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ABSTRACT

We present results from the application of pixon-based multiresolution image reconstruction to real
and simulated data from Yohkoh’s Hard X-ray Telescope (HXT). The goal of the pixon algorithm is to
minimize the number of degrees of freedom used to describe an image within the accuracy allowed by
the noise. This leads to a reconstruction that is optimally constrained. We apply the pixon code to two
solar flares in the HXT database and compare the results of the pixon reconstruction to the results of a
direct, linear, smoothed inversion of the HXT Fourier synthesis data and to a maximum entropy recon-
struction. The maximum entropy reconstruction is vastly better than the direct inversion, but the pixon
reconstruction gives superior noise suppression and photometry. Further, the pixon reconstruction does

not suffer from overresolution of the images.

Subject headings: methods: numerical — Sun: flares — Sun: X-rays, gamma rays —

techniques: image processing

1. INTRODUCTION

The most successful modern methods of image recon-
struction are nonlinear. Linear methods, such as Fourier
deconvolution, are more compact and less computationally
demanding, but they have poor noise propagation proper-
ties. Nonlinear methods are more complex but allow some
control over the propagation of the noise. Indeed,
maximum entropy methods (MEMs) have been quite suc-
cessful in controlling the noise propagation in image recon-
struction.

Bayesian image reconstruction algorithms, which include
ME and pixon methods, use a statistical approach to obtain
the most likely image given the constraints of the data. The
likelihood of an image is defined by two terms: first, the
goodness of fit (GOF), which characterizes how well the
image and image model predict the data, and, second, the
image prior, which characterizes the a priori probability of
the image and model, without regard to the data. As dis-
cussed in § 2, different image priors distinguish between the
various Bayesian reconstruction algorithms. In MEMs, the
image prior states that the flattest image is a priori the most
likely image. In pixon-based methods, the image prior states
that the image with the fewest degrees of freedom is most
likely.

For hard X-ray imaging using the bi-grid modulation
collimators of the hard X-ray telescope (HXT; Kosugi et al.
1991) on board the Yohkoh spacecraft, the reconstruction
problem is particularly difficult. The HXT data set is sparse,
consisting of only 64 collimator outputs from which a rela-
tively large image (typically 64 x 64) is normally recon-
structed. Pixon-based reconstruction is ideally suited to this
problem since the goal of the method is to minimize the
number of degrees of freedom and hence to make the best
possible use of the limited data. While an ME method has
been successfully applied to HXT solar flare data by Sakao

(1994), we do not expect a hard X-ray image of a solar flare
to be flat. Hence, pixon-based methods should provide a
significant improvement.

Below, we review the theory of pixon-based image recon-
struction and describe a pixon-based algorithm used to
reconstruct hard X-ray images for HXT. Finally, we apply
the algorithm to two solar flare data sets and compare the
results to an ME reconstruction and to a direct, linear
inversion of the Fourier data.

2. PIXON-BASED IMAGE RECONSTRUCTION

Most nonlinear image reconstruction methods can be
understood in terms of a Bayesian estimation scheme in
which the reconstructed image is, in some sense, the most
probable (e.g., Puetter 1995a). This implies maximizing the
joint probability distribution of the reconstructed image (I)
and the model (M) given the data (D): p(I, M|D). The
model defines the relationship between the data and the
image (e.g., the physics of the image encoding process, the
pixel size, etc.). Using Bayes’ theorem, this probability dis-
tribution can be factored to yield

p(D |1, M)p(I | M)p(M)
p(D)

p(, M|D) = o p(D|I, M)p(I| M),

@)

where p(X | Y) is the probability of X given Y. Here we use
p(I, M | D) rather than p(I | D, M) since the model is allowed
to vary in the pixon method.

The terms on the far right side of equation (1) are easily
interpreted. The term p(D|I, M) is simply the GOF, mea-
suring the likelihood of the data given the image and model.
Typically, p(D | I, M) s set to exp (— x%/2). The second term,
p(I| M), is called the image prior since it does not depend on
the data and can be calculated a priori before taking data.
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The choice of the image prior distinguishes the various
nonlinear reconstruction algorithms. For example, in
maximum entropy (ME), the prior is taken to be exp (aS),
where S is the entropy of the image. This implies, a priori,
that the flattest image is the most probable. Thus, when
maximizing p(I | D, M), MEMs attempt to find the flattest
image that is statistically consistent with the data.! In GOF
or maximum likelihood image reconstruction, p(I|M) is
assumed to be constant and the algorithm finds the best fit
to the data (and the noise) alone.

The key idea behind pixon-based image reconstruction is
the realization that not all parts of an image require the
same spatial resolution. Indeed, for hard X-ray imaging of
solar flares, discussed below, most of the image is blank and
has no information content.? Why then should blank pixels

Estimate Image:

p(DILMyp(I,M,)
p(D)

-] Maximize

where M, is the current model estimate

v

Reduce minimum pixon size, §

!
Estimate Model:
Maximize P(DI,Mpp(I,My

p(D)

where I is the current image estimate,
and M; has pixon sizes > &

Yes

F1G. 1.—A schematic diagram of the iterative scheme used for the HXT
pixon-based image reconstructions. To estimate the image, we iterate the
pseudoimage until the posterior probability of the image, using the current
model estimate, is maximized. To estimate the model, we compute the
pixon map, which maximizes the posterior probability of the model, using
the current image estimate, ie., the pixon map with the fewest possible
number of pixons. Adapted from Puetter (1995a).

! “Flat” is used in a global sense here since MEMs generally do not
consider correlations between adjacent pixels.

2 The contrast of the hard X-ray brightness distribution is extremely
large. The background, due to stray diffuse hard X-ray fluxes and cosmic-
ray effects, can be assumed to have no imaginable structure.
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be included as additional degrees of freedom? To avoid this,
Pifia & Puetter (1993) introduced the concept of a pixon.

A pixon is a generalized pixel. It is a variable cell in the
image representing a single degree of freedom in the recon-
struction. Ideally, the set of pixons used to describe the
image would be the minimum set required to describe the
information content of the image. The pixon shapes, sizes,
and positions would follow the information density, with
the smallest pixons where the information content is the
highest. Having reduced the reconstruction to the fewest
possible degrees of freedom, it makes the best possible use
of the available data.

An image prior that favors this reduction in the number
of degrees of freedom is based on simple counting argu-
ments (Puetter 1995a):

N!
P(Iim=m, 2

where n is the number of cells (pixons), {N;} denotes the
number of events (counts) in cells i, and N = Y ; N;. In the
pixon method, n, N;, and the sizes and positions of the cells
are variable parameters that are to be determined by the
data. Since equation (2) must be maximized, the goal of the
pixon algorithm is to find the fewest number of cells that
pack as much information into each cell as possible, while
still satisfying the GOF criterion.

Here we see that the pixon method is an extension of the
MEM. Indeed, using Stirling’s approximation to the facto-
rial, equation (2) is maximized when the entropy in the pixon
basis is maximized:

N N;. N;
n"HiNi!~nNeXp( ;Nln N)' ®)
Hence, a pixon-based reconstruction is a ME reconstruc-
tion in which the image model and prior are allowed to vary
in an optimal way.
With the prior given by equation (3), the image recon-
struction reduces to a calculation of the pixon parameters
(number, size, position, and intensity) that maximize

1 2 N, N,
p(I,MiD)ocFexp[—(%+§F1n7v—>]. @)

While it is possible to maximize equation (4) with a multidi-
mensional search algorithm, Puetter (1995a) suggests a
more efficient iterative procedure that does not implement
equation (4) directly. With an initial guess for the image
({N;}) and model (pixon number, size, and position), the
reconstruction proceeds by first calculating the best image
with the model held fixed, then calculating an improved
model holding the image fixed, and iterating to con-
vergence.

Puetter & Pifia (1993) introduced the fractal pixon basis
(FPB) as a practical implementation of the pixon concept.
In this “fuzzy” pixon basis, the pixons do not have hard
edges; adjacent pixons share some of each other’s signal.
The reconstructed image is represented as the local convo-
lution of a pseudoimage with a pixon shape function, which
varies over the image:

I(x) =f av, K.-(y )I,,swdo(v). 5)
Vy

Here, x; is the location of pixel i, I(x) is the reconstructed
image, K; is the pixon shape function used at pixel i and

_xi

5.

1
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HXT: 1992 Jan 13, 17:26:52 — 17:27:39 UT

PIXON MEM

DIRECT

M2, 33—-53 keV

M1, 23-33 keV

Lo, 14—-23 keV

F1G. 2—A comparison of three image reconstruction algorithms applied to three HXT energy bands in the solar flare of 1992 January 13 (17:26:52—
17:27:39 UT). The first column shows the pixon-based image reconstruction while the second and third columns show an ME reconstruction and a direct,
smoothed inversion of the data, respectively. All images are negative images and use the same gray scale. The images are oriented with solar north up and

solar east to the left. Each image is 64 x 64 with 2”46 pixels.

normalized such that

L av, K<‘—;-) =1, ©)

0, is the pixon size at pixel i (the pixon map), I cuq0(0) is the
pseudoimage, and the integration is over the volume in
y-space, ie., over the pseudoimage. The goal of the FPB
algorithm is to find the pseudoimage and pixon map which,
together, yield the reconstructed image that maximizes
equation (4). Hence, the pseudoimage is simply an interme-
diary that allows a straightforward implementation of the
spatial correlations required for the pixon algorithm; once
the calculation is complete the pseudoimage is discarded. In
the fuzzy pixon scheme, the number of pixons (the number
of degrees of freedom) is computed as (Puetter & Pifia 1995)

1
D S ATk 0

where k; is the pixon shape function normalized to 1 at
y=0.

The spatial correlations introduced through the smooth-
ing functions restrict the number of degrees of freedom in
the reconstruction. The pixon problem then becomes calcu-
lation of the pixon map, the map of the shape function size,
and functional form at each pixel. In principle, this is
accomplished by testing each shape function and size at
every pixel and maximizing the evidence for the model:
p(M|D)oc p(D |1y, M)p(Iy| M) (Puetter 1995a), where I, is
the current image estimate. In practice, equation (4) tells us
to find the set of cells that minimizes the number of pixons
but is still consistent with the data, i.e., find the spatially
largest smoothing function consistent with the data at every
pixel.

Typically, the pixon shape functions are taken to be a
finite set of normalized, circularly symmetric functions. The
functions chosen define the pixon basis. This choice is a
trade-off between the desire to have a very rich set of basis
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HXT: 1992 Jan 13, Pixon Maps

Pixon Size 13

Fi1G. 3.—The pixon maps for the 1992 January 13 pixon image reconstructions. The scale shows the spatial resolution required by the data.

functions and the need to restrict the computational
demands of the reconstruction. For example, with the HXT
data presented below, we use a normalized, circularly sym-
metric, truncated paraboloid as the only shape function,
with &, in the set {1, 2, ..., 13} pixels.

Once the pixon map is determined, the algorithm iter-
atlvely adjusts the pseudmmage until the reconstructed
image, from equatlon (5), maximizes equatlon (4) This
maximization is equivalent to minimizing x> +2 Z
(Ny/N)In(N,/N), provided that we use the fewest possible
number of pixons so that the 1/n" term is also maximized.
However, in the fuzzy pixon basis, the {N,} are not well
defined since the pixons do not have hard boundaries. In
this case we set

Noay Ml

22N‘1 ~ L

pixons pixels

where pixel i is a fraction f; of a pixon:

1

) ©

In practice, the entropy term is not important in the
pixon method. The reduction in the number of degrees of
freedom forces the GOF term in equation (4) to be very
sharply peaked and the ME prior is essentially constant
over the peak. Hence, we can approximate the entropy term
by

2y ln—~2 Y N‘l % (10)

pixons pixels
where the sum over pixons is approximated by a sum over
pixels by setting
_ Inn
T lan

. (11
pixels
Here, n;,. is the number of pixels and » is the number of
pixons. In equation (11), « is the ratio of the image entropy
over all pixons to the image entropy over all pixels, in the
special case when all pixels and pixons have uniform bright-
ness, i.e., in the case when the entropy is maximized. This is
an upper limit to the true a, which is in the range 0 < a <
(ln n)/ (ln npixels) < L.
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TABLE 1
RECONSTRUCTION OF SIMULATED DATA®

Location

True Pixon MEM

South footpoint (maximum counts per pixel)
North footpoint (maximum counts per pixel)
South footpoint (total counts) .............
North footpoint (total counts).............

Looptop (maximum counts per pixel)

Looptop (total counts) ....................
Entire image (total counts).................

...... 30.0 271 74
...... 30.0 254 9.7
.......... 119.8 119.5 584
.......... 119.8 134.4 80.7
.......... 59 124 7.1

........... 1428 1389 78.8
.......... 5872 5908 6016

Test 2
South footpoint (maximum counts per pixel)...... 450 42.8 225
North footpoint (maximum counts per pixel)...... 45.0 43.0 23.6
South footpoint (total counts) ....................... 179.8 175.2 145.4

North footpoint (total counts)............

Looptop (maximum counts per pixel)

Looptop (total counts) ....................
Entire image (total counts)................

........... 179.8 173.5 144.0

59 54 1.9
142.8 78.7 64.2
707.2 700.0 672.6

Test 3

South footpoint (maximum counts per pixel)
North footpoint (maximum counts per pixel)

179.9
179.9

142.0
139.6

1241
136.6

South footpoint (total counts) ............
North footpoint (total counts)............

Looptop (maximum counts per pixel)

Looptop (total counts) .....................
Entire image (total counts).................

719.8 637.7 646.7
719.8 699.7 650.3
59 0.2 2.6

.......... 1428 122 471
.......... 17872 17871 17427

* Counts above background.

3. A PIXON ALGORITHM FOR FOURIER SYNTHESIS HARD
X-RAY IMAGING

The Hard X-Ray Telescope on board the Yohkoh space-
craft uses a set of 64 bi-grid modulation collimators to
image the Sun in energies between 13.9 and 92.8 keV in four
energy bands. Each subcollimator is a pair of nearly identi-
cal one-dimensional grids mounted in parallel planes
separated by 1.4 m (Kosugi et al. 1991). The 64 grid pairs
have differing pitch and orientation to approximately
measure the Fourier components of the image. Fourier syn-
thesis imaging is necessary since there is no effective way to
manufacture optics that focus hard X-ray radiation. The
HXT data set consists of the count rate of hard X-ray radi-
ation observed through each subcollimator:

d; = f dV,Ip)P{y), 0<j<64, (12)
Vy

where d; is the count rate observed in subcollimator j, I(y) is
the image to be reconstructed, Pj(y) is the modulation
pattern for subcollimator j, computed from the known char-
acteristics of the subcollimator (Sakao 1994), and y is a
vector representing the location of the image elements
(pixels). The image must be reconstructed from these 64
data points and modulation patterns.

This is a difficult problem since the data are sparse. The
finest grids on HXT have an angular repetition period of
16", and the synthesis aperture is nominally 134”. Hence, a
16 x 16 image array with 256 elements would be the
minimum required to double-sample the finest resolutions.
The normal reconstruction is onto a 64 x 64 array of stan-
dard 2746 pixels that covers a somewhat larger field of view.
The standard Yohkoh/HXT imaging software has been the
maximum entropy method of Gull & Daniell (1978) and

Willingale (1981), in the implementation described by
Sakao (1994). However, with 4096 degress of freedom (dof)
but only 64 data points, spurious sources are expected.
Since the pixon-based image reconstruction minimizes the
number of degrees of freedom, it will give superior results.
For HXT data sets, we typically find at most 100 dof suffi-
cient for pixon image reconstruction. Hence, spurious
sources are greatly reduced or eliminated.

A related advantage of the pixon-based reconstruction is
better photometry. The number of counts observed in the
field of view is approximately conserved regardless of the
algorithm used in the reconstruction (e.g., Metcalf et al.
1990, footnote 4). Hence, if there are spurious sources, these
counts are removed from the real sources yielding poor
photometry. Thus, a pixon-based reconstruction that elimi-
nates spurious sources will have better photometry than
other methods.

The key to FPB image reconstruction is the pixon map
(Puetter 1995a). The pixon map gives the local spatial scale
of the image at each pixel and, hence, determines the size
and location of the pixons required to reconstruct the
image. We require that the pixon map be computed in such
a way that equation (4) is maximized; i.e., we require that,
within the chosen pixon basis, the algorithm find the fewest
number of pixons, each with the largest signal-to-noise
ratio, that are consistent with the data. To guarantee this,
and hence to guarantee that the pixon map is uniquely
determined by the data, we compute the large-scale struc-
ture in the image before computing the small-scale struc-
ture. This is done by iterating to a solution with the pixons
forced to be large, ie., by using only the largest pixon
smoothing functions. We then reiterate the image and pixon
map, while slowly lowering the size of the smallest allowed
pixon. This ensures that, at each pixel, we apply the largest
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FiG. 4—Reconstructions of simulated HXT data using both the pixon and the MEM algorithms. The images are similar to the 1992 January 13 flare.
From test 1 to test 3, the extended source grows fainter relative to the compact sources. In test 1, the compact emission is 5 times brighter that the extended
emission. In tests 2 and 3, the compact emission is 7.5 and 30 times brighter than the extended emission, respectively. Each image is 64 x 64 with2746 pixels.

pixon shape function allowed by the data. Hence, the pixons
are as large as possible and the image is never overresolved,
an important advantage over ME.

As the smallest allowed pixon size is lowered, we indepen-
dently test each pixel at the new resolution to compute a
new pixon map. We examine, pixel by pixel, the variation in
the GOF parameter (G) given by

G

0G(s;) = 0s; 25, (13)
to test whether a smaller pixon shape function is justified by
the data. Here, s is the size of the pixon shape function and i
is the pixel number; the calculation of 0G/ds; is discussed in
the Appendix. When the pixon size at a particular pixel is
reduced, the number of degrees of freedom in the recon-
struction increases. If the new, smaller pixon size is valid, we
expect the magnitude of the decrease in x2, used as the GOF

parameter in the HXT reconstructions, to be at least as
large as the increase in the number of degrees of freedom.3 If
this is not the case, the new pixon size is not supported by
the data and the larger scale is retained. Each pixel is tested
independently; the pixon map is not updated until every
pixel has been tested at the new resolution.

Once the new pixon map is determined, we iteratively
solve for the reconstructed image using conjugate gradient
minimization; the pixon map is held fixed during the iter-
ation. Although the reconstructed image is used to compute
x>, the FPB algorithm iterates the pseudoimage, not the

3 Since the expectation of y? is the number of degrees of freedom in pixel
i, f,, we require —Ayx? > Af; (e.g., Press et al. 1992, pp. 695-698). For
robustness, one can consider the width of the y? distribution, (2f)*/ and
require —Ay? > Afj[1 + 6/(2f)*/*], where ¢ is a constant of order 1. With
¢ = 1, the pixon map is computed at the 68% confidence level, etc.
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reconstructed image. The details are shown in the Appen-
dix.

The conjugate gradient minimization of x* +2x ),
(N;/N)In(N,/N) is completed for each value of the smallest
allowed pixon size before the value is lowered. For the HXT
data, we start by iterating on a 64 x 64 reconstruction grid
with the pixon size set to 13 pixels everywhere in the image.
We then reduce the smallest allowed pixon size by 1 pixel,
recompute the pixon map with the image held fixed, and
finally reiterate the image with the new pixon map held
fixed. This procedure is repeated until we have cycled
through all the allowed resolutions. Figure 1 shows a sche-
matic diagram of the iterative scheme used for the FPB
reconstruction.

To be fully consistent with equation (4), the ME prior
from equation (10) is included in the conjugate gradient
minimization when iterating the image intensity. However,
since the number of degrees of freedom in the HXT recon-
struction is drastically reduced by the use of pixons, the
GOF term in equation (1) is sharply peaked and the prior is
essentially uniform over this peak. Hence, in most cases the
ME prior is not necessary. For HXT data, we have tried the
iteration both ways, and inclusion of the ME term does not
affect the reconstructed image significantly. However, in the
examples shown in the next section, we include the ME
term for full consistency with the theory presented above.

Due to the convolutions required for implementation,
fuzzy pixons are inefficient. Instead of utilizing only the n
independent image elements, the fuzzy pixon algorithm uti-
lizes every pixel in the image. For the HXT data, a pixon
algorithm that used only the 100 or so independent pixons
would be far more efficient in terms of computational
resources. This is a clear direction for future research.
Another direction for future research is to study the effect of
different pixon shape functions. For example, shape func-
tions with an elliptical rather than circular footprint have
been successfully used for other astronomical data sets
(Puetter 1995b).

4. RESULTS

Masuda et al. (1994) studied hard and soft X-ray images
of a flare that occurred near the west solar limb on 1992
January 13. Since this important event is well known, and
since it has an interesting combination of diffuse and unre-
solved emission in the 14-23, 23-33, and 33-55 keV HXT
channels (LO, M1, and M2 channels, respectively), we chose
it for a detailed comparison of the pixon-based, ME, and
direct image reconstruction algorithms. In the higher
energy channels, the flare was characterized by a pair of
compact sources to the east (footpoint emission) and a faint,
extended source to the west (loop top emission). Puetter
(1995a) showed a similar comparison for a compact flare
observed on the solar disk on 1992 August 20. Here, we
make a more in-depth comparison, showing the details of
the pixon-based image reconstruction.

Figure 2 compares image reconstructions for the 1992
January 13 solar flare. Each column shows a different
reconstruction algorithm while each row shows a different
HXT energy channel; all images have a common gray-scale
representation. Comparing the images across the three
rows, the advantages of the pixon algorithm are clear: the
pixon reconstructions show less background structure and,
hence, are brighter, implying better photometry. Further,

PIXON-BASED IMAGE RECONSTRUCTION 591

the ME images seem to be overresolved. They have smaller
scale structure than the pixon images, but the x2 value for
the ME and pixon reconstructions are nearly identical.
Hence, the ME resolution is unjustified.

Figure 3 shows the pixon maps for the image reconstruc-
tions shown in the first column of Figure 2 and details the
spatial resolution required by the data. Clearly, in the M1
and M2 channels, there is structure in the pixon maps that
is not required to produce the images shown in Figure 2.
This may be the result of an uncertainty in the noise level
due to an inaccurate calibration of the modulation patterns.
More accurate modulation patterns should give a pixon
map that matches the image, much like the LO channel in
Figures 2 and 3. In the January 13 event, the signal-to-noise
ratio in the LO channel is significantly higher than in the
M1 and M2 channels, and hence the LO channel pixon map
is cleaner. In the absence of better modulation patterns,
setting ¢ ~ 1 in the pixon map Ay? test (eq. [13] and foot-
note 3) results in cleaner pixon maps. This does not signifi-
cantly affect the reconstructed images, however, since even
the “dirty” pixon maps greatly constrain the reconstruc-
tion.

To further test the reconstruction algorithms, we simu-
lated emission similar to the January 13 flare and generated
HXT data, which we then used to reconstruct images. The
results are shown in Figure 4 for three different test cases.
The simulated data consist of a uniform background with
two bright footpoint sources (compact, 4 pixels) and a faint
loop top source (diffuse, 24 pixels) superimposed. Further,
Gaussian noise with a standard deviation equal to the
square root of the count rate in each subcollimator is added.
The faint loop top source grows fainter relative to the foot-
point emission from test 1 through test 3. When computing
the simulated HXT data, we assumed that the modulation
patterns for HXT are perfectly known and used the same
collimator phases for all three tests.

In each test, the total number of counts in each recon-
structed image is approximately the same, regardless of the
reconstruction algorithm. Hence the primary difference
between the reconstructions is the spatial location of the
counts. In each MEM reconstruction, the emission is spread
out into spurious background structures, causing the
brightness of the footpoint emission to be reduced. The
pixon algorithm suppresses the spurious sources and hence
has better photometry, particularly for the bright sources
(Table 1). In test 3, neither the pixon nor the MEM algo-
rithm detected the faint loop top source. In this case, the
faint source should be below the threshold of the HXT
instrument (the footpoint emission is 30 times brighter than
the loop top emission, comparable to the noise from photon
counting statistics). The pixon algorithm, however, does a
better job of suppressing the spurious sources in test 3,
where the loop top source is not significant.

As a final demonstration of the pixon algorithm, Figure 5
shows an FPB image reconstruction for the solar limb flare
of 1992 February 21 (Tsuneta et al. 1992). This was a
gradual event with weak but long-enduring hard X-ray
emission. The underlying image in Figure 5 is from the Soft
X-ray Telescope (SXT) on Yohkoh (Tsuneta et al. 1991)
using the Be filter, and the contours are from the FPB
reconstruction of the LO channel on HXT. The SXT-Be
and HXT-LO data are primarily thermal in origin and are
sensitive to similar plasma temperatures, so we expect a
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F1G. 5—HXT LO channel contours overlaid on an SXT image for the 1992 February 21 limb flare. The HXT contours are at 0.06, 0.08, 0.15, 0.25, 0.4,
0.65, and 0.95 of the maximum value. The SXT image, obtained at 03:20:14 UT, uses the beryllium filter. The HXT data was summed from 03:15:00 through
03:25:04. The image is 64 x 64 with 2746 pixels. Solar east is up, and solar north is to the right. The curved line passing through the image shows the location

of the solar limb.

good (but not perfect) correspondence between the two
images. The pixon-based reconstruction adequately repro-
duces the expected image. In this case, small pixons were
not justified since the signal-to-background ratio was quite
low; it is apparent from the HXT contours that the pixons
are large (8 pixels). For this 1992 February 21 data set, the
ME reconstruction has not yet been successful in producing
a meaningful image.

5. CONCLUSIONS

We have demonstrated the application of multiresolution
pixon image reconstruction to solar flare data from
Yohkoh’s Hard X-ray Telescope. The comparison of the
pixon reconstruction with the direct, smoothed, linear
inversion of the HXT Fourier synthesis data and with the

MEM demonstrates the desirable characteristics of the
pixon-based reconstruction. Although the ME reconstruc-
tion is vastly superior to the direct inversion, the pixon
reconstruction gives superior noise suppression and photo-
metry. Further, the pixon reconstruction does not suffer
from overresolution of the images. As expected on theoreti-
cal grounds, the pixon reconstruction provides superior
images for HXT data.
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APPENDIX A

CALCULATION OF THE y*> DERIVATIVES

The derivative of the GOF parameter, x2, and the ME prior with respect to the pseudoimage at every pixel (9y2/0I¢, etc.) is
required for the conjugate gradient iteration while dy?/ds is required to compute the pixon map.* Here, I!P is the pseudoimage
at pixel i. For the HXT Fourier synthesis data, we compute dy2/dI{P as follows:

0 . 0 SRR R
AP TP LG = LG g (A1)

where R; is the residual in the jth data point, o;is the error estimate for the jth data point, and 9/0I{" represents a variation in
count rate in the ith pseudoimage pixel holding the pixon map fixed. The error estimate, o;, has two parts: the square root of
the observed counts and a systematic term related to the poor calibration of the HXT modulation patterns. The residual is
given by

= (; Ikij> —d;, (A2

where I, is the count rate in the kth image pixel (not pseudoimage pixel), P;, is the set of modulation patterns computed for
the HXT subcollimators (Sakao 1994), and d; s the jth data point. Since 6P1k/61 P and 0d,;/0IP are zero, we have

R, <« Ol
aﬂf’) 2 or® T (A3)

In a maximum likelihood or ME algorithm, 0I,/0I" would simply be J,;, the Kronecker delta; however, for the fuzzy pixon
basis, a change in I{P will affect many of the surrounding pixels, depending on the size of the pixon. Hence, 01,/0I is K,;, the
magnitude of the ith pixon shape function at pixel k. Thus,

OR,
g ;Kk, s (A%)

which is simply the modulation patterns convolved with the pixon shape functions, i.e., the modulation patterns in the current
pixon basis. In practice, we introduce a positivity constraint on the reconstructed image by iterating to the logarithm of the
pseudoimage. In this case, we compute

0 R;
oiInI ?’ )) =2 ; o-f 8(1n I (" ’) (A3)
where
OR;
3 I‘P’) ; K P I . (A6)

Using similar reasoning, we find, for the derivatives of the ME prior,

0 L . L 2 I,
Pk Z In ¥ K,d<1 +In Iml>, (A7)

total I total I total k

and

I, I, 2« ( I, )
In —= Kyl 1+1n 1. (A8)
6 ln I (P) ; total I total I total ; k I total, k

For the derivative of 2 with respect to the pixon size, we have

ox? 2R; _, AK,; & p
£ P LN 2k
os; ' ; o} ; ds

(A9)

Here, I, is Y ; I; (assumed constant), AK,, is the difference between the pixon smoothing function centered at pixel i, but
evaluated at pixel k, for two resolutions, and s is the difference in resolution for the two shape functions used in AK .

* For Poisson statistics, replace 2R ;/a? by In(D;/d)) in eqs. (A1), (A5), and (A9), whereD; =Y, I, P;,.
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