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ABSTRACT

We examine the cosmic microwave background power spectrum for adiabatic models with a massive
neutrino component. We present the results of a detailed numerical evolution of cold + hot dark matter
(CHDM) models and compare these results with the standard cold dark matter (CDM) spectrum. The
difference is of order 5%-10% for 400 < ! < 1000 for currently popular CHDM models. Using semi-
analytic approximations, we also discuss the relevant physics involved. Finally, we remark on the ability
of future experiments to differentiate between these models. An all-sky experiment with a beam size
smaller than 30’ can distinguish between CHDM and CDM if other cosmological parameters are known.
Even allowing other parameters to vary, it may be possible to distinguish CDM from CHDM.

Subject headings: cosmic microwave background — cosmology: theory — dark matter —

elementary particles

1. INTRODUCTION

Since the discovery of the anisotropies in the cosmic
microwave background radiation (CMB) by the COBE
satellite (Smoot et al. 1992), experiments designed to probe
the spectrum of these anisotropies at increasingly smaller
angular scales continue to grow in number. Ultimately,
these experiments will be able to distinguish among cosmo-
logical models (Hinshaw, Bennett, & Kogut 1995; Knox
1995; Jungman et al. 1995). Of particular interest here is the
class of models (Shafi & Stecker 1984) with both a cold dark
matter component and a neutrino with a mass of order 1-10
eV. These cold + hot dark matter (CHDM) models have
been shown (van Dalen & Schaefer 1992; Davis, Summers,
& Schlegel 1992; Klypin et al. 1993) to reproduce the
observed large-scale structure more successfully than cold
dark matter (CDM), and thus such models have been exten-
sively studied recently. The question naturally arises then as
to whether the upcoming generation of CMB experiments
will be able to distinguish CDM from CHDM. This is a
fairly complicated question, depending in large part on the
nature of the experiments. Clearly, though, the first step is
to calculate the spectrum of anisotropies in CHDM and
compare it to the CDM spectrum. This we do here (see also
Holtzman 1989; Ma & Bertschinger 1995; Holtzman,
Klypin, & Primack 1996). In § 2 we present our results
along with a description of the code which produced them.

The difference between CDM and CHDM is fairly small,
so one might think it would be difficult to try to understand
the physical reasons for these small differences. Within the
last year, however, there has been a great advance in our
ability to explain features in CMB spectra. We refer to the
work of Hu & Sugiyama (1995, hereafter HS), who have
greatly improved upon the accuracy of semianalytic
methods for calculating the CMB anisotropy spectrum, and
thereby elucidated many of the subtleties which lead to the
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predicted spectrum. Using these methods we will try to
isolate the main causes responsible for the difference
between these two models.

Given these differences, there exists the tantalizing possi-
bility of using CMB measurements to distinguish between
the two models. In § 4, we address this possibility and argue
that if all other cosmological parameters are known, CMB
measurements can distinguish between CDM and CHDM.
Even if some of the other cosmological parameters are
allowed to vary, an experiment with small beam size (<20')
will be able to distinguish CDM from CHDM.

Throughout this paper we will present our results in the
language of C, coefficients. If the temperature on the sky is
expanded as T(6, ¢) = Y i, @ Vim0, ¢), then the expected
value of the square of the coefficients is defined as-

Cr=a, > . Y]

The C, coefficients give the power spectrum of anisotropy,
ie., they determine the contribution to the mean square
anisotropy from different angular scales. The angular scale
corresponding to a given [ is ~180°/(ix) ~ 60°/1. For refer-
ence, the COBE experiment was most sensitive to multi-
poles I < 20. In this paper we will be mostly concerned with
scales with [ = 100.

2. NUMERICAL RESULTS

In order to obtain the C, coefficients in a given model one
must solve the coupled Einstein-Boltzmann equations for
the perturbations to the smooth homogeneous background.
Since the equations are coupled, even if we are interested
only in the CMB anisotropies today, we still must follow
the perturbations to all other species: the CDM component,
the massless neutrinos, the metric, the baryons, and finally
the massive neutrino. These equations and the numerical
techniques used to solve them have been presented many
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times over the last 25 years (e.g., Peebles & Yu 1970; Wilson
& Silk 1980; Bond & Efstathiou 1984; Vittorio & Silk 1984;
Gouda & Sugiyama 1992; Dodelson & Jubas 1993; Hu et
al. 1995). For the most part, this work has been done
assuming neutrinos are massless. Here we focus on the
changes needed to treat massive neutrinos (see also Ma &
Bertschinger 1995).

To describe the differences between CDM and CHDM,
let us write down the equation governing the perturbation
to a collisionless massive species:

00
on

where 7 is the conformal time defined in terms of the scale
factor a, n = [}, dt’/a(t’); © is essentially the deviation of the
distribution function from its zero-order value; the co-
moving momentum is ¢; E = [¢? + (ma)*]/?; and S is some
source term proportional to the metric perturbations, i.e.,
the gravitational fields. In principle, ® is a function of seven
variables: three spatial, three momentum, and one time. For
almost all models, though, there are symmetries which
drastically reduce the number of dependent variables. In
models of scalar (density) perturbations, the Fourier trans-
form of O(x, ¢, t), here called ®(k, ¢, t), depends only on (k,
g, k - q, t). Since the equations are linear, each k-mode
evolves independently. To deal with the k - ¢ dependence,
one usually expands é) in a series of Legendre polynomials:
® =Y, (21 + 1)(—ifP(k - )®,. Then equation (2) becomes

?@_‘_ﬂ_k 10, +(+ 18,
m TE A+1

This equation is very useful. Although it has the disadvan-
tage of being in Fourier space, which is harder to visualize,
it is particularly easy to understand the difference between
cold and hot particles or between massive and massless
particles when starting from equation (3).

For a cold component, i.c., a component the velocity
dispersion of which is negligible, the distribution function
can be described solely in terms of a density and a velocity,
given by ®, and @, respectively. The distribution function
is thus given by two components, the evolution of which is
described by two first-order equations that can be derived
from equation (3). One may even choose the coordinate
frame such that the velocity is always zero, leaving only the
density and effectively dropping all modes with [ > 0. This
is a great simplification. On the other hand, for a massless
component (such as massless neutrinos), the different
I-modes do interact. If an initial perturbation is set up in the
I =0 mode, as time evolves the higher I-modes will also
become nonzero. At very early times, kn < 1; thus, the
second term (~k®) in equation (3) is negligible compared
to the first (~®/n). Only when kn becomes of order unity
will a perturbation in the I = 0 mode “freestream ” into the
I =1 mode. Thereafter, each subsequent l-mode is popu-
lated at  ~ I/k. Numerically, we account for freestreaming
by gradually adding more and more I-modes to our hier-
archy of equations as time evolves. Keeping track of all the
relevant [-modes is the complicated part of solving equation
(3) for massless particles; the simple part is that the equa-
tion is momentum independent. This follows since in the
massless case, ¢/E = 1. Thus, we need solve equation (3)
only once, giving ®(q) for all g. This simple feature is lost
when we pass to the massive neutrino case.

1.vo -
+5 VO =561, @)

] =8k o. )

For massive neutrinos, g/E # 1, and we must solve equa-
tion (3) for many values of g. We use a grid with 32 values of
g, spaced properly for Gauss-Legendre integration, as pro-
posed by Bond & Szalay (1983). If massive neutrinos free-
streamed in the same manner as massless ones, then we
would be in trouble. Keeping track of all the different
massive neutrino momentum modes would slow down the
program by at least a factor of 30. However, physics helps
out: massive neutrinos stop freestreaming because a given
g-mode becomes more and more nonrelativistic as time
evolves. It is easy to see this from equation (3). The first
term is of order ®/n; the second is of order k®g/E =
k®/[1 + (a/axg)*]*?, where the scale factor at which a
given g-mode becomes nonrelativistic is

axg = q/m . 4

We have seen that freestreaming occurs when the second
term is of order the first, that is, when the scale of the
perturbation ~ 1/k is of order the freestreaming scale:

1 1 n

Z~ = . ©)
k kfreestream A/ 1 + (a/aNR 2

At early times, the square root here is unity, so we return to
the criterion of the massless case. Physically this is reason-
able: at early times, even massive neutrinos are very rela-
tivistic. At late times, though, the right-hand side goes as
n/a ~ 1/, so it will eventually become smaller than the
left-hand side. This reflects the fact that as time evolves the
massive neutrinos become increasingly nonrelativistic and
are no longer able to freestream. For any given momentum
mode, then, there are three separate regimes: (1) pertur-
bation is outside horizon (kn < 1) with no freestreaming, (2)
perturbation enters horizon (kn 2 1) with freestreaming,
and (3) perturbation size becomes larger than the free-
streaming scale (k# < a/ayg) with no freestreaming.

Numerically, we can stop adding new I-modes once we
pass into region (3). Even better, for the purposes of CMB
anisotropies, only the /=0, 1 neutrino modes couple
(indirectly) to the photons. Once we pass into region (3),
these become less and less contaminated from higher I-
modes. We can thus start dropping these higher modes,
thereby reducing the number of equations that need to be
solved.

The results of our numerical integration are shown in
Figure 1. For comparison we present also a standard cold
dark matter spectrum where the neutrinos are assumed
massless. For ease of comparison, except where otherwise
stated, we will only consider Q, = 1,Q, = 0.05, H, = 50 km
s~! Mpc~!, with a primordial Harrison-Zeldovich spec-
trum for all models. Note that here and throughout, the
theories have been normalized to be equivalent atlow . In a
CHDM model with Q, = 0.2 and one massive neutrino
species, the spectrum deviates (at about the 5%—-10% level)
from the standard CDM spectrum for [ 2 400, as shown in
Figure 1. Increasing Q, to 0.3 increases the departure from
the standard CDM spectrum, although only slightly.
Increasing the number of massive neutrino species to two
(for simplicity we assume degenerate neutrino masses) in a
CHDM model with Q, = 0.2 further shifts the position of
the peaks relative to the standard CDM spectrum.

A careful inspection of Figure 1 reveals two effects. First,
the amplitude of the CHDM perturbations are larger than
those of CDM spectra. Second, the oscillations in the ampli-
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F1G. 1.—CMB power spectrum in CDM and three variants of CHDM

tude are shifted systematically to the left, i.e., toward smaller
I. We will try to explain the reason for these small differ-
ences. As we shall see, the “ horizontal shift ” is explained by
one effect, while the “vertical shift” is the result of several
different effects. In § 3 we first discuss some of the under-
lying physics, and then relate these ideas to the shifts in the
CMB fluctuations in § 4.

3. EXPANSION LAW AND HORIZONS

During the epochs in which the anisotropies are gener-
ated the neutrinos only have significant interaction with the
photons via gravity. Thus, differences between CHDM and
CDM must be due to the differences in the gravitational
field of the neutrinos in the two models. Conceptually we
can divide this gravitational field difference into two parts.
The homogeneous component of the gravitational field
determines how the difference in the equation of state for a
massive and massless neutrinos affects the expansion law of
the universe. The inhomogeneous component of the gravi-
tational field, determined by the difference in how massive
and massless neutrinos cluster when gravitational inhomo-
geneities are present, affects the growth of fluctuations in
other components. We shall see that there are a variety of
ways in which varying the homogeneous and inhomoge-
neous components of the gravitational field of the neutrinos
can effect the CMB anisotropies. Here we compute the dif-
ference in the expansion law and later discuss how this
effects anisotropies.

The Friedmann equation tells us that the relation
between the conformal time (=comoving causal horizon)
and the scale factor is fully determined by the run of the
average cosmological density with redshift. In particular,
assuming Q, = 1 and using units such that a, = 1, we find

ol [ Gl s J.

where p,, is the mean cosmological density today. This gives
the causal horizon as a function of the scale factor. The

n(a) =

Vol. 467

expansion law, a(n), is just the inverse of this function. For
a <1, the denominator is less sensitive to changes in
cosmological parameters than is the numerator.

For CMB anisotropies, another important horizon is the
comoving distance sound in the photon-baryon fluid would

have traveled, which is given by
n(a)
rda) = X dn'cfa’) = 1no

AL oGzl ) o

The sound speed can be expressed in terms of the pressures
and densities of the baryons and photons:

4p, 1 [ 1 :I ®)
aPyb 4Py + 3Pb 1+ (3aQ40/4Q,0) |’

where Q,, and Q,, give the fraction of the critical densities
in baryons and photons today. These two quantities are
equal in the CHDM and CDM models we are comparing,
and hence the run of sound speed with a is equal in the two
models. The functions ry(a) will differ in the two models
since #n(a) differs in the two models and, in particular,
because p(a) differs in each . Note that for many purposes it
is easier to compare the CHDM and CDM models at the
same a when many quantities of interest, such as the free
electron density, p,, and p,, have the same value in both
models, rather than at the same #, when almost all quan-
tities are different. Note also that equations (7)—(8) become
meaningless after the photons and baryons decouple at
recombination. In the CDM model we are considering,
the matter is always divided between nonrelativistic and
ultrarelativistic (effectively massless) species, i.e.,

4 QnO + QuO

po @ at’

cl(a) =

Qo=Q0+Q,=1, )

where Q,, and Q,, give the fractional density of nonrelativ-
istic and ultrarelativistic species, respectively. In the CDM
model, baryons and CDM particles constitute the nonrela-
tivistic species today, while the ultrarelativistic density is
made up of the (massless) neutrinos and photons. In this
model one can solve for the causal horizon and the sound
horizon, r,, analytically, giving the dependence of r; on the
cosmological parameters H, and Q,. Unfortunately no such
analytical formulae giving the dependence on neutrino mass
can be found in the CHDM model.

In the CHDM model, the energy density cannot be so
neatly divided into nonrelativistic and ultrarelativistic
species. During the epochs of interest here, one or more of
the neutrinos is undergoing the transition from ultrarelati-
vistic to nonrelativistic. We can express this in an equation
similar to equation (9):

ﬂ-M_{_% 1+z 1(4/3)
po @ a* 8 \11

1\ myc
Ao=roend dG) BN o

where we have assumed that 4", of the neutrino species
have a degenerate mass, m,, Q. is the fractional density in
CDM, and F is an integral over the Fermi-Dirac distribu-

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...467...10D

o
S

BT Y

|'3_|
(5q
(<]}
(=]

!

No. 1, 1996

Pi(CHDM)/p,, (CDM)
(@]

CHDM/CDM

10-¢ 10-5 102 0.1 1

104

10-3
a

FiG. 2—Plotted as a function of scale factor is the ratio of the total
density in the CHDM model at a given scale factor to the total density in
the CDM model at the same scale factor. The thick curve represents our
canonical CHDM model, with H, = 50 km s~! Mpc™!, one massive neu-
trino species, and Q, = 0.2, while in each of the other curves one of these
parameters has been changed as indicated. The bottom panel shows the
ratio of the comoving horizons (both causal and sound) in the canonical
CHDM model to those in the CDM model. The slight increase in the
sound horizon at recombination (a ~ 10~ 3) shifts the Doppler peaks in the
CHDM model to lower I than in the CDM model.

tion function:

Fly) = f‘” dxxzm(e" + 17!
0

(& dxx* e + 1)1

As mentioned above, Q,, and Q,, are the same in both
models, while in the CHDM models the massive neutrinos
contribute to Q,,. Thus the density in CDM particles, Q.,,
in CHDM models must be somewhat smaller in order to
maintain Q, = 1. In Figure 2 we plot the ratio of the total
density from equation (10) to that for the CDM model from
equation (9) and show the dependence of this ratio on
various cosmological parameters. In both the CHDM and
CDM models the present density are the same since we are
using the same value of the present-day Hubble constant
and assuming Q, = 1 for both models. Similarly, at very
large redshifts, when the particle masses contribute negligi-
bly to the density, the density in both models is the same
since we are using the same value of the present-day CMB
temperature, T,,. However, there is an intermediate epoch
when the massive neutrinos are neither nonrelativistic nor
ultrarelativistic, during which p(a) in the two models will
disagree at the few percent level.

From Figure 2 we see that the densities are less in the
CHDM model at the same redshift, which is partly due to
the lower value of Q_, in the CHDM mode. This slows the
expansion rate and allows more time for both light and
sound waves to propagate further. This is evident from

(11)
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FiG. 3—The shift in the sound horizon distance for various CHDM
models as a function of the fraction of the critical density taken up by the
neutrinos, Q,, which also determine the neutrino mass. The models assume
A, of the neutrinos have masses assumed degenerate. Note that models
with more than one massive neutrino have particularly large shifts. A
larger Hubble constant leads to a somewhat smaller shift. The angular
wavenumber of the second and third Doppler peaks are inversely pro-
portional to the sound horizon.

equations (6)—(7) where a smaller p leads to an increase in #
and r,. Note that the p-dependence in the denominators of
these expressions is weaker than that for the numerator as
long as a < 1. In Figure 2 we have also plotted the fraction-
al increase in the causal and sound horizon in our standard
CHDM model over our standard CDM model. Changes in
cosmological parameters will increase or decrease this
difference, as indicated by Figure 3.

4. DISCUSSION AND SEMIANALYTIC APPROXIMATION

The importance of the sound horizon derives from the
fact that the oscillations in the C; coefficients reflect the
varying temporal phases of acoustic oscillations as a func-
tion of wavenumber. Before recombination, gravitational
infall into potential wells is opposed by photon pressure,
setting up acoustic oscillations. The density and velocity of
the acoustic waves vary as

o(n) oc @q oc cos kryn), v(n) oc O oc sin kryn), (12)

in Newtonian gauge (see, e.g., HS). Since the adiabatic
(density) anisotropies are larger than the Doppler (velocity)
anisotropies, and since there is a rough correspondence
between spatial frequency, k, and angular frequency, I, one
finds the oscillatory behavior for the C;’s, as illustrated in
Figure 1. The peaks are located at k ~ n=n/r,, for integral n.
By increasing r; one therefore decreases the k of a given
temporal phase and hence shifts the peaks and the troughs
to lower I. The angle subtended by the peaks is proportional
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to r,, and in Figure 3 we show how much the fractional
increase in r; depends on various neutrino and cosmological
parameters.

Since the features in C,; spectrum will be shifted in !
between CDM and CHDM, we can isolate the differences
not explained by the shift by first shifting the CHDM spec-
trum in l-space and then noting what differences remain
with the CDM spectrum. Figure 4 shows both the unshifted
and the shifted comparison, and we see that once the shift is
removed, the fundamental difference between CDM and
CHDM is a ~5%-10% higher amplitude in CHDM.

In order to understand this amplitude shift we first con-
sider the tight-coupling regime. As described in HS, the
equations detailing the evolution of the perturbations can
be well approximated by an equation for the evolution of a
tightly coupled photon-baryon fluid in a gravitational field.
The effects of the gravitational field are described by the
so-called “forcing function” of the gravitational potentials
® and ¥ (see HS and Kodama & Sasaki 1984). Following
their notation, there are three contributions to @, today: the
monopole, dipole, and integrated Sachs-Wolfe (ISW) terms.

We have extracted these terms from our Boltzmann code.
Figure 5 shows the sum ®(n,) + ¥(n,) (the monopole
term) as a function of k in the two models. The striking
feature of this graph is the point made by HS: the peaks in
the monopole here line up exactly with the peaks in the C,’s
shown in Figure 1. Thus, the monopole is the dominant
contribution at small scales; it is the first place to look in
our search for the difference between the spectra of CDM
and CHDM. And, in fact, the CHDM monopole is a few
percent higher at the first peak and ~10% higher at the
next two peaks. This difference in the monopole amplitudes
translates directly into a several percent difference in C, for
I 2 200. The dipole terms, while smaller, also exhibit the
same tendency toward higher CHDM amplitudes at the
peaks. Adding these two incoherently leads to our semi-
analytic estimate for the difference; for | = 200, this estimate

CDM vs. Shifted CHDM
0.2 T T T T T T T T T

o

-

o
R

CDM

o) /G
o

M__C
o
o
(o)}

( CFHD

o

Shifted 7
[ CHDM Spectra 1

_0'05 1 1 1 1 l 1 1 1
0

500 1000

1

FiG. 4—Fractional difference between the C;’s in CHDM and CDM.
The difference oscillates due to the sound horizon shift. If this is removed
by shifting the CHDM spectra in l-space, the difference remains constant
in the range 400 < I < 900.

Vol. 467
0.5 T T
[ —— @, + ¥(CDM) -
I 0, + ¥(CHDM)

041 e (com I

®, (CHDM)

k3 |®|2 (unnormalized)

800 1000

F1G. 5—Monopole and dipole at decoupling. As shown by HS, the
peaks in the monopole (at kn, ~ 200, 500, 800) correspond to the peaks in
the C;’s (at comparable values of /). The amplitudes of the peaks are higher
in CHDM than in CHDM (here Q, = 0.2). The second peak (at kn, ~ 500)
is ~10% higher in CHDM. The peaks of the dipole exhibit the same
tendency.

gives excellent agreement with the numerical work (see
Fig. 9 below).

The major contribution to the increase in the monopole
term at last scattering can be traced to an increase in the
forcing function, and in particular to an increase in the ®
component; neutrino freestreaming on these scales causes a
larger decay in the potential. In CHDM models, aniso-
tropies on scales smaller than the horizon size when the
(massive) neutrinos become nonrelativistic will receive an
additional push from the increase in ®. In Figure 6 we show
® for kn, = 540, which corresponds approximately to the
location of the second Doppler peak. The only place where
the monopole + dipole do not fully explain the difference is
for I < 300. Again, the difference in the expansion law and
the corresponding change in the gravitational potentials are
responsible for most of the difference.

If the gravitational potentials (®, ¥) do not remain con-
stant after the time of last scattering of the photons, then
there is an additional contribution to the anisotropy spec-
trum, the ISW effect. Although the potentials do remain
relatively constant in many cosmological models, including
the ones we are considering here, HS have shown that even
small changes in the potential lead to large effects in the
C/s. To understand this, HS suggested a simple approx-
imation to the ISW integral. They point out that & and ¥
become very small soon after recombination. Therefore, the
major contribution to the ISW integral comes from n ~ #,,.
A reasonable approximation then is to approximate the
Sachs-Wolfe integral by the difference in ¥ — @ at recombi-
nation and at the observer. This reduces the ISW term to

0% (no) = [P(no) — ¥(n,) — ©(no) + O(n,)1jilk(no — n,)] -
(13)
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F1G. 6.—Potential ® and its second derivative in CDM and CHDM
(Q, = 0.2, k = 540/n,). ® decays in CHDM due to neutrino freestreaming,
so the second derivative has a larger amplitude. The larger —® means the
forcing function for the monopole is larger in CHDM than in CDM.

This approximation breaks down on small scales, but it
does have one virtue: it shows clearly why the ISW effect
plays such a crucial role in understanding the spectrum of
anisotropies. The key point is that, when this approx-
imation is valid, the ISW effect adds coherently to the
monopole: they are both proportional to the spherical
Bessel function, j[k(, — #,)]. The magnitude of the effect
in this approximation is proportional to the difference
between the values of the potential today and at last scat-
tering. Figure 7 plots this difference in both CDM and
CHDM. At low k, where the approximation is valid, the
potential changes slightly more in CDM. The reason for
this can be seen in Figure 8, which shows the potential as a
function of 5 for the two models for kn, = 150. Taking into
account the fact that n$"PM > ySPM it is clear that the
change in ¥ between 7, and 7, is larger in CDM on this
scale and of the right magnitude to be consistent with
Figure 7. Thus, we expect a larger ISW effect in CDM than
in CHDM.

We can summarize the effects discussed in this section as
follows. The largest contribution to the difference in ampli-
tude of the CDM and CHDM spectra is due to an increase
in the monopole term at last scattering in CHDM models
and is important on small scales (I 2 400). This can be
attributed to neutrino freestreaming, which increases the
decay of the potential on these scales and thus gives an
additional boost to the amplitude of the acoustic oscil-
lations via the forcing function. On larger scales, there is a
'smaller effect due to the change in the expansion law. Neu-
trino freestreaming is no longer important, but because the
epoch of matter-radiation equality has been delayed in the
case of CHDM, the change in the gravitational potential on

Fi1G. 7—Change in the gravitational potential (unnormalized) from
recombination to today as a function of scale in CDM and CHDM (Q, =
0.2). At low k (:5200/5,), the CDM potential changes slightly more; this
leads to a larger ISW effect at these relevant scales. At smaller scales, the
ISW effect ceases to be important since it no longer contributes in phase
with the monopole.
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FiG. 8.—The potential for kn, = 150 in both CDM and CHDM as a
function of conformal time. The region around recombination is blown up.
The upper line in the blown up region is CHDM but with # shifted to
account for the later recombination n in CHDM. Since the potential is
changing very rapidly in this region, even a small change in the recombi-
nation time causes a large change in the ISW effect.
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F16. 9—Sources of the difference between CDM and CHDM (Q, =
0.2) (Again CHDM has been shifted in /-space to account for the different
sound speeds.) The monopole and the dipole [dotted line labeled
“Semianalytic (No ISW)”] account for the bulk of the difference for I >
300. At smaller /, the ISW effect needs to be included as well since it adds
coherently to the monopole.

1000

these scales is shifted slightly to later times in CHDM
models and last scattering occurs at a later conformal time
(see, e.g., Fig. 8). This results in a larger ISW effect after
recombination for CDM models.

We can now combine all the results of this section into
Figure 9. Shown is the difference between CDM and
(shifted) CHDM. Without the ISW effect, the semianalytic
approach does a good job of accounting for the differences
for 12 300. Including the ISW effect leads to excellent
agreement for the full range of I.

5. CAN EXPERIMENTS DISTINGUISH CDM FROM CHDM?

The goal of the next generation of satellite experiments is
to produce an all-sky map with angular resolution of order
half a degree or better (see, e.g., Bouchet et al. 1995; Bennett
et al. 1995; Janssen et al. 1995). To determine whether this
type of experiment will be able to distinguish CDM from
CHDM, we must first calculate how accurately the C, coef-
ficients will be determined by such an experiment. A very
useful formula has been derived by Knox (1995) for the
experimental uncertainty AC,:

AC 2 azierixe
T?J=\/2l+l[1+ o leXp(lza‘%“’")]’ “
1 1

Where 6y,eum = 0.4250wpy is the beam size, o, is the noise
per pixel, and Q.. is the area per pixel. Knox noted that,
for fixed observing time, the product 62, Q. remains
constant as the beam size changes. In what follows, we will
be varying the beam size to see how this affects our ability
to distinguish CDM from CHDM. As we vary the beam
size, though, we will keep 62, Qe fixed at (44 pK)>?
(20" x 20"). This noise level is possibly attainable by the next
generation of experiments, even accounting for the noise
due to foregrounds.

Vol. 467

Equation (14) shows that even if the noise is very low,
there is still an unavoidable uncertainty AC,/C, = [2/
(21 + 1)]¥/2. This minimum uncertainty, dubbed “cosmic
variance,” results from the fact that in most theories, the
observed a,,’s are drawn from a distribution with variance
C,. To know the true variance exactly, one would have to
sample the distribution an infinite number of times. In the
real world, this is impossible, as we only get 2/ + 1 chances
for each [, and, hence, the unavoidable [2/(2] + 1)]/? uncer-
tainty.

Figure 10 shows AC,/C, for a variety of beam widths.
Experiments cannot resolve features smaller than the beam
size, so the uncertainty in C, becomes large at large ! (note
the exponential factor in eq. [14]). Nonetheless, we can
expect to obtain information about the C;’s out to I ~ 500,
and perhaps even further with smaller beam sizes.

The information about C;’s out to I = 500 can be used to
discriminate CDM from CHDM. To see this, let us suppose
that the only difference between CDM and CHDM was a
10% shift in the C;’s between | = 400 and [ = 500. From
Figure 10 we see that for Opwuy = 30, AC,/C, ~ 0.5 over
this range. Thus, using any one value of /, one would not be
able to distinguish CDM from CHDM. However, using all
100 values of / in this range, one lowers the uncertainty by a
factor of 10 (100*/2). Thus, a 10% shift would be detectable.
This crude argument, together with Figure 10, suggests that
beam widths larger than Ogyy = 30" would be unable to
distinguish CDM from CHDM.

Let us make the argument slightly more quantitative,
following Jungman et al. (1995). Given experimentally
observed C;*® with AC,’s, we can write down a function for
goodness of fit:

[ — CP@)T
ZQ —
PO =2 acy

Here we are supposing that we know all other cosmological
parameters (baryon density, Hubble parameter, cosmo-

(15)
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F1G. 10.—Uncertainty in the measured C;’s from an all-sky experiment
with 62, Q. fixed at (44 uK)?(20' x 20'). The cosmic variance line rep-
resents the minimum possible uncertainty. Here the “true” C;’s were taken
to be the standard CDM spectrum.
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logical constant, initial perturbation spectrum, etc.) so that
the theoretical prediction C{* depends only on the energy
density of massive neutrinos, Q,. Presumably the value of y?
from a given experiment will have its minimum at a value of
Q, pretty close to the true value, and so the question of how
well we can determine €, boils down to the question of how
fast does y? change as we change Q, away from the true
value. That is, we are interested in the behavior of the y?2
function near its minimum. Thus, it makes sense to expand:

@ -+

Q,=Q,

(16)

) e 1 62X2
Q) =€) +3 pre%
Here Q, is the value of Q, which minimizes the x* (thus,
there is no first derivative term in eq. [16]). With some mild
assumptions detailed in Press et al. (1992), the 1 ¢ error on
the parameter Q, is then determined by the coefficient of the
quadratic term in equation (16):
~ 1 62 X2 -1
@ - )% [2 ol .| W
To convincingly discriminate CDM from CHDM, this 1 ¢
error should be much smaller than 0.2 (the preferred value
of Q, in CHDM). Figure 11 shows this error as a function of
beam width, again under the unrealistic assumption that all
other parameters are known. (The assumed true spectrum
here is Q, = 0 for CDM). As expected, beam widths greater
than ~ 30’ cannot discriminate CDM from CHDM.

In the real world, of course, there are bound to be other
unknowns besides Q,. Equation (17) is easily extended to
account for this. Both sides become matrices, with each
element in a row/column corresponding to a different vari-
able. The 1 o error on a given variable is given by the analog
of equation (17) with the appropriate indices attached. This
is equivalent to integrating over all other variables (ie.,
allowing them to take any value) and finding the uncer-
tainty in the one remaining parameter of interest.
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r ’ / 4 1
L 7 (Qn,Q,h%h) / !/ J
’ 4 / 7
_// /,/ / 7 4
N % S / / 1
c 03} (Q.n.Qbhz)/_/‘ y / _

- / <I m
g | 7 // ./'I |
o / (Q.n) Fa))

o B / / / -
t i // / /'/. b
= 0.2 //. /',/

L 4 B
© / // // """"""""""""
o r/ 7 . J
o F e - 4
~ e s
o L _ e i
T 0.1 - .~ Other -

Foe -7 .~ Parameters Fixed |

d
1 1 ] 1 I 1 1 1 1 I 1 1 1 1
10 20 30 40
0,mm(@arcminutes)

Fi1G. 11.—The 3 o error on massive neutrino energy density. Lowest
curve assumes all other parameters are known. Each successive curve adds
an additional unknown parameter. The horizontal solid line represents the
preferred value of Q, in CHDM. Curves below this succeed in discrimi-
nating CDM from CHDM.
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As an example, we first integrate over the normalization,
Q. Allowing for this unknown leads to the dot-dashed curve
in Figure 11. Note that this completely removes any dis-
criminatory power from experiments with Opwyy = 30'.
(This ability in the previous curve stemmed from the very
small differences between CDM and CHDM at the first
Doppler peak.) Another parameter which at present is not
known very well is n, the spectral index of the primordial
perturbations. Allowing n to vary leads to the long dashed
curve in Figure 11. It is hard to confuse a change in n with a
change in Q,, so allowing n to vary does not change things
much. Allowing the baryon density Q, h? and the Hubble
constant h to vary, though, does make things significantly
worse. ’

This preliminary investigation suggests that there will be
a possibility of determining Q, from CMB measurements.
Accounting for other free parameters worsens the situation
but not beyond hope.

6. OTHER CONFOUNDING EFFECTS

So far in this paper we have used the results of linear
cosmological perturbation theory to compare models with
massless neutrinos to those in which the neutrinos have
mass. There are a variety of other effects which also contrib-
ute to the anisotropies one actually measures on the sky.
Many of these are nonlinear effects, and thus their relative
importance compared to the ones we discuss depends on
the amplitude of cosmological inhomogeneities. Using
COBE normalization, we can compare the contribution to
the C;’s of these nonlinear effects to that caused by neutrino
mass. A late-time ISW effect which is caused by the nonlin-
ear clustering of matter (Rees & Sciama 1968) has been
studied by Seljak (1995a) for CDM models and, as we can
see from Figure 3 of that paper, is much smaller than the
effects studied here. Vishniac (1987) has found a second-
order contribution to the anisotropy which can have a pro-
found effect on the C, spectrum if the universe is reionized.
We have assumed standard recombination in this paper,
and our results would have to be modified if significant
reionization has occurred. For standard recombination the

“Vishniac effect ” is negligible on the scales we are consider-

ing (Hu, Scott, & Silk 1994; Dodelson & Jubas 1995). The
related kinematic Sunyaev-Zeldovich effect caused by radial
motions of hot gas at low redshifts is also negligible
(Bouchet et al. 1994).

Beyond corrections to the primordial anisotropies there
is also contamination by Galactic and extragalactic emis-
sion. One can hope to subtract out this contamination
using the known spectral shape of the emission (Brandt et
al. 1994; Dodelson & Stebbins 1994). The subtraction does
increase the uncertainties in the CMB anisotropy measure-
ments; however, the wide frequency coverage expected in a
satellite experiment minimizes these problems. The overall
uncertainties should not be much more than a factor of 2
higher than the nominal noise levels and not even that large
for a high-frequency mission (Tegmark & Efstathiou 1995;
Dodelson 1995). So the sensitivities we chose in the previous
section may well be attained even accounting for fore-
ground uncertainties. Of course, improper foreground sub-
traction could lead to an incorrect measurement of the C;’s
as could any number of other experimental problems.

We end this section with one effect which is important.
Gravitational lensing distortion of the pattern of anisotropy
on the sky tends to smear out the anisotropies in I-space. As
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one can see from Figure 3 of Seljak (1995b), the effect of
lensing on the C; spectrum can be comparable to that of
neutrino mass especially for the third Doppler peak. Note
that the amplitude of the lensing effect will be smaller in the
CHDM model than in the CDM since the small-scale
density inhomogeneities which cause the lensing are smaller
in the COBE normalized CHDM model than in the simi-
larly normalized CDM model. Since the lensing effect tends
to decrease the amplitude of the peaks, this means that the
difference in the third peak amplitude between CDM and
CHDM found in this paper will be accentuated when
lensing is included. In any case, for a proper comparison of
the C;’s to data this lensing effect must be included.

7. CONCLUSIONS

The idea that one of the neutrinos has a mass that could
affect the large-scale structure of the universe has been

around for some 30 years. The most recent incarnation of
this idea has been a relatively light neutrino accounting for
about one-fifth to one-third of the energy density in the
universe. Such a neutrino mass could be most convincingly
discovered in an oscillation experiment such as the one
described by Athanassopoulos et al. (1995). Careful con-
sideration of the large-scale structure in the universe may
also provide evidence. We have detailed here another
potential source of information about neutrino masses: the
cosmic microwave background. A detailed map of the CMB
on scales smaller than half a degree can distinguish models
with small neutrino masses from those without them.

We thank Wayne Hu and Marc Kamionkowski for
helpful conversations. This work was supported in part by
the DOE (at Chicago and Fermilab) and the NASA (at
Fermilab through grant NAG 5-2788).
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