Py
0y

" THE ASTROPHYSICAL JOURNAL, 466:392-403, 1996 July 20
© 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A.

WIND INHOMOGENEITIES IN WOLF-RAYET STARS. I. SEARCH FOR SCALING LAWS
USING WAVELET TRANSFORMS

SEBASTIEN LEPINE AND ANTHONY F. J. MOFFAT
Département de Physique, Université de Montréal C.P. 6128, Succ. Centre-Ville, Montréal, QC, Canada H3C 3J7,
and Observatoire du Mont-Mégantic; lepine@astro.umontreal.ca, moffat@astro.umontreal.ca
AND

R. N. HENRIKSEN?

Astronomy group; Department of Physics, Quéen’s University, Kingston, ON, Canada K71 3N6; henriksn@astro.queensu.ca
Received 1995 November 27 ; accepted 1996 February 8

ABSTRACT

We describe a new technique involving wavelet transforms for analyzing discrete stochastic com-
ponents like those found on the tops of emission lines in Wolf-Rayet stars. A wavelet power spectrum is
used to characterize the variable component of the emission line we believe arises from the superposition
of many individual Gaussian-like subpeaks. This was applied to emission-line spectra of eight Wolf-
Rayet stars obtained at the Canada-France-Hawaii Telescope and European Southern Observatory.
Where the data show the most power we identify a dominant scale, which is found to be very similar in
all but one of the stars in our sample.

We present a phenomenological model where the variable structure on top of the emission line is
represented by a sum of individual subpeaks of the same simple shape (Gaussian or triangular) and
various scales. This model is used to introduce the idea of scaling laws. The amplitude 4 and number
density N of subpeaks on a given scale are related to their characteristic width o (i.e., velocity dispersion)
by scaling relations, of which the simplest form is a power law: 4 ~ 6* and N ~ ¢”. The wavelet power
spectrum is used to verify the consistency of this model with the data. Synthetic signals are generated,
and their wavelet spectra are compared to those of the data. This provides a constraint on the value of
20 + B, which is found to be x2.7 &+ 0.5(s.d.) for the model involving Gaussians, or ~3.4 + 0.6(s.d.) for

the model involving triangles. The implications provided by this new constraint are discussed.
Subject headings: radiative transfer — stars: mass loss — stars: Wolf-Rayet — waves

1. INTRODUCTION: WHY USE WAVELETS ?

It was already suggested by Antokhin, Kholtygin, &
Cherepashchuk (1988), on the basis of indirect evidence by
Cherepashchuk, Eaton, & Khaliullin (1984), that the strong
stellar winds of Wolf-Rayet stars could be made up of dense
clouds immersed in a rarefied intercloud medium. Attempts
were made by Antokhin, Nugis, & Cherepashchuk (1992) to
reproduce He line profiles using an inhomogeneous wind
model. Likewise, the need for some kind of clumping in the
wind of Wolf-Rayet stars in order to reproduce electron
scattering wings better was pointed out by Hillier (1991). He
showed that an inhomogeneous wind required lower mass-
loss rates than a homogeneous wind to reproduce line
strengths accurately.

Systematic direct observation of variable subpeaks on the
tops of broad emission lines in Wolf-Rayet stars was first
made by Moffat et al. (1988) and McCandliss (1988). An
extensive study of emission-line subpeaks in many Wolf-
Rayet stars of different subclass was then carried out by
Robert (1992). Careful analysis of individual subpeaks iden-
tified in the latter work, combined with simple physical
assumptions, led Moffat et al. (1994) to suggest a phenom-
enological model for the inhomogeneous component of the
wind using scaling laws. This was used by Moffat & Robert
(1994) to suggest a possible factor ~3 decrease in mass-loss
estimates in Wolf-Rayet winds based on common density-
squared dependent emission mechanisms, on the assump-
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tion of a fully clumped wind. A review of the observation of
inhomogeneities and the information they can provide
about the wind was made by Brown et al. (1995).

This paper is an attempt to test the assumption of scaling
laws in the inhomogeneous component of Wolf-Rayet
winds, as revealed by the presence of subpeaks on the tops
of emission lines. Wavelet analysis techniques are developed
and used to compare the observations to a simple phenom-
enological model involving scaling laws.

In previous work that led to the scaling-law hypothesis
(Robert 1992; Moffat et al. 1994), individual structures were
identified and extracted using multi-Gaussian fits and
wavelet convolutions, respectively. A statistical analysis of
these extracted structures then uncovered relations remi-
niscent of those used in describing supersonic compressible
turbulence in giant molecular clouds (e.g., Henriksen 1991),
where full-scale clumping is thought to be the rule.
However, because they arise in an optically thin medium
(the outer part of the wind) and because they are assumed to
be distributed with spherical symmetry around the star, the
spectroscopic subpeaks in Wolf-Rayet emission lines are
always seen in projected velocity space and are subjected to
superposition effects. For example, two spatially distinct
inhomogeneities could have the same projected velocity and
thus appear as a single subpeak in the spectrum. This effect
can introduce a bias in the statistical analysis involving
extracted apparent subpeaks, because several spatially dis-
tinct inhomogeneities with a small velocity dispersion (o)
may appear as a single (unresolved) subpeak having larger
g, in projected velocity space. Possibly, one might benefit
from using a technique that avoids the identification of indi-
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vidual structures, being sensitive only to the general profile
produced by a collection of subpeaks.

Another problem is the presence of instrumental and sta-
tistical noise. When extracting individual structures, the
noise may artificially introduce a large number of small-
scale features. These would be difficult to distinguish from
real small-scale subpeaks. Not knowing exactly the thresh-
old for intrinsic small-scale structure identification is a
problem, because scaling relations depend critically on the
presence of small-scale components.

In an attempt to avoid these pitfalls (i.e., noise and super-
position effects), a wavelet analysis method is developed to
study the variable components of WR emission lines.

The wavelet transform is a technique, analogous to the
Fourier transform for periodic data, that is well-adapted to
the study of nonperiodic variable signals. In astronomy, it
has found applications in the study of time series photo-
metry of variable stars (Szatmary, Vinko, & Gal 1994), and
in the study of hierarchical structures in molecular clouds
(Gill & Henriksen 1990), and galaxy distributions (Slezak,
De Lapparent, & Bijaoui 1993; Martinez, Paredes, & Saar
1993). It is also used as an objective, multiscale structure
identifier (Slezak, Durret, & Gerbal 1994).

In the present study, the wavelet transform is used to
evaluate the wavelet power spectrum, which can give valu-
able statistical information on a random distribution of
subpeaks, including any additional feature such as noise.
The method leads to a clear identification of the noise
threshold. The power spectrum is then used as a compara-
tive tool for testing phenomenological models involving
scaling laws. This adds new constraints on the clumping
hypothesis for Wolf-Rayet winds. We discuss how new
observations should be carried out in order to confront
existing models better.

2. THE WAVELET ANALYSIS

About 12 years ago, wavelet transforms began to be used
as an alternative to Fourier transforms in the case of non-
periodic signals (see Farge 1992; Daubechies 1992). The
advantage of wavelets as analyzing functions is that they are
well localized in space, as opposed to Fourier-based func-
tions (sine waves) that oscillate indefinitely over all space.
Two conditions must be fulfilled by some real function y(x),
in order for it to be used as a wavelet: (1) its mean must be
zero, i.e.,

r Yx)dx =0,

and (2) it must be well localized in space.

A commonly used wavelet (e.g., Argoul et al. 1989) is the
so-called Mexican hat, which is the second derivative of a
Gaussian:

W) = (1 — xYe 2

This function satisfies both the above conditions.

From the function ¥(x), also known as the mother
wavelet, we generate a wavelet family , ,(x) by successive
translation (parameter b) and dilation (parameter a) of the
mother wavelet, i.e.,

s = 2y(222).

a

This is analogous to the definition of the Fourier function,
which is expressed in terms of variations in phase and fre-
quency in a convolution with a sine wave. However, precise
information about the exact location of a feature can be
obtained concisely when using a wavelet basis. A Fourier
basis needs an infinitely broad spectral regime.

The continuous wavelet transform f(b, a) of a one-
dimensional signal f(x) using a wavelet family ¥, ,(x) is
simply

fb.a) = f SN o (1

Its inverse is given by the wavelet reconstruction theorem:

o= [ [re (=)L o

v J-w Jo a a

The quantity C, is a constant determined by the choice of
mother wavelet form:

C,= 2an¢-11&(¢)|2¢1: .

Here we denote /(&) as the Fourier transform of y(x):

1 ©

Note that the continuous wavelet transform of a one-
dimensional signal is expressed in two dimensions. As a
consequence, there is some redundancy of information in
wavelet space, i.e., a single subpeak of a given scale shows a
wavelet response over neighboring scales (see Fig. 1). This
redundancy turns out to be useful, however, because for
some specific wavelet families the signal can be recon-
structed from its wavelet transform using a different mother
wavelet function (see Daubechies 1992). For the Mexican-
hat family, the delta function can be used as a reconstruc-
tion basis, thus making the reconstruction theorem simpler:

¥ = ey (x)dx .

s =g | [ 70,00 - 2222
Y J— oo JO
-2 | a2, o
v Jo

with the normalization constant becoming
Cy=2n L E MO8 = /20 L EP(OE -

The wavelet transform is in many ways comparable to
the windowed Fourier transform (WFT), but much more effi-
cient. We recall that the WFT is obtained by using the
Fourier transform over some restricted domain of a signal,
as defined by some aperture, the so-called window. The posi-
tion of this window can be used as an extra parameter,
keeping information about location while a local determi-
nation of Fourier coefficients is made. The main problem
with the WFT is that the arbitrarily chosen size of the
window is kept constant. Obviously, some advantage would
be gained if we could automatically adapt the size of the
window with the frequency of the analyzing function, for
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F1G. 1.—Top: Wavelet transform of a difference spectrum of the star WR 137. Bottom: Same difference spectrum (bottom curve) decomposed into different
scale components by using wavelet filtering. Upward from the bottom curve are integrations of the wavelet transform over scale intervals (in A)

[al,a2] = [0.02, 0.13], [0.13,0.8], [0.8, 5.0], and [5.0, 32.0], respectively.

example by optimizing the wavenumber (k)—position (x)
uncertainty relation Ax Ak = 2x. This is what the wavelet
transform achieves; it is an improved WFT in which the size
of the window (the scale) is automatically adapted to the
frequency used.

Wavelet transforms can also be described as passband
frequency filters. Filtering properties can be inferred from
the wavelet reconstruction theorem: instead of integrating
over the domain 0 < a < o (eq. [3]), one could integrate
over any interval al < a < a2. This removes the com-
ponents of the signal having scales outside this interval (see
Fig. 1). This capacity of zooming in to any given scale, only
keeping components relevant to that scale, leads to applica-
tions in fractal analysis.

If exact information about location is of no great rele-
vance (e.g., features are randomly distributed), scaling infor-
mation may be easily obtained using the wavelet power
spectrum (WPS). We define the wavelet power spectrum
W1 ,52(a) of any function f(x) over some spatial domain [b1,
b2] as the integration of the square of the wavelet trans-
form over that domain:

Wo1,52(a) = J [/ (b, a))*db . @

The dependence of W, , on the parameter a will be used to
characterize the scaling behavior of the function f(x) over
the spatial domain [b1, b2].

3. SCALED DISTRIBUTIONS AND THE POWER SPECTRUM

Wavelet analysis will be especially efficient when one has
a signal made up of discrete components of various sizes.
This appears to be the case for the variable component on
top of Wolf-Rayet emission lines (Robert 1992). From the
data, however, it is unclear if and how these components are
organized. We attempt to model the data using the simplest
phenomenological approach that comes to mind. Our
model describes the signal as arising from a sum of random-
ly distributed Gaussian-like subpeaks having different
widths and amplitudes.

Let I(x) be a signal arising from the superposition of N
Gaussian-like structures having some fundamental shape
g(x). Let these structures be parameterized by their individ-
ual width ¢, intensity amplitude 4;, and location x;;. If we
assume that we have N ; structures of width g;, then

-3 ¥4 g( ). ©
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Fic. 2.—Example construction of a synthesized subpeak profile (bottom) using simple scaling relations. At different scales, Gaussians are randomly placed,
with their number » and intensity amplitude 4 determined by the scaling relations. The resulting profile is the sum of the individual scales. This example

corresponds to parameters « = 1 and f = —1 (see text).

Here we have made the simplifying assumption that all N;
structures with width o; have the same amplitude 4; (e.g.,
Fig. 2).

It appears plausible to describe this signal using simple,
general scaling relations. Assuming a continuous distribu-
tion over all possible scales g, we may rewrite [4;, N;] as
[A(o), N(6)] and use scaling relations such as the power
laws

Alo) = K 0%, O]
N(o) = Kyo’, ™

which are dependent on the four parameters K ,, a, Ky,
and f.

Given the conclusions from the previous studies of Wolf-
Rayet emission-line subpeaks (Robert 1992; Moffat et al.
1994; Moffat & Robert 1994) this is reasonable as a
working model, to the extent that no difficulties have been
encountered yet with it. Previous estimates led to « &~ 1.0,
B ~ —3.6, for the extracted subpeaks.”? We will now show

2 From the scaling relations f ~ g2-°*0-44) (Moffat et al. 1994) and
N(f) ~ f ~2:3+0-86.4) (Robert 1992), where f = Ao. The standard deviation
(s.d.) is based on the scatter for a typical star for f(¢) and among several
stars for N(f). One finds 4 ~ g!:0%0-464) and N(g) ~ g~3:62086:d) je
a=10+ 0.4(s.d); f = —3.6 + 16(s.d).

how a and B can be more objectively constrained using the
WPS.

The total flux F(o)do emitted by all the blobs in the range
[o, ¢ + do] should, according to our model, correspond to

F(o)do = N(0)A(c)odo = K,Ky0** ¥+ do . 8)

However, we do not expect the piling up of a large number
of structures in a signal to be directly detected by the
wavelet analysis—only the resulting deviations from the
mean. This can be understood by noticing that the wavelet
transform of a single Gaussian has zero mean. Because it is
a linear transformation, the wavelet transform of a set of
superposed Gaussians is the sum of their individual wavelet
transforms. So the overall wavelet transform should also
have zero mean, with a mean deviation proportional to the
square root of the number of Gaussians involved. This
mean deviation is what the wavelet transform will be sensi-
tive to.

Thus, the WPS (eq. [4]) gives us information about the
squared amplitude of the mean deviation at some scale ¢. In
the range of scales [o, ¢ + do], this should be directly pro-
portional to the square of (1) the intensity amplitude A(c) of
individual structures at that scale and (2) the square root of
N(o), the number density of structures at the same scale.
Naively, we might expect the WPS to show a dependence
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I

:EV;E such as

& WMo ~ [A(0)/N©0)]*do = K5 Kyo™ " do .

E_,E In fact, the WPS also includes information about the

2 fundamental shape g(x) of individual elements, since each
& element is itself a superposition of different scales. Strictly
& speaking, the WPS is a convolution of the general scaling

' laws with the WPS of an individual structure. Thus, the
dependence on the parameters « and g will be more gener-
ally given by

W(o) ~ g%C+D | )

where ¢(2a + B) is some nontrivial, but monotonic function
that depends on the fundamental shape of the structures
involved.

In order to check these ideas, we generated numerous
signals with known scaling parameter values, according to
the model described in equations (5), (6), and (7). For each
synthetic signal, the WPS was evaluated and the power
index ¢ = ¢(20 + f) was determined (see Figs. 3 and 4).

a=0.25 B=—2.5 : 20+f=-2

log( W(a) )

a=1 f=-2 : 20+B=0

a=1.75 f=-1.5 : 2a+B=2

LEPINE, MOFFAT, & HENRIKSEN
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Simulations were done using both Gaussians and triangles
as the fundamental shape. The function ¢ is shown to be
significantly dependent on the choice of the fundamental
shape g(x), and this should be kept in mind.

In principle, we now have a way of obtaining the value of
20 + B from the power spectrum by evaluating ¢. There is
some uncertainty in the evaluation of ¢ that arises from the
fact that we are dealing with signals extended over a limited
spatial domain, because subpeaks are then finite in number,
and subjected to statistical variations. This explains the dis-
persion of the points in Figure 4 (simulated signals from
which this figure was made, had a limited spatial extension
of 500 units, to match that of the data). Another uncertainty
arises from our poor knowledge of the fundamental shape
of the structures in the data. This effect is rather limited for
small values of 2a + f, but is far from negligible for large
values, as seen in Figure 4. Other fundamental shapes (e.g.,
Lorenzians; rectangular profiles) were tested and found to
give results similar to, or intermediate between, triangles
and Gaussians.
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F1G. 3—Wavelet power spectrum W(q) (right column, solid line) is plotted for each set of simulated multi-Gaussian signals depicted as examples on the
left. These simulated subpeak distributions are scaled with different values of the parameters a and B. Notice that W(c) is very. sensitive to these parameters:
the power dependence of the WPS changes accordingly, giving different slopes ¢ (linear regression, dotted line), which can be used to obtain an estimate of

2a + p (see Fig. 4). With this technique it is not possible to decouple « and .
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Fi1G. 4—Power dependence of the WPS (slope ¢ in Fig. 3) given for
different values of 2a + f, as obtained from simulations using the model
described in the text. Results are shown for the use of Gaussians (open
circles) and triangles (open triangles) as the fundamental shape of individ-
ual structures. Signals were generated using model parameters within the
range —1 <a <3 and —2 < f < —0.1, each with a 0.1 step (2 x 820
models are thus shown here).

Notice also that very large absolute values of 2a + f lead
to asymptotic behavior in ¢(2x + f). An infinite value of
20 + B would actually correspond to a case where no
scaling laws are present (absence of small-scale elements).
However, we see that it is not possible, with this method, to
distinguish between that specific case and a case where
20 + B = 5 (Gaussians) or 24 (triangles). Thus, we can say
that evidence for scaling laws is only compelling when
|2 + B|is found to be 4.

4. DATA SOURCE

In order to test for consistency with the hypothesis of
scaling laws in the subpeaks of observed emission-line pro-
files, it is necessary to have time-resolved, high spectral
resolution, high signal-to-noise (S/N) data, to detect coher-
ent structures over at least 1 order of magnitude in scale.
We focus our attention on the best bank of high-resolution
spectra to date: those obtained by A. F. J. M. and C. Robert
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in 1987, 1988, and 1989 (Robert 1992). These data consist of
time-resolved, high-resolution, high S/N emission-line
spectra from (1) the Canada-France-Hawaii Telescope
(CFHT) (normal diffraction grating + Reticon at the coudé
focus), showing mainly He 1 15412 in the WN stars HD
191765 (WN6), HD 192163 (WN6), and HD 193077
(WNS + OB), and C m 45696 for the WC stars HD 192103
(WC8), HD 192641 (WC7 + abs), and HD 193793
(WC7 + 0O4-5V); and (2) European Southern Observatory
(ESO) (echelle + CCD at the Cassegrain focus), also
showing C m 45696 (among other lines) for the stars HD
164270 (WC9) and HD 165763 (WCS5). These Wolf-Rayet
stars are also designated as WR 134, WR 136, WR 138, WR
135, WR 137, WR 140, WR 103, and WR 111, respectively
(van der Hucht et al. 1981); the latter names will be used
hereafter in this paper. ESO spectra of the stars HD 96548
(WNS8) and HD 113904 (WC6 + 09.5 Iab) from the same
observing run were not included in this study: most emis-
sion lines of the former are perturbed by P Cygni edges,
while emission lines of the latter are strongly diluted by the
supergiant companion. These effects made the identification
of variable subpeaks more problematic. CFHT obser-
vations of the two remaining bright WR stars in Cygnus,
WR 133(WNS5 + O9 Iab) and WR 139(WNS5 + O6), were
not included either: their emission lines are also heavily
diluted or perturbed by their bright O companions. WR
137, 138, and 140 are also binaries, but of very long period
(Annuk 1991) and dilution effects are less important, espe-
cially for WR 137 and WR 138.

All the spectra have a dispersion of ~0.1 A per pixel and
a signal-to-noise ratio per pixel in the continuum between
150 and 380 (see Table 1). Figure 5 shows a typical profile
obtained for each star. The observations were made over an
interval of 3—4 consecutive nights. Four to twelve spectra
spaced by ~1 hr were obtained each night for each star. All
spectra have been rectified.

The presence of subpeaks on the lines is obvious on the
top of all flat-top emission lines (see Fig. 5). However, in the
sloping part of a line profile it is often difficult to distinguish
these narrow features. As a way to enhance the presence of
discrete variable subpeaks, we have therefore subtracted the
smoothed mean profile (based on the data from all three or
four nights) from each line in each star, as was done by
Robert (1992). In order to avoid degradation of the base
profile in the smoothing process, we used optimized sixth-
order Savitzki-Golay smoothing filters. The time depen-
dence of the resulting difference profiles is shown as an
example in Figure 6 for one night’s data. The persistence
and slow evolution of the most obvious discrete features

TABLE 1
LisT OF OBSERVED EMISSION LINES

V" Number of (EW)
Star HD Subtype (km s™1) Spectra S/N ot Line Ay

WR 103...... 164270 WC9 1190 30 210 Cm 5696  —294.2
WR 111...... 165753 WCs 2415 28 150 C m 25696 —67.9
WR 134...... 191765 WN6 1905 36 190 He u A5411 —69.6
WR 135...... 192103 wC8 1405, 26 180 Cm A5696  —247.6
WR 136...... 192163 WN6 1605 26 200 He m 45411 —62.8
WR 137...... 192641  WC7+ OB 2550 25 240 C m 25696 —8338
WR 138...... 193077  WN5+ OB 1345 18 230 He m 45411 —133
WR 140...... 193793  WC7 + 04-5 2900 23 380 C m 45696 716

* From Prinja et al. 1990.
b Time-averaged equivalent width from Robert 1992.
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Fic. 5—Individual sample spectra of emission lines in eight stars observed at ESO (WR 103, WR 111) and CFHT (test). The He 1 45412 line was
observed in the WN stars, C m A5696 in the WC stars. All these lines show variable subpeaks, which are more obvious on flat-top lines.

makes it extremely unlikely for them to be the result of
instrumental or statistical noise.

5. DATA ANALYSIS

5.1. The Wavelet Power Spectrum Profile

For each individual line (C m 5696 in WC stars, and He it
5411 in WN stars) in each spectrum of our eight Wolf-Rayet
stars, we have evaluated the WPS of the structures observed
on top of the bright emission lines. From the spectroscopic
signal I(4) obtained after subtracting off the mean, we first
calculate the wavelet transform I(1, o). Then for an emis-
sion line at location A, with a FWHM of A/, we evaluate
W (o) over the restricted domain [A, — A4/2, A, + AA/2], in
order to avoid edge effects. For a given line in a given star
we obtain the average WPS W(o) from each of the differ-
ent spectra. Then we normalize W(o) by dividing by the
mean line equivalent width for that star, in order to facili-
tate a comparison among different objects.

A sample average WPS so obtained for the C m 5696 line
in the star WR 137 is shown in Figure 7. The smallest scales
are usually dominated by instrumental or photon statistical
noise, appearing as high-frequency components. The noise
sets a minimal value for the power at a given scale. Intrinsic
subpeaks in the signal may only be detected with confidence
if they amount to a power greater than this minimal value
set by the noise.

Beyond the region where noise dominates, we observe an
increase in amplitude as the scale increases. A noise-only
signal cannot produce such an increase in power for larger
scales since it is always dominated by small-scale com-

ponents. This is the principal diagnostic for the presence of
discrete structures distinct from the noise. The rate of
increase can be used to determine the presence of scaled
distributions, as described in the previous section. However,
one must be very careful to remove the possible effects that
might arise from the presence of noise (see section below).

The WPS usually reaches a maximum at some scale we
designate as the dominant scale. This usually corresponds to
the scale at which the structures have the highest intensity
amplitude in the signal. In our model of a scaled distribu-
tion, this dominant scale may be introduced by setting an
upper limit for the width of any intrinsic individual struc-
ture. The shape of the WPS is very similar for all stars in
our sample (Fig. 8). These are all consistent with the pres-
ence of intrinsic subpeaks, with various levels of superposed
instrumental and statistical noise.

In this paper, we have neglected possible variations in the
WPS across the emission line. This restriction was added
only for the sake of our simple model, which does not
include this behavior. However, such variations in the
power spectrum were actually observed. These will be
analyzed, along with the time dependence, in an upcoming
paper (Lépine et al. 1996, hereafter Paper II).

5.2. The Noise Limit

Noise effects appear in the WPS as an excess on smaller
scales. As a good approximation, the noise can be said to be
independent of the behavior of the structures we are inter-
ested in since it arises mainly from photon statistics
(dependent mainly on the amplitude in the emission line,
which is large relative to the subpeaks) and from instrumen-
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F1G. 6—Set of five consecutive spectra taken from the same single night as the spectra in Fig. 5 is shown for each star. In each case, an average, smoothed
line profile was subtracted in order to enhance the presence of the subpeaks. The average time separation is ~1 hr between successive spectra with time
increasing upward. Some subpeaks appear to move slightly and change intensity with time.

tal, signal-independent readout noise. It is possible sta-
tistically to remove these noise effects by subtracting their
power contribution from the WPS. This contribution can
be evaluated by using the adjacent continuum emission of
the star, which normally should be devoid of any significant
intrinsic structure (i.e., it should be flat). However, both the
photon count and the Poisson noise arising from it are
lower in the continuum than in the line peak, so that the
noise must be scaled accordingly. However, we need not
evaluate any multiplicative factor, since it can be obtained
directly from the WPS. If we assume that the noise has more
or less the same scaling behavior in both the line and con-
tinuum, we need only scale the WPS of the continuum with
that of the line at the smallest scales where the noise also
dominates in the line. The normalized WPS so obtained for
the continuum is then subtracted from the emission-line
WPS. An example of such noise correction is shown in
Figure 7.

The small-scale part of the WPS is very dependent on the
noise in the data (see Fig. 8). The amount of noise is critical

in our ability to identify intrinsic small-scale structures.
Below some limiting scale, subtraction of noise effects
becomes increasingly unreliable in determining the exact,
intrinsic WPS, because intrinsic structures become indistin-
guishable from the noise. This noise limit is defined as the
scale for which the noise component and the intrinsic com-
ponent of the data reach the same amplitude in the WPS
(see Fig. 7). The noise limit clearly identifies the scale below
which any interpretation about the presence or behavior of
intrinsic structures becomes hazardous.

If we are specifically looking for scaling laws, we must
sample the largest possible significant range in scale, in
order to derive anything useful. This significant range is set
between the dominant scale and the noise limit. Therefore,
increasing the accuracy in the detection and determination
of scaling laws requires one to improve both the spectral
resolution and the signal-to-noise ratio of the data, in order
to have the noise limit set to smaller scales. Future obser-
vations should emphasize this goal, as well as providing
better time resolution, in order to avoid any smearing out of
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Fig. 7—WPS for the subpeaks in the C m emission line of the WC7
star WR 137. The dominant scale o4, (see text) is defined as the scale o
where a maximum is reached. A WPS evaluated in the continuum region
next to the line is used to determine the power contribution of the noise.
This contribution is then subtracted from the subpeak power spectrum.
The noise limit is defined as the lowest scale where the power contribution
from the subpeaks can be evaluated with confidence.

the small-scale features because of their dynamical behav-
ior.

5.3. Fitting Data to the Model

To test for the hypothesis of scaling behavior in emission-
line subpeaks, we compare WPS obtained from the data to
those of simulated profiles generated in accordance with the
model described by equations (5)—(7), and to which a large-
scale cutoff was included, in order to reproduce the presence
of a dominant scale.
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Three aspects of the observed and model wavelet spectra
are compared: (1) the dominant scale o, (2) the power at
the dominant scale W(og4,,), and (3) the scaling param-
eter 20 + B. The parameters 64,, and W(oy,,) affect the
WPS in the simplest way. In log-log space, they correspond
to horizontal and vertical shifts. Only the scaling parameter
20 + B directly reflects the shape of the WPS.

We have already shown the distinct scaling behavior we
get by using triangles instead of Gaussians. Since other
tested shapes led to a behavior intermediate between
Gaussian and triangles, we restricted ourselves to two series
of models, one using Gaussians, the other triangles. For
each preassigned value of the parameter 2« + f and for
each fundamental shape (Gaussian or triangular), a set of
synthetic signals was constructed. Individual values of «
and B do not matter here, since only the combined param-
eter 2o + B dictates the behavior of the associated WPS.
For each set, the power spectrum was evaluated and com-
pared to that previously found for the data. Synthetic power
spectra were translated in log-log space based on least-
squares fit procedures. For each star, we determined the
model that fitted best the observed WPS (e.g., Fig. 9). Table
2 shows the parameters for the best-fitted model for each
star. Gaussian and triangular models were treated separa-
tely, and results are given for each type. Because moderately
high values of ¢(2¢ + p) are found, the two models do not
lead to the same value of 2a + f (see Fig. 4).

We note here that decoupled values of @ and f cannot be
determined using the current WPS technique. So far, we
know of no way to determine their individual values other
than by extracting and analyzing individual features in the
data, a procedure we believe to suffer from various biases.
We will, therefore, restrict ourselves to the determination of
20 + B, from which useful information can still be inferred.

5.4. Discussion
5.4.1. Dominant Scales

Table 2 shows the dominant scale o4, and its corre-
sponding velocity dispersion &, found for the substructures

_7 T L T 1T T 17T 1T
-8
-9 + N .
. ,/
—//,// — — -WR135
< — -WR137 1
B ~—-—WR140 1
L 7 J
_10 1 1A | 11 IJ_L N T - IAL 11 1 Ll 11
-1 -05 0 0.5
log(o)

Fi1G. 8.—WPS from subpeaks of all W-R stars in the sample. The left panel refers to subpeaks observed in the He m 45412 line; the right panel is for those
observed in C m1 A5696. The amplitudes were normalized in overall emission-line amplitude units, so that a comparison can be made between different stars.
Notice the distinct shape of the WPS from star WR 134, and the various levels introduced by the noise in the low scale region.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...466..392L

L

(a3
o

J: I 4B

o

(=q]
[{e]]
(=]
[=h

No. 1, 1996

T T T T 'l T T T T | T T T T
-7 = dominant scale —]
) '—8 -
~—
b -
S—
= -
S—r |-
) ~
St i
-9+ o
9]
I - o 0O
L o ]
r noise limit S ¢ 8 B!
- 5L I S| 1
0 2 4 6 8
r 2a+ B 7
_10 1 I ; 1 1 1 | 1 1 i i
-1 -0.5 0 0.5
log (o)

Fig. 9—WPS of a subpeak model (circles) that best fits the WPS of
subpeaks on the C m line in WR 137 (corrected for noise, solid line)
between the noise limit and the dominant scale. The model uses a set of
Gaussians (fundamental shape) with 1.7 A (~90 km s~ 1) as the dominant
scale and a scaling parameter 2o + § = 3.4. The subplot shows the least-
square value (Isv) obtained by fitting the WPS of similar models with given
values of 2« + B; it clearly shows a minimum around 2o + § = 3.4.

in each star. The value of ¢, for the largest individual sub-
structures present in the line tends to be relatively similar
for most stars [94 + 11(s.d.) km s~ 1], except for WR 134.

The dominant scale for WR 134 is much larger, with g, ~
440 km s~ 1. This suggests that at least some (i.e., the largest)
of these subpeaks might have a different origin. Actually, it
was already noticed by Robert (1992) and McCandliss et al.
(1994) that the largest subpeaks in the lines of WR 134 move
in a periodic fashion, in contrast to the apparently stochas-
tic nature of all the subpeaks seen in other stars of the
sample. This periodic behavior might be the result of asym-
metry in a single rotating star or a binary system. This
distinct-origin hypothesis is corroborated by the wavelet
analysis.

The outstanding nature of WR 134 serves as supplemen-
tal evidence that there is no a priori reason for observing the
same dominant scale in each of the other stars. The
observed dominant scale seems to be an intrinsic property
of WR stars as a whole, rather than some purely numerical
phenomenon. Moreover, there is some evidence that a
general stochastic phenomenon similar to that of the other
stars is also present in WR 134 but superposed on the varia-
tions generated by the large-scale periodic behavior. The
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scaling parameter 2a + f for WR 134 is small, indicating a
significant subpeak component on smaller scales. We
suggest that this arises in an additional subpeak distribu-
tion similar to that seen in other stars, that is superposed on
the large periodic structures.

5.4.2. Scaling Properties

The interpretation of our results in terms of scaling laws
is complicated by the fact that we are dealing with struc-
tures seen in projected velocity space. The widths of the
subpeaks observed in the emission lines cannot be directly
associated with the physical sizes of the corresponding wind
inhomogeneities. Any density enhancement should have a
minimal velocity dispersion because of its internal tem-
perature. For a gas of (helium) ions in a hot (10* K) wind,
this would be of the order of ~5 km s~ (~0.1 A in our
lines), and no subpeak having smaller width should be
observed. This makes our simple model, where ¢ can take
any arbitrarily small value, unsuited to the observed pheno-
menon. However, since the resolution in our data is also 0.1

, our model can be used as a good approximation in the -
corresponding spectral regime, but a more complete physi-
cal model is still needed in order to relate the velocity dis-
persion g, to the real, physical extension of the subpeaks.

The most we can do with the current oversimplified
model is to speculate about the total flux emitted by the
intrinsic variable component in the line. According to our
model, with a scaled distribution described by equations (6)
and (7), the total flux emitted by any given scale F(g)do is
proportional to 6**#*1 dg (eq. [8]). Hence, if the coefficient
o + B + 1is greater than 0, then most of the flux will arise
in the largest structures, but if it is smaller than 0, then most
of the flux will be emitted by the small structures. In the
latter case, the large subpeaks observed are seen as the “tip
of the iceberg,” and a much larger part of the flux in the
emission line might come from (smaller) density enhance-
ments; this has already been suggested by Moffat & Robert
(1994). In the former case, however, the small density
enhancements (if any) are not bright enough or numerous
enough to make a significant contribution as a whole. In
this case, most of the observed line flux would arise in
another (likely smooth) component of the wind.

These possibilities are illustrated in Figure 10, where the
previous (biased, i.e., not allowing for superposition effects)
values obtained for the parameters o and f and the current
range of estimates are plotted. Note that the range of old
values does not agree with the current estimates, which
means that, assuming the present analysis to be viable, the
various biases we suspected to be present effectively led to
an erroneous evaluation of the scaling parameters. Figure
10 also shows the zones for which these parameters would

TABLE 2
BEST-FIT SUBPEAK MODEL PARAMETERS

g jom o.l)

Star (k) (kms™!)  W(os4w 2o+ B(Gaussians) 2« + B (Triangles)
WR 103...... 20+0.1 105+5 0.029 25402 33+05
WR 111...... 20401 105+5 0.033 23402 29403
WR 134...... 80+15 440 + 80 0.032 12401 17403
WR 135...... 1.8 +0.1 95+5 0.021 26102 35405
WR 136...... 1.54+0.2 83+ 11 0.015 28102 32+05
WR 137...... 1.5+0.2 79 +11 0.025 34104 45+ 10
WR 138...... 1.6 £ 0.2 88 + 11 0.025 2.5+ 0.6 30+ 05
WR 140...... 19+0.2 100 + 11 0.014 >4 >5
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FiG. 10.—Plot showing the range of model parameters a and B that are
consistent with the data. Vertical shading shows the results obtained when
using the model with Gaussian subpeaks, horizontal shading for the model
with triangular subpeaks. The dashed line separates parameter space in
regions where the flux contribution is dominated by small- and large-scale
structures, as indicated. The error bars shows the range of values obtained
with previous techniques (extracted subpeaks), which are believed to suffer
from various biases.

indicate a large-scale or small-scale flux-dominated dis-
tribution. We observe that values of o < 4 and f = —5 that
lie within the allowed shaded regions would lead to a large-
scale flux-dominated regime, where the (undetectable)
small-scale part of the distribution does not contribute
enough flux to account for a significant fraction of the line
flux. The converse is possible, though, if« = 4 and § < —5
within the allowed region. However, the latter case makes
the model appear to be somewhat ad hoc, and a different
model might be more appropriate. In any case, this raises
doubts about the hypothesis of a fully clumped wind that
assumes that most (or all) of the line flux arises in an inho-
mogeneous component (Moffat & Robert 1994). We specu-
late that more sophisticated subpeak models, perhaps
involving no scaling laws, could also be consistent with the
data. The wavelet technique presented here could be used as
an objective test for these alternative models.

Further investigations should be carried out by gathering
spectra with finer spectral resolution in order to test for
scaling properties of the line structure to smaller scales. The
intrinsic velocity dispersion arising in thermal broadening
might, however, set an inescapable low-scale limit to such a
detection. New observations should be made with a simul-
taneous increase in spectral and time resolution as well as
S/N. From the current wavelet power spectra, we estimate
that gaining, say, an additional threefold in scale can only
be achieved by increasing the spectral resolution by a factor
of 3, and the signal-to-noise ratio by a factor of 10. In order
to increase the time resolution by a factor of 3 as well (see
paper II), this would require observing bright stars (m < 3)
with a large telescope (¢ > 3 m).

6. SUMMARY AND PERSPECTIVES

We have presented a new objective technique to analyze
the stochastic variable emission component in line spectra
of Wolf-Rayet stars, involving the use of a wavelet power
spectrum (WPS). This technique was used to quantify the
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intrinsic variable component in the line and to test for con-
sistency with the idea of scaling laws.

The data were found to be increasingly affected on
smaller scales by instrumental and statistical noise. The
WPS was used to determine a noise limit, defining the scale
below which the data became unreliable because of the
noise. The effects of the noise on the WPS were evaluated
and statistically removed.

We have identified a scale where the WPS reaches a
maximum, the dominant scale, which is presented as a new
parameter to characterize the variable subpeak component
in the emission line. The dominant scale is found to be
similar in most of the stars of our sample, suggesting that
the variable subpeaks in these stars have a similar origin.
The only exception is in the star WR 134, where a larger
dominant scale corroborates previous results indicating a
distinct nature for the observed subpeaks (Robert 1992;
McCandliss et al. 1994). Further studies should include a
larger sample of Wolf-Rayet stars, where the dominant scale
should be checked in lines of various ionization levels. This
is required to search for any correlation between the domi-
nant scale and the most obvious stellar parameters, such as
the wind terminal velocity, the spectral subclass, or the
mass-loss rate.

We have introduced a simple phenomenological model
for the variable subpeak component, describing it as a sum
of Gaussian-like features of various scales ¢ (eq. [5]). The
model allows for the presence of scaling laws, in the form of
power laws parameterized by the powers o and B (egs. [6]
and [7]). We have shown that only the combined parameter
20 + B can be safely estimated from the WPS. We have
found the data to be consistent with our model, providing
20 + B~ 27+ 04(sd) for Gaussian subpeaks, and
2a + B =~ 3.4 + 0.6(s.d.) for triangular subpeaks, neglecting
WR 134 and WR 140 in both cases. Other subpeak shapes
are believed to give intermediate results. We have noted the
possibility that other models might give slightly different
scaling properties, including the possibility that no scaling
laws are present. The WPS technique is expected to be a
good way to test for other (more physical) subpeak models.

So far, the information contained in the time evolution of
the subpeaks, as well as systematic variations in the behav-
ior of the subpeaks across a single emission line, has not
been considered. This will be considered in Paper II.

In order to increase our confidence in the above results,
an increase in the range of scales over which subpeaks can
be identified (roughly between the dominant scale and the
noise limit) is required. So far, because of noise limitations,
we are not able to observe scaling behavior over more than
1 order of magnitude in scale. Improved, but difficult
observations are necessary, using increased spectral and
time resolution combined simultaneously with better
signal-to-noise ratio, in order to push the noise limit several
factors lower. High time resolution may also be required for
a better identification of individual subpeaks, in order to
determine their fundamental shape. We would then expect
to obtain more significant results for the scaling properties
of emission-line subpeaks in Wolf-Rayet stars. This would
place us in a better position to evaluate the true impact of
clumping on basic key quantities such as the mass-loss rate.

The authors are grateful to J. C. Brown, A. Conway, and
L. Richardson from Glasgow University, for useful, con-
structive comments and discussions related to this work.
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