5 shows the time evolution of the distribution
Mu) of the galaxy pairwise velocity difference moduli. Differ-
ences among the distributions of the five simulations arise
from statistical effects only. Thus, in Figure 5 we suppress
statistical noise by summing the distributions of the five
simulations at each time. Two fits are superimposed: the
bold curve is the perturbed Maxwellian distribution given
in the Appendix (eqgs. [A12])

2
Auwydu = C(o, o, )u® exp <— %)

x [1 _ ocH<;_—E\/—§ : (p):ldu ,

and the solid curve is the Maxwellian distribution, i.e.,
equation (4.2) when a = 0.

In the perturbed Maxwellian, we set ¢ = 1.22 according
to equation (A4); ¢ and « are free parameters. By adding ¢

4.2)
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F1G. 5—Time evolution of the distribution of pairwise velocity difference moduli for systems of particles with internal degrees of freedom. The
distribution is initially Maxwellian, but at later times the frequency of small relative velocities increases. The best Maxwellian fits (solid lines) and the eq. (4.2)
fits (bold lines) are shown. The latter are slightly better than the former as shown by the ratios of the y?’s. In simulation units, the Maxwellians have fit
parameters 21/2¢ = 1.43, 1.42, 1.39, and 1.41 at ¢/t, = 0.0, 0.8, 1.6, and 2.4, respectively. The perturbed Maxwellians have fit parameters 2!/2¢ = 1.44, 1.45,

1.41, and 1.44 and « = 0.01, 0.13, 0.14, and 0.15, respectively.

as a free parameter, the fits do not change significantly, and
¢ remains in the range 1.00-1.40. Therefore, the perturbed
Mazxwellian only has « as an additional free parameter com-
pared with the Maxwellian distribution. Figure 5 shows
that the perturbed Maxwellian describes the increased fre-
quency of small relative velocities. However, the frequency
increase is barely detectable, despite the fact that typically
a,/a ~ 0.9 (eq. [4.1c]); i.e., the ratio of the velocity disper-
sions is not negligible. The ratio of the y*’s of the two dis-
tributions shows that the perturbed Maxwellian fits the
numerical distribution only slightly better than the Max-
wellian distribution.

At earlier times (t < 2t;), most galaxies have not yet
merged, and their masses have not been reduced signifi-
cantly by tidal stripping. Therefore, the physical model out-
lined in the Appendix is approximately valid. When we
follow the system evolution for ¢t > 2.4z, we find that A(u)
does not usually tend to depart farther from the unper-
turbed distribution. At these later times, however, compari-
son of equation (4.2) with the numerical distributions is
meaningless. Mergers create one large merger remnant sur-
rounded by galaxies with masses <0.1 times the dominant
galaxy mass. Thus, the system no longer contains galaxies
similar in mass, and our simple physical assumptions break
down.

Thus, Figure 5 confirms that A(u, ¢) in equation (4.1a)
should be valid for galaxy systems containing galaxies of
similar mass. However, if A(u, 6) is Gaussian in the absence
of galaxy internal degrees of freedom, we expect that small
departures from a Gaussian distribution will arise from the
transfer of energy to the internal degrees of freedomn.

In order to test equation (4.1a) against A(u)’s of real
systems, we compare equation (4.1a) with Hickson’s
compact groups (Hickson 1993). These systems are the
densest in the universe (~ 10° galaxies per h* Mpc~3)if they
are not two-dimensional projections of unrelated galaxies
(Mamon 1992a; Hernquist, Katz, & Weinberg 1995). There-
fore, we expect that the kinetic energy loss effects might be
detectable in these extreme systems. Moreover, Hickson’s
brightness selection criterion requires that galaxy members
lie within an interval of 3 mag, assuring that galaxy
members are not very different in mass.

Figure 6 shows A(u) for the 69 Hickson (1993) compact
groups with N > 4 galaxies. We sum all the single distribu-
tions for the whole sample of 69 compact groups because we
assume that each compact group is a sample of the same
parent distribution. We base this approach on the model
first proposed by Diaferio, Geller, & Ramella (1994, 1995)
that observed compact groups may be identified with sub-
structures in collapsing rich loose groups. Ramella et al.
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FiG. 6.—Galaxy pairwise velocity difference distribution for the 69 Hickson compact groups with N > 4 members. The solid line is the best-fit Gaussian,
and the bold line is the best-fit perturbed Gaussian (eq. [4.1a]). The Gaussian has fit parameter 2!/2 = 391 km s 1. Eq. (4.1a) has fit parameters 226 = 487
km s and a =0.69. The dashed histogram is the pairwise velocity difference distribution for the compact groups with N >4 members in the

simulated catalog of Diaferio et al. (1995).

(1994) search the redshift neighborhoods of compact groups
within the CfA magnitude-limited redshift surveys and
confirm that at least 70% of compact groups are embedded
in larger systems. If compact groups share this same origin,
we may assume that the pairwise velocity distribution of
each compact group is sampled from the same parent dis-
tribution.

Equation (4.1a) (bold curve) clearly fits the observed dis-
tribution better than a Gaussian distribution (solid curve).
This result indicates that compact group galaxies are
loosing kinetic energy in a way consistent with our simple
physical model. Moreover, A(u, ¢) is only slightly perturbed
compared with a Gaussian, which indicates that the gal-
axies still retain most of their orbital kinetic energy. This
conclusion agrees with the hypothesis that compact groups
have just collapsed and that most galaxies are at their first
encounter within the compact group (Diaferio et al. 1994).

Figure 6 shows a further confirmation of the validity of
this model of the formation of compact groups. The dashed
histogram is the pairwise velocity distribution computed
from the simulated catalog of compact groups with N > 4
members (Diaferio et al. 1995). The Kolomogorov-Smirnov
test shows that the observed compact group sample and the
simulated sample belong to the same parent distribution at
the 16% significance level.

However, the difference between the two distributions is
not a statistical effect: the N-body model systematically
underestimates the frequency of small relative velocities.
This result suggests that the model dynamical resolution is
insufficient to resolve the transfer of kinetic energy com-
pletely. In other words, the model tends to merge galaxies

before Nature does. This result is expected: the model only
accounts for dissipationless galaxy formation processes.
Dissipative processes decrease the galaxy merging cross sec-
tions, and the galaxies survive for a longer time against
merging than in dissipationless N-body simulations (see,
e.g., Evrard, Summers, & Davis 1994; Frenk et al. 1996).

We finally consider the pairwise velocity distribution for
a galaxy cluster. The perturbed distribution in equation
(4.1a) depends on the fourth power of the ratio between the
internal velocity dispersion of individual galaxies and the
velocity dispersion of the galaxies within the cluster (eq.
[4.1c]). Thus, we expect a nearly Gaussian A(u, o) for a
massive virialized cluster. We consider the Abell cluster
A576 (Mohr et al. 1996). The 85% complete magnitude-
limited sample contains 169 galaxies lying within a project-
ed distance r < 1.5 h~! Mpc. The cluster mass lies in the
range ~1-4 x 10'5 h=* M, which implies a turnaround
radius ~3.0 A~ Mpc. Therefore, the infall region around
the turnaround radius is not sampled. Of the 169 galaxies
within the central region, 58 galaxies have spectra with line
emission, and 111 have no line emission. Mobhr et al. (1996)
identify these two samples with galaxies containing or not
containing star formation regions, respectively. They also
generically identify them with late-type or early-type gal-
axies. Mohr et al. (1996) show that the late-type galaxies
have a velocity distribution broader than the early-type gal-
axies and identify late-type galaxies with galaxies falling
into the central region for the first time. Thus, if we exclude
these galaxies, the subsystem of early-type galaxies is in
approximate virial equilibrium. Mohr et al. (1996) argue
that the absence of apparent substructures in the distribu-
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tion of the early-type galaxies confirms this assumption.
Figure 7 shows the pairwise velocity distribution for the
non-emission-line galaxies only. In contrast with the
compact group sample in which ¢;/0c ~ 1, here we have
g;/o ~ 0.3 (eq. [4.1c]). We fit the distribution with ¢ and «
free parameters; ¢ = 1.22 as for the numerical experiment.
As expected from equation (4.1c), the Gaussian and equa-
tion (4.1a) fit the observed distribution equally well.

5. THE REDSHIFT-SPACE CORRELATION FUNCTION

In the preceding sections we investigate how the expo-
nential shape of the PVDF depends on the galaxy system
number density n(c) and the internal galaxy pairwise veloc-
ity distribution A(u, ¢) of individual systems. We assume
that all the galaxy systems have the same A(u, 6). We then
investigate how A(u, ¢) varies depending on the internal
dynamics of each system.

We now investigate how the redshift space correlation
function &, depends on the galaxy system number density
n(o) and A(u, ¢) through the PYDF. We restrict ourselves to
Gaussian and exponential A(u, ¢)’s. We do not discuss the
A(u) distribution for dissipative systems (§ 5), because this
distribution is only marginally distinguishable from a
Gaussian for real systems.

The “convolution method” (see, e.g., Fisher 1995)
expresses the redshift-space correlation function & as

1+ &(ry, )= f

— 00

+

[1 + &) 1p(wydy , (-1

where r, is the spatial separation of the galaxy pair project-
ed on the sky, = is the velocity difference along the line of
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sight, r? = rZ + y?, y is the pair spatial separation parallel
to the line of sight, and u = = — y is the peculiar relative
velocity;? &(r) is the real-space correlation function, and p(u)
is the PVDF. In equation (5.1) we assume (1) that the PVDF
is independent of r and (2) that the mean relative peculiar
velocity vy,(r) of galaxy pairs separated by r is zero. Both
assumptions are reasonable when 0.1 h~! Mpc $r, S 1
h~! Mpc, where galaxy velocities are almost random
[v,,(r) ~ 0] and the pairwise velocity dispersion &,,(r) ~
const (Marzke et al. 1995; Fisher 1995).

We consider the redshift-space correlation function aver-
aged over the projected separation r,, namely,
——i— &y, mydr, . (5.2)

Figure 8 shows the comparison of the measured {&(n)>
for different intervals of projected separations [7,., "max]
with different models of the PVDF convolved with the real-
space correlation function &(r). We use &(r) = (r/r,)?, where
ro =597+ 0.15 h~! Mpc and y = —1.81 + 0.02 as mea-
sured by Marzke et al. (1995) for the CfA redshift survey
(CfA2) and the Southern Sky Redshift Survey (SSRS2)
galaxy samples combined (CfA2 + SSRS2). In Figure 8,
squares are the measured (&,(n)) for this sample with [7_;,,
Tmaxd = [0.1, 0.2], [0.2, 0.4], [0.4, 0.8], and [0.1, 1.0] A~
Mpc. We superimpose the curves computed through the
integrals in equations (5.2) and (5.1), where p(u) is the inte-

<€s(rmin’ " max> 7I)> =

2 Here we assume that the velocities are in units of the present Hubble
constant H,,.
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FiG. 7—Galaxy pairwise velocity difference distribution for the central region of the Abell cluster A576. The solid line is the best-fit Gaussian, and the
bold line is the best-fit perturbed Gaussian (eq. [4.1a]). The ratio of the x’s shows that the two fits do not differ. The Gaussian has fit parameter 2'/2¢ = 1589

km s~ . Eq. (4.1a) has fit parameters 2/2¢ = 1607 km s ! and « = 0.05.
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gral in equation (2.1) with ¢,,;, = 100 km s~ ! and o, =
1500 km s~ . We show the curves with a Gaussian internal
velocity distribution A(u, ¢) (dashed lines) and with an expo-
nential A(u, 6) (solid lines). We compute the curves with
both the observed n(o) (eq. [2.4]) and with the distribution
derived from the Press-Schechter theory (eq. [2.3a]) for
g = 0.5,1.0,and 1.5.

In order to quantify the agreement between the curves
and the data for each projected separation interval, we plot
the x2 per degrees of freedom v as a function of the upper
limit r,,, of the interval (Fig. 9). We do not derive a param-
eter from the 20 data points within each range of r,; thus,
we assume v = 20. The y?’s are indicative and are meaning-
ful only if we compare them with each other. The data are
actually correlated, and the estimates of {&(m))> are not
normally distributed. Therefore, we should use a different
approach to estimate y2 (see Fisher et al. 1994a and Marzke
et al. 1995 for further details).

The observed n(o) approximates the data better when it
weights an exponential A(u) (Fig. 9 [open squares]) rather
than a Gaussian ( filled squares). However, systems selected
from a redshift survey exceed a particular density contrast
threshold ép/p. The n(c) we use thus contains only systems
with dp/p > 80 with respect to the background (Zabludoff
et al. 1993b). Therefore, the observed n(e) does not contain
enough systems with small density contrast, and presum-
ably low o, by definition. The exponential A(u) partially
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compensates this underestimate, and the agreement is
better.

In any case, the theoretical n(s) confirms that an expo-
nential A(u) reproduces the data better than the Gaussian
A(u), although not for all the normalizations og. The theo-
retical n(o) also depends on the power spectrum P(k) (eq.
[2.3c]) and on the density of the universe through the per-
turbation growth factor that enters the Press-Schechter dis-
tribution function. Thus, we must interpret the implications
of Figure 9 about g4 cautiously.

The agreement between curves and observations also
depends on the projected separation interval. Marzke et al.
(1995) computed < (m)y for the data with the intervals
shown in Figure 8. However, the galaxy coordinates in the
Zwicky catalog, on which the CfA survey is based, are accu-
rate to ~1-1!5. At redshift cz = 10,000 km s~ ?, the 3 ¢
error is thus ~0.09-0.14 h~* Mpc, implying an error in the
projected separation ~0.13-0.19 h~! Mpc. With the
current data, large errors probably contaminate the interval
[Fwmin> Tmax] = [0.1, 0.2] A~ Mpc. Intervals with r,;, > 0.2
h™1 Mpc are more reliable. We also emphasize that galaxy
velocities often have uncertainties =50 km s~!, which
means typical errors 270 km s~ ! in the relative velocities.
Thus, we regard the measures of & at © = 50, 150 km s !
with caution.

Large differences in y*’s between the exponential and the
Gaussian A(y, o) (see, for example, Fig. 9 when o3 = 0.5 or
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FiG. 9.—Reduced x* with v = 20 degrees of freedom for the curves in Fig. 8 as a function of the upper limit r_,_ of the integral in eq. (5.2). The four upper
limits correspond to the four projected separation intervals [7,;,, Fmaed = [0.1,0.2], [0.2, 0.4], [0.4, 0.8], and [0.1, 1.0] A~ Mpc. Open (filled) squares are for

an exponential (Gaussian) A(y, o).
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when g = 1.0 and [7nin, maxd = [0.1,0.2] or [0.4,0.8] A~
Mpc) originate mainly at small relative velocities © <
200-300 km s~ ! (Fig. 8). Thus, by improving the accuracy
of galaxy relative positions and velocities by at least a factor
of 2, the redshift-space correlation function &, can (1) clearly
discriminate among the models and (2) can probably
separate the cosmological contribution represented by n(o)
from the contribution of the internal dynamics of galaxy
systems represented by A(u, 6). Moreover, on very small
scales (r, $0.1-02 h™! Mpc, n < 100-200 km s~ 1), we
expect that the dissipative effects outlined in § 4 will become
more apparent. Thus, & can constrain the importance of
mergers in the present universe.

The main conclusion of our analysis is that agreement
between the models of the exponential PVDF and the
observed redshift-space correlation function on nonlinear
scales depends strongly on both the underlying cosmogonic
model [namely n(s)] and the internal dynamics of galaxy
systems [i.e., A(u, 6)]. Neither aspect dominates. However,
reliable measures of &; at small scales can separate the two
contributions and provide further constraints on the model
of the universe.

6. CONCLUSION

Marzke et al. (1995) measured the redshift-space corre-
lation function &, for galaxy samples of the Center for
Astrophysics (CfA) redshift surveys for galaxy separations
<1 h~! Mpc. An exponential galaxy pairwise velocity dis-
tribution function (PVDF) yields the best fit. This result is
common to other redshift surveys (see, €.g., Bean et al. 1983;
Fisher et al. 1994b).

We propose a physical explanation for this observed
exponential shape. If all galaxies belong to isolated galaxy
systems with velocity dispersion o, the PVDF is the
weighted sum of the distributions A(u, ¢) of the pairwise
velocities u within each system. The weight depends on the
galaxy number v(¢) within each system and the number
density n(o) of the systems within the sample.

We assume that A(u, ¢) is a universal function, identical
for each system. This assumption is inadequate, because we
show that the shape A(u, ¢) depends on the dynamical state
of the system. However, if we assume that all the system are
virialized, A(u) is Gaussian and v(¢) oc ¢2. In this case, both
the observed n(c) and the n(s) predicted by the Press-
Schechter theory in a flat CDM universe yield a nearly
exponential PVDF, but only at large relative velocities u. In
order to obtain an exponential central peak, A(u) has to be
more centrally peaked than a Gaussian distribution. When
a galaxy system is unrelaxed, substructures and infall
regions contribute to a centrally peaked A(u). We limit our
analysis to an exponential A(u, ¢) that yields the expected
central peak of the PVDF. The Gaussian and the exponen-
tial distributions represent the two limiting cases. A more
detailed analysis of the physical origin of A(y, o) is likely to
yield a A(u, o) between these two cases. Therefore, we con-
clude that the observed exponential PVDF testifies to the
presence of a large fraction of unrelaxed galaxy systems in
the present-day universe.
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A third process may increase the frequency of small rela-
tive velocities: the transfer of orbital kinetic energy to
galaxy internal degrees of freedom. We derive an analytical
A(u) that accounts for energy transfers driven by tidal per-
turbations. We predict that these perturbations are detect-
able in galaxy systems with a ratio 21 between the internal
velocity dispersion of individual galaxies and the velocity
dispersion of galaxies within the system. We confirm this
prediction by comparing the analytic distribution with
N-body simulations and with observed compact groups.

Finally, we compare the measured redshift-space corre-
lation function & with the convolution of different models
of the exponential PVDF with the measured real-space
correlation function. The agreement between models and
observations depends strongly on both the underlying cos-
mogonic model and the internal velocity distribution A(u, o)
of galaxy systems. These two effects are of comparable
importance over the entire range of relative velocities
7 <2000 kms™?.

We expect to be able to disentangle the two effects with
more accurate galaxy coordinate and relative velocity mea-
surements. In fact, the redshift-space correlation function &
at projected separations r, < 0.5 h™! Mpc and relative
velocities m < 300 km s~ 1! is very sensitive to the shape of
A(u, o). Thus, a better measure of £, at very small scales
poses strong constraints on the shape of A(u, o) and will
improve our understanding of the dynamics of galaxy
systems on these scales.

After the submission of this paper, we learned of Sheth’s
(1996) independent work on the problem of the exponential
shape of the PVDF. He investigates a model similar to the
model we outline in § 2. He performs an accurate compari-
son of this model with N-body simulations and shows that
for initial density perturbations with power-law power
spectra the PVDF is well approximated by an exponential.
He shows that the assumptions which underlie our analytic
approach in§ 2 include the relevant physics.
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problem of the pairwise velocity distribution and for inten-
sive electronic correspondence. We are grateful to Joe Mohr
for providing us with galaxy redshifts of the Abell cluster
A576 in advance of publication. We thank Ira Wasserman
and Simon White for pointing out some aspects of the inter-
nal velocity distributions of galaxy systems that were not
adequately treated at an earlier stage, and Bhuvnesh Jain
for identifying some initially obscure statements. We thank
an anonymous referee for the clarifying suggestions of a
prompt report and Ravi Sheth for a careful reading of the
manuscript. Invaluable long discussions with Paola Ciar-
pallini and her inexhaustible support made this work pos-
sible. We warmly dedicate this work to Paola. This research
is supported in part by NASA grant NAGW-201 and by the
Smithsonian Institution. A. D. was a Center for Astro-
physics Pre-Doctoral Fellow.

APPENDIX

Here we derive the pairwise velocity difference distributions given in equations (4.1) and (4.2) for dissipative systems.
We assume a self-gravitating gas of particles with an initial Gaussian velocity distribution. The particles have internal
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degrees of freedom; tidal effects increase the particle internal energy during particle motion within the system at the expense of
the orbital kinetic energy of the particles. In the following derivation, we ignore particle mass loss, and therefore we
underestimate the total kinetic energy loss as discussed in § 4.

First, we compute the fraction of the relative kinetic energy transferred into the particle internal degrees of freedom. We
then derive an approximated pairwise velocity difference distribution.

Suppose that the particles have equal mass m. E is the relative kinetic energy per unit mass of two particles in their
center-of-mass reference frame. If v is their relative velocity, we have E = v?/4 = ¢ u?/2, where o, is the one-dimensional
velocity dispersion of the system and u = v/2'/%¢,.

Spitzer (1958) considered the encounter between a cloud and a star cluster and computed the relative energy transfer to the
internal energy of the cluster during the encounter. The derivation is similar to the derivation of the energy transfer in a
Coulomb collision between a moving charge and a harmonically bound charge in the dipole approximation (Jackson 1962).
In fact, Spitzer assumed that for the stars in the cluster (1) the tidal force of the cloud is small compared with the gravitational
attraction of the cluster and (2) the internal gravitational potential of the cluster is proportional to the square of the distance
from the cluster center, i.e., the stars are harmonic oscillators with the same frequency.

In Spitzer’s paper, the cloud and cluster have mass m, and m,, respectively; rZ is the mean square cluster radius; 1/w the
oscillation period of the stars in the cluster, v is the cloud-cluster relative velocity; and p is the impact parameter. Spitzer
showed that the increase of the cluster internal energy after a single encounter is

m. 12 (2Gm,\*. (2wp
c’C n A
AE 6 (vp2>L<v)’ (Ala)

where G is the gravitational constant and
L(6) = 20°[0°K3(0) + 0K o(0)K () + (1 + 0%)K3(0)] , (Alb)

where K, and K are the usual modified Bessel functions, and 6 = 2wp/v.

When v — 00, L(0) — 2(1 + 20%) — 2, and equation (Ala) reduces to the usual impulse approximation. When v — 0, L(6)/
v? - 103 exp (—20)/v* — 0; the energy loss falls exponentially to zero. Weinberg (1994a, 1994b, 1994c) shows that such an
adiabatic cutoff is not correct in general. In fact, AE approaches zero when w/v — co. However, a stellar system always has
stars with arbitrary small w, and for those stars we never have w/v — co. The perturbation suffered by those stars ultimately
affects the internal dynamics of the whole stellar system. Thus, assuming AE ~ 0 when v — 0 will underestimate the energy
loss. However, we would detect such energy loss only on timescales 2 R/v, where R is some characteristic size of the system. In
other words, we underestimate the energy loss only if we observe the system for a sufficiently long time interval.

We apply equations (A1) to galaxy systems in which the adiabatic approximation does not break down because we do not
observe them for a long enough time. In fact, either galaxy systems are dynamically young because they suffer a merging
instability and are therefore intrinsically unstable (groups) or their size is large enough that when v is small, R/v is greater than
the Hubble time (clusters). Therefore, we expect that equations (A1) approximate the energy loss for galaxies within groups
and clusters.

Let us now apply equations (A1) to a system of equal mass galaxies. All possible galaxy pair combinations reduce to a
“reduced” galaxy with mass m, = m/2 (the “cloud ”), which moves with velocity v through a field of fixed sources with mass
m, = 2m (the “ clusters ). The “cloud ” loses a fraction of its kinetic energy at a rate given by AE times the number of collisions
per unit time, integrated over the impact parameter p and the mass of the “ clusters” m,. In other words, if n(m,) is the number
density of “ clusters ” with mass between m, and m, + dm,, we have

2.2 2 2 (foo
% = — jAE X v X 2npdp x n(m)dm, = v x % <%) 2n<27w> .[ %f) dé Jmc n(m.)dm, . (A2a)
0

We assume that all the “clusters” have the same mass m, = 2m. Thus, the “cluster” mass spectrum per unit volume is
n(m,) = ny 6(2m — m,), where 9 is the usual Dirac delta function.

The quantity 0,,;, depends on the validity of assumption (1) above, namely that the “cloud” exerts a tidal force on a
“cluster ” star which is small compared to the “cluster ” attraction. We can write

'min

0 o 2OPmin _ @
min \/Eo'su u

The oscillation period 1/w of the star within the “ cluster ” is roughly twice the inverse of the crossing time r./3'/26;, where o, is
the one-dimensional velocity dispersion within the “ cluster.” Therefore

q,:ﬁ(ﬁ)@ (A4)

2 \o,) r.

(A3)

For pn ~ 1. and o; ~ g, we expect ¢ = 61/2/2 ~ 1.22.
Applying the recursion formulas dK/df = — K, and dK,/df = —K, — K /0, the indefinite integral over 6 is

- J-l-‘g(sﬁ df = 20K ((0)K ,(6) + K*(6) = L(6) . *3)
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+ Finally, equation (A2a) reduces to

dE _ 8 o a2l (@
r- 3 mri ny w*(Gm) p; L(u . (A2b)

For the virial theorem Gm = 3 62 r,. Moreover, w = 3'/26,/2r, and n, = 3N/4nR3, where R, is the size of the system and N is

& the total number of galaxies within the system. We can write N = GfM,,,/Gm = f(0,/3,)*(R,/r.), where fM,, is the fraction of

the total mass concentrated in galaxies. The crossing time of the system is ¢, = 3'/2¢,/R,; thus, we have

dE 29./6 \6 21 . 2 4 - A
dE_ _mop 936 (o (1) 1 pfe) | mai9y (e)i(r) 1 pfe)  mel o1 pe)
dt te 8 o) \R,) u u t, 8 o) \R,) u u te U u

S, S,

A3

aS S,

where we have introduced the constant

The constant § contains information about the size and the internal velocity dispersion of galaxies compared with those of the
whole system. It is apparent that the energy transfers into galaxy internal degrees of freedom is mainly sensitive to the ratio of
the velocity dispersions. The constant f specifies when we can ignore the galaxy internal degrees of freedom. We see that
within galaxy groups, the energy transfer must be more clearly detectable than in galaxy clusters.

The energy transfer rate per unit mass in unit of ¢? may finally be written

dE 1 1.
G-rrs(f). (49

Suppose now that we know the relative kinetic energy distribution g(E)dE at time t. We wish to compute the energy
distribution A(E)dE at time t + nt.,., when n — 0, so that u ~ const.
Using equation (A6), the relative kinetic energy per unit mass in unit 62 at the time ¢ + #t,, is, to first order in ,

dE
E(t + nte) = E@) + - nte; = E(©) —nf AW, 9) , (A7a)
where
1 (o
Ay, @) = 3 L<u> . (A7b)
Now, the probability density A(E)dE is
dG™Y(E
AEME = g6~ B aE (49)
where the inverse function G~ ! is defined through equations (A7):
E = G(Eo) = Eo — np A(E,) (ATc)
and E(¢) = E,.
In the limit  — 0, we have to first order in 5
G™YE)=E +npAE), (A9)

and we may rewrite equation (A8)

(A10)

AE)E = q(E)|[l + 1B A(E){d lngz(E)] 44l gg(E)]}]]dE .

Equation (A10) is valid only when n — 0, i.e., for times close to ¢t when the distribution g(E) is known. We should obtain the
distributions A(E, t)dE at different times ¢t by solving the correct Boltzmann equation specific for our problem. However, we
wish to have an analytic distribution to compare with real systems. Therefore, we go further and use equation (A10) tout court
assuming o = nf is a free-fit parameter. We justify this assumption with the following argument: if g(E) = A4(E) at time t, and
ME) = A{(E) at time t,, we again have equation (A10) at time ¢,, where g(E) —» A,(E) and A(E) — A,(E). To first order in #,
np — 2npP. Thus, if we apply this iterative procedure, the form of equation (A10) does not change, but now the coefficient « tells
us how far the system is dynamically from the initial distribution g(E). Moreover, the coefficient « is a measure (1) of the
timescale of the relative velocity change because of kinetic energy loss () and (2) of the similarity of the galaxy internal
dynamics to the galaxy system dynamics (f).
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If we assume a Maxwellian g(E)

q(E)dE oc EY?e"EgE |

Vol. 467

(Al1)

equation (A10) becomes, in terms of the velocity modulus u = v/2'/?¢, = (2E)'/* and with the explicit expression of A(x) (eq.

[A7b]),
AMu)du oc u® exp (

where

- %)[1 — aH(u, ¢))du ,

1.
Hu, ¢) = = L(%){l +

2 ¢dn [E(e)]}
e

=+
ur u

(A12a)

¥ (A12b)

The one-component velocity density distribution A(u)du is related to the density distribution of the velocity moduli through

the equation (Feller 1966)

Muwydu = —u

4AG)

- (A13)

Equation (A13) holds for any isotropic three-dimensional random field. With the boundary condition A(u) - 0 when u — oo,

we obtain

A(u)du oc f

In other words,

A(u)du oc exp <

where

- u2 © t2
H(u, ) = exp <7> f t exp <— E)H(t’ @)dt .

u

R (A14)
)[1 — af(u, p)]du , (A152)
(A15b)
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