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ABSTRACT

We present analytic formulae for the integral number count distribution of cosmological bursting or
steady sources valid over the entire range of fluxes, including density evolution and either standard
candle or a power-law luminosity function. These are used to derive analytic formulae for the mean
redshift, the time dilations, and the dispersion of these quantities for sources within a given flux range for
Friedmann models with Q =1, A = 0 without K-corrections. We discuss the extension to cases with
Q <1 and inclusion of K-corrections. Applications to the spatial distribution of cosmological gamma-
ray burst sources are discussed, both with and without an intrinsic energy stretching of the burst time
profiles, and the implied ranges of redshift z are considered for a specific time dilation signal value. The
simultaneous consideration of time dilation information and of fits of the number distribution versus
peak flux breaks the degeneracy inherent in the latter alone, allowing a unique determination of the
density evolution index and the characteristic luminosity of the sources. For a reported time dilation
signal of 2.25 and neglecting (including) energy stretching, we find that the proper density should evolve
more steeply with redshift than comoving constant, and the redshifts of the dimmest sources with
stretching would be very large. However, the expected statistical dispersion in the redshifts is large, espe-
cially for power-law luminosity functions, and remains compatible with that of distant quasars. For
smaller time dilation values of 1.75 and 1.35, the redshifts are more compatible with conventional ideas
about galaxy formation, and the evolution is closer to a comoving constant or a slower evolution. More
generally, we have considered a wide range of possible measured time dilation ratios, and we discuss the
values of the density evolution and the redshifts that would be expected for different values of the energy
stretching.

Subject headings: cosmology: theory — gamma rays: bursts

1. INTRODUCTION

The integral distribution N(> F) of the number N of sources with flux greater than F provides valuable information about
the luminosity and spatial distribution of unidentified astronomical sources, especially in the absence of independent distance
indicators. The main problem is that it convolves the information about the luminosity, density, and distance distributions in
a manner that is difficult to untangle. For gamma-ray burst (GRB) sources, the angular distribution is highly isotropic and
appears to be consistent with either a cosmological or an extended galactic halo interpretation (Fishman et al. 1994). In either
case, the departure of the integral distribution from a simple Euclidean N(>F) oc F~*/? law observed at low fluxes may be an
indication that the end of the spatial distribution has been reached (Meegan et al. 1992) and/or that at low fluxes the effects
associated with the luminosity function or the density evolution start to dominate the integral distribution (see e.g., Was-
serman 1992; Wijers & Paczynski 1994). In the cosmological case, even an unbounded and unevolving standard candle
distribution will slowly turn over at low F due to cosmological redshift effects at z 2 unity; (see e.g., Mao & Paczynski 1992;
Dermer 1992). However, such effects at low fluxes depend on the type of luminosity function and density evolution of the
sources.

Information about the redshift of the sources would be of significant interest for a cosmological distribution, as it could fix
one of the crucial quantities that is otherwise an unknown parameter in statistical N(F) versus F fits (see e.g., Loredo &
Wasserman 1992; Fenimore et al. 1993; Band, 1994; Horack, Emslie, & Meegan 1994; Emslie & Horack 1994; Cohen &
Piran 1995; Mészaros & Mészaros 1995, hereafter MMO95). In the absence of identified counterparts and/or of identifiable
lines, some information on the redshift could be obtained from the detection of a “ cosmological signature,” fainter (distant)
sources being expected to have longer characteristic timescales due to cosmological time dilation (Paczynski 1992; Piran
1993). Evidence for this effect has been reported from BATSE 2B data (Norris et al. 1994, 1995). One difficulty is that this effect
is cleanest for standard candle sources with a standard duration; a broad luminosity function and/or an intrinsic spread in the
durations could smear out the signature. Another possible difficulty with this signature is that its effects could be mimicked by
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intrinsic properties of the sources (see ¢.g. Mészaros & Rees 1993; Brainerd 1994, Band 1994; Yi 1994). An additional
complication is that an intrinsic energy stretching of the time profiles may be present (Fenimore & Bloom 1995; Fenimore et
al. 1995), which would also weaken the cosmological signature.

In this paper we present new exact analytic solutions for the integral distribution N(> F) with a power-law (PL) or standard
candle (SC) luminosity function and a power law density evolution, in the context of cosmological distributions. These
expressions are exact over the entire range of fluxes F and thus are more general than the asymptotic forms discussed in
MMO95. We discuss mainly the Q = 1, A = 0 case without K-corrections (where Q is the present ratio of the density to the
critical one, A is the cosmological constant), with comments on extensions to the cases < 1 and inclusion of K-corrections.
We also discuss analytic expressions for the theoretically expected redshift and time dilation, calculating the mean values and
the dispersion under the effect of both a density evolution and a luminosity function. The cosmological signature is sensitive
to both, the main effect of a luminosity function being a reduction of the signature over what is expected in a SC model. Some
analytic expressions are valid both for bursting or steady sources, with an appropriate change of the evolution index. The
inclusion of an intrinsic energy stretching of time profiles in the example of GRB (such that bursts are intrinsically narrower at
larger energies) is discussed and incorporated into an analysis of the redshifts and cosmological signatures of GRB. We model
the expected signatures both with and without energy stretching effects for the evolution and luminosity function parameters,
and assuming a given value for the cosmological signature illustrate how one can determine the density evolution index and
deduce the range of redshifts for sources in different peak flux ranges. We also discuss the statistical errors associated with
such redshift determinations and discuss their compatibility with currently held views on the redshift of earliest galaxy
formation.

2. INTEGRAL DISTRIBUTION

In this section we derive analytic expressions for N(> F) of bursting or steady sources. Note that the corresponding
differential distribution used for statistical fits is obtainable as N(F) = | [dN(> F)/dF]|. The analytical relations collected in
this section were already used (without equation details) in the 2 fits to the 2B catalog (Meegan et al. 1994) in Horvath,
Meészaros & Mészaros (1995, hereafter HMM95). Note that our calculations in §§ 2 and 3 are general and hold for any
cosmological sources with F in units of photons cm ™2 s~!. Note also that in this paper we denote the flux by F (unlike in
MM95 and HMM?95). This more general notation is motivated by two things: first, our calculations in §§ 2 and 3 may be
applied in some cases to steady sources; and second, even for GRBs the expressions are valid for either average or peak
photon fluxes, as long as F is in units of photons cm ™2 s~ !. We prefer F rather than the P sometimes used for peak flux, which
can be confused with power or period, and this also distinguishes it from the instrumental counts s~!, which are denoted
generally by C. Thus, in §§ 2 and 3 F denotes generally photon number flux, in the remaining sections photon number peak
flux of GRB, and C denotes the instrumental counts s~ 1. It is also necessary to emphasize that our value of F is not to be
confused with the energy flux measured, e.g., in units ergs cm? s~ 1. This is because the relation used here between the flux and
luminosity (see [3] below) holds only in the case when the luminosity has the dimension photons s~ ?, and the flux has
dimension photons cm ™2 s~ 1. Otherwise, for energy fluxes our equation (3), and hence the following calculations, should be
correspondingly changed (MM95).

We assume a density evolution as a power law of the scale factor,

n(z) = ny(1 + 2)?, (1

where z is redshift, D is a real number characterizing the density evolution, n(z) is the source proper density, n, is the
corresponding density at z = 0 (D = 3 corresponds to a constant comoving density), and the units of n, are in Mpc ™3 yr ! for
bursting sources or Mpc ~ 3 for steady sources. The luminosity function @ is taken to be either of the SC type or a PL in the
luminosity between some lower and upper limits in the photon luminosity % (in photon units s 1),

e (&L — %) (standard candle);

o(¥) = {ﬁg’;l(g/gm)—ﬁ for £, < ¥ < &, (power law)’ @

where i = ny(B—1)/[1—K ¥~ Y] for B # 1 and K = #,/&,.. For Q = 1, if there is no K-correction (MM95), the flux F is
related to ¥ and the comoving radial coordinate y (Weinberg 1972; MM95) by

F=Fy(l—yx?x"%, Fyu=%2/4R}), 1+z=(01-p2 =972, ?3)

where y = 1—n varies between 0 and 1 for z ranging from 0 to oo (1 is the conformal time), and where R, = (2¢/H,) =
6000h~* Mpc is the Hubble radius (c is the velocity of light; H, = 100h km s ~* Mpc ™! is the Hubble parameter).

For a given density evolution index D the number of observed sources with flux greater than F (the integral distribution) is
given by (MM95)

‘M 21
Ny(>F) = 4nR3 L} NL)dz J; (1—y)S+2B-2Dy2 gy | @

where for bursting (steady) sources B = 1 (B = 0),
X1 =[1+ @aREZF/ L)1 1 =1 +¢V/») 1, “
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and we defined the normalized peak flux ¢ = F/Fy as the ratio of the observed flux to the Euclidean flux from the same source
at the Hubble radius. Concerning the parameter B, this is introduced in order to treat both steady (B = 0) and bursting
sources (B = 1). The latter value arises because in this case one must include an extra (1 + z)~! factor into equation (4) to
account for time dilation of the burst rate per unit time (see, e.g., MM95, Mao & Paczynski 1992). In what follows, we will
consider bursting sources, i.e., B = 1. Nevertheless, the formula presented in the entire §§ 2 and 3.1 apply also for steady
sources; for them one should use the appropriate dimension for steady sources and in §§ 2 and 3.1 use the results based on
equation (4) with B = 1, but substituting D + 1 for D. This means that what holds for a given D in bursting sources also holds
for D —1 in steady sources. In both cases, D = 3 means comoving constant source density.

Analytic solutions of equation (4) were given by MM95 for F in the two (three) asymptotic regimes of the SC (PL)
luminosity functions (eq. [2]) and density evolution (eq [1]) in the special case of D < 4 with D integer or half-integer. It is
useful, however, to have analytic solutions that are valid for arbitrary F and D. In the next two subsections we derive the full
analytic solutions over the entire range of F and D.

2.1. Standard Candle Luminosity Distribution

For the SC case in equation (4) we have [§ ®(£)dZL = n,, so the double-integral reduces to an integral over the single
variable y. In MMO95, the solution of the SC case was found by expanding the binomial in the integrand for integer or
semi-integer values of the density evolution index D < 4. Here we do the direct integration of equation (4) in the SC case using
n as the variable of integration. The result is

4
Np(>F)= (?n)”o R3 65> p(0y) ,

l—rﬁ_w 1_’110—20 l_ﬁl—zn
9-2D  5-D 11—21))’

0o *2Ip(0) = 3(

4z

3 >n0R(3)AD , D<45

HmNpy(>F) = (

F-0

lim Ny(>F) = (4—n>n0R3 6532,

F— oo 3
Ap= ° ©
2™ 19 — 2D)(10 — 2D)11 — 2D)]”’
where I, is a dimensionless function of ¢, or 5, which are defined as
0o = F/Fy, = F[[ZLo/4nR)]; ny=1—yx=(1+0s")7". ™

The expression of N (> F) in equation (6) is of broader applicability than that in MM9S, being valid for any real D (except
D =4.5,5,5.5). (In MM95 only the two limiting cases were obtained for arbitrary D < 4 and the identical results in different
forms for integer and semi-integer D < 4.)

For the three remaining values of D the direct integration of equation (4) gives

0o a5 = —/2) + 6y, — 3lnn, — (3/2)mi ®
0535 =3n;'+ 6lnn, — 3, , 9
oo 55 =(9/2) = 3lnny — 607t + (3/2n; * (10)
Note that for D > 4.5 one has limy_,, Np(>F) = co. Note also that for D = 6 we have
Ne(>F) = (4n/3)no R3[x1 /(1 — x9)1° = 4n/3)ng R 06 % , an

ie,, Is = 1. This is exactly the same expression as in the Euclidean limit for arbitrary D (see eq. [6]). For D < 6(D > 6) the
expressions N (> F) grow less (more) steeply toward small F than the corresponding Euclidean curve (11). In other words,
I, < 1forD < 6,and I, > 1for D > 6. For example, for D = 7 we have

N+(<F) = (4n/3)ng R§ 05 **[1 + (3/2)05"* + (3/5)00 '] - 12)

Note that the mimicking of an Euclidean behavior for an evolution law D = 6 is characteristic of an Q = 1, A = 0 bursting
model. For instance, with the same model but steady sources, the Euclidean behavior occurs with D = 5, rather than 6. More
generally, for any arbitrary cosmological model one can always find an evolution law that will just cancel out the cosmo-
logical effects.

In Figure 1 we show two sets of theoretical curves for two values of #,. For comparison, we also show the 2B observed
integral numbers, with a sliding vertical axis. The top set of curves has an %, chosen to give an approximate eye fit of the 2B
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log N(>F)

log F (ph cm2s-1)

Fi6. 1.—Standard candle (SC) theoretical integral peak flux distributions for values D = 2, 3, 4, 5, 6, 7 in increasing order upward. Two sets of curves are
shown, for two values of the luminosity &,. The bottom set has a luminosity £, = 4.5 x 105°h™2 s, the upper one has £, = 3 x 1057h~2 s~1. The lower
set has been artificially moved down by one unit in log N so as not to overlap. For comparison, the 2B data set is also shown twice, again the lower curve
down by one unit, to illustrate qualitatively that different choices of £, provide approximate fits to the same data set corresponding to different evolution
indices D. The higher luminosities fit with higher D. In this case, the lower curves fitted approximately to D = 2, the upper ones with D = 4 (and similar fits
can be found for D = 3). More accurate y? fits are discussed in HMM95; see also Table 1.

data to the D = 4 curve, while the lower set has an %, giving a approximate fit of the data to the D = 2 curve. While this is
not an accurate fit, it illustrates the fact that fits to observed data can be found for various D (including D = 3, not shown) by
varying %, (and n,, but the vertical axis has been left arbitrary). More detailed x? joint fits to the 2B and PVO data sets give
somewhat different D, £, best-fit values (see HMM95 and Table 1). Fits to 3B data are in progress. Qualitatively, this D
degeneracy can be understood by considering, e.g., what happens as one increases %, in which case one needs to see deeper to
maintain a given flux F. Seeing deeper gives more cosmological bending to N(> F) for nonevolving bursts; to match the data
one would then require an N(> F) that bends less severely by incorporating a density evolution that increases the relative
frequency of bursts at large distances.

TABLE 1

STANDARD CANDLE RESULTS BASED ON EQUATIONS (38)—(39) OF THE MEAN (1 + z) VALUES
AND THEIR RATIO AND DISPERSIONS FOR DIFFERENT VALUES OF D*

D Lo/10°h7%)  (T+3z) Al+z) {T+z) Al+z,) Tap Aryy
10...... 0.2 1.15 0.036 1.59 0.09 1.39 0.09
15...... 0.3 1.18 0.046 1.74 0.11 1.47 0.11
20...... 0.45 1.23 0.057 1.94 0.14 1.58 0.14
25...... 0.6 1.26 0.066 2.11 0.17 1.67 0.16
30...... 0.8 1.31 0.078 2.32 0.21 1.78 0.19
35...... 11 1.36 0.093 2.61 0.26 191 0.23
40...... 20 1.50 0.132 3.36 0.40 2.23 0.33
45...... 7.0 2.02 0.287 6.55 1.04 324 0.69
50...... 15.0 2.63 0.474 10.90 1.96 4.14 1.05

* Where the different %, (in units of photons cm ™2 s~ !) used for different values of D are taken
froin the fits of HMMO95.
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2.2. Power-law Luminosity Distribution
Equation (4) for a PL luminosity function given by the second line of equation (2) reduces to the form (see MM95, egs.

[14]-[17])

4n L3 4n _
Ny(>F) = 3(4n F)s/zl 3 - RS 0, > 1p (13)

where

bK1/2 8-2D
I, =2b"3%2% J; dyy* 21 + y)"3|:1 + kZI a (1 + y)"‘] , (14

and I, is again a dimensionless function of 6,,, K, f, and D, valid for integer and semi-integer values of D < 4 (for other values
of D see below). We have defined here

y=b&/Z)"?, b=0,"=[ZL,/4nRFF)]*, 6,=F/Fy,, Fpn==L,/41R}), Fyy= L/(41R}),
K=2y/%n>1, ay=(—103/k+3)HEB -2D)/[k\8—2D -k}, k=0,1,...,(8—2D). (15)

Npis a function of F (0,,) and depends on the parameters #, £,,, &£, B, and D. In MM9S5 the integral (eq. [14]) was estimated
in three asymptotic regimes of F for arbitrary f. However, exact solutions valid over the entire range of F are of interest and in
principle can be derived for any rational value of 8. An exact solution is particularly simple for some definite rational values of
B. Guided by the value g ~ 1.88, which fits the slope of the low F differential distribution (see, e.g., Meegan et al. 1992), we
adopt here f = 15/8. A nontrivial choice of f must be near such a value, where the shape of the distribution at the faint end is
dominated by the shape of the luminosity function, rather than cosmological effects. On the other hand, significantly steeper
(e.g., B = 2) power laws are dominated by the faint end, while significantly flatter power laws (e.g., < 1) are dominated by the
bright end and thus mimic a SC behavior, the faint part of the distribution being dominated by cosmological effects. With this
value of §, the expression for I, in the integer and semi-integer case D < 4 becomes

tM M
ID = 8b_5/4 j dtt4T_3 Z ak(t4/T)k = 8b_5/4ADlPM 5 (16)
tm =
where
t= y1/4 = b1/4($/$m)1/8 , T = 1 + t4; tm — b1/4 — 0'; 1/8 , tM — b1/4K1/8 — (FHM/F)I/S ;
Ap = 6/[(9 — 2D)10 — 2D)11 — 2D)], M=8-2D; 17
and (see Appendix)
tM M tM M
Y, =4, j aut*T 3 2 a(t*/TY = j au*T 3 Z [(k + 1)k + 2)/2]T*. (18)
tm k=0 tm k=0

The W,, have an exact solution over the entire range of F and can be obtained recursively starting from ¥, and ¥, as shown
in the Appendix. The result for the indefinite integrals is

o= (Yo () -0K)
- () (o

M+1 t° 8M + 3 4M + 3
= (MY ) (B3, (8023),, o
where the definite integrals are ¥, = W lta) — ¥arlt,), and
2
O =tn ST V2L ) arctan (2t + 1) + 2 arctan (/2 — 1) . 20)

12— /2t +1

To get the asymptotic regimes, note that the function Apy (1) = | dtt*T 3 Y M, a(t*/T)* for 0 <t < 1 may also be
written as a power series of t. Its concrete form may be obtained by first using the formula for the sum of geometrical series, as
well as T™ 1 = Y2, (—1)t*, and then doing the integration. This gives Ap Y, (t) = (£°/5) + - - - [the integration constant is
zero, because ,,(0) = 0], and for any D the first term is the same. Then, if t,; < 1 is so small that for ¢ = t,; one may restrict
oneself to this first term, one immediately obtains the Euclidean limit with 4,¥,, ~ t3/5. Hence, one reproduces the
asymptotic t — 0 (F — oo0) behavior obtained in MMO95 (see eq. [18] in MM95). Similarly, for ¢ > 1 the function 4, Y,,(t) may
also be written as a series, if one uses T ' =t %1 +t % 1 =¢7* Y2, (—1)t"*. Then, after integration, one has
Ap Y lt) = Ap[const. — (7t7)~1 + - - -]. (Here the integration constant is not zero and is identical to lim, , ,, ¥,(?), which is
easily calculable using lim,_,  arctan [(2'/%t) + 1] = n/2. Nevertheless, this integration constant is canceled, once the definite
integral ¥, is calculated.) If ¢,, > 1 is so big that for ¢t = t,, one may restrict oneself to this first term, one reproduces the
second asymptotic regime of MM95 for t — oo, F — 0 (eq. [24] of MM95), and one has N (> 0) = (4n/3)n, R3 A, as it must
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log N(>F)
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FiG. 2.—Power-law (PL) luminosity function theoretical integral peak flux distribution for D = 2, 3, 4, 5, 6, 7 increasing upward, for g = 15/8. Two sets of
curves are shown, both for K = #,,/%, = 10% The lower set (which has been offset downward by one unit) is for (£,,, £,) = (5 x 1057h~25™1, 5 x 105542
s ') and suggests a fit to D = 2, while the upper set has (£, £,) = (2.5 x 1058172571, 2.5 x 105°h~2 s~ 1) and suggests a fit to D = 4 when compared to
the 2B data set. Again, higher luminosities provide qualitative fits to higher evolution indices D. For more detailed fits, see HMM95 and Table 3.

be. The third asymptotic behavior predicted in MM95 occurs for values of K large enough that in some range of F one may
simultaneously approximate t = t,, with the Euclidean limit, and t = t,, with this second limit (see eq. [20] of MM95). Thus,
for large K the formulae in this section also give the three asymptotic regimes described in MM95; but for K ~ 1 the situation
is similar to the SC case, as expected. ;

For the case D > 4, when D is integer or semi-integer, in equation (13) I, are also directly calculable. First, one must solve
the y integrals in equation (4) directly, as in the SC case, and then one integrates over .#. The results are

Ios=b75*{(4/Tt™3 — 4/Tt "InT — 3tT ! + [9/(28/2)10()}: ,
Is=b~5*{—48/7)t ™3 + (48/7¢ "In T + [6/(7./2)1O@)}
Is.s = b™%*{12t + (24/T)t % — 24/Tt " In T — [24/(7,/20)1(5)} ,
I = (8/5)(K5® —1), (21)
Iss = B/S)K® — 1) + (B3/4)(K*® — 1)5,, 12,
I, = (8/5)(K>® — 1) + (4/3(K°/® — 1)a; 1% + (24/65(K*3/8 — )61 .
TABLE 2

STANDARD CANDLE RESULTS SHOWING EFFECTS ON THE MEAN REDSHIFTS OF
ALLOWING THE VALUE OF %,* T0 VARY WITHIN $1 ¢ OF ITs Best-FiT
VALUE FOR FIXED VALUES OF D (=4.5)

LA h7Y)  [TFz) Al+z) (+z) Ad+zy) rey  Argy

50l 1.84 0.23 5.38 0.80 292 0.57
60............ 1.93 0.26 5.98 0.92 3.09 0.63
70..cccenin. 2.02 0.29 6.55 1.04 324 0.69
80........cut 2.10 0.31 711 1.16 3.38 0.75
90.....cii. 2.18 0.34 7.65 1.28 351 0.80

2 In units of photons cm~2s~ 1,
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FIG. 3.—A comparison of theoretical integral peak flux distributions for standard candle (SC; upper curves) and power-law (PL; lower curves) luminosity
functions. The curves in each set are, in upward order, for density evolution indices D = 2, 3, 4, 5, 6, 7. Arbitrary values of £, = 105°h~2 s~ ! for SC and
Lo £, K) = (10872 571, 10°*h~2 571, 10%) for PL cases were chosen. Both SC and PL show (for D < 4) two regimes, N( > F) oc F~*? at high F and
F > constant at low F. The large ratio K = #,,/%,, in the PL case was chosen to illustrate the third asymptotic regime in this case at intermediate F, namely
N(>F) oc F*~#, where B s the index of the PL luminosity function.

We see that I does not depend on o,,, and hence N¢(> F) oc 63/% oc F~3/2, Thus for D = 6 we obtain the Euclidean case both
for SC and PL luminosity function. In fact, one can easily show that for D = 6 one obtains the Euclidean case for arbitrary
luminosity functions ®(%). From equations (4) and (5) it follows for D = 6

N(>F) = (4n/3)4nF)~3? j (L)L dL = const x F~ 32, 22)
0

where const does not depend on F. Obviously, for any ®(¥) and D > 6 the expected integral distribution N (> F) is even
larger then the Euclidean value. As mentioned at the end of § 2.1, the Euclidean behavior of D = 6 is forQ=1,A=0,and
bursting sources. For arbitrary cosmological models, it is always possible to find an evolution law that cancels out the
cosmological effects.

Note that in §§ 2.2 we restricted ourselves to the integer and semi-integer values of D. Nevertheless, the analytical formulae
of this section may be generalized for any real D. The relations (4—5) hold for any real D. Then the key problem is to write
down the definite integral

L’“xz(l PPy = f " 0nndx - 23)

The primitive function of Q,(y) for noninteger (8 — 2D) is obtainable in at least two different ways. First, one writes for
M = 8 — 2D the Taylor series

QA—pM=1+ i (=) MM — 1) ... (M — k+ D)/k!Tx, (24)
k=1

where k is an integer. This is not new for an M integer (see MM95), where the series is finite, because for k > M + 1 one
obtains identically vanishing terms. On the other hand, for non-integer M we have an infinite series. In any case, one should
use relation (5), and in this series one obtains integer exponents of . Then the integration over % is analytical (although it
can be cumbersome) and in principle can be done for any rational . Second, one substitutes (1 — ) = 7 and obtains a simple
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primitive function of Q,, from integration over #; this primitive function is a sum of three components, containing either In
n,0or—in general noninteger—powers of #,. Therefore here, for noninteger M, the technical problems can arise from the
integration over . In other words, the simpler integration over y may lead to a more complicated integration over . In this
paper we do not discuss these technical questions any further and restrict ourselves to the cases of integer M = 8 — 2D.

In Figure 2 we show two sets of theoretical PL curves, both for K = L,,/.#,, = 10%. The particular choices of £,,, Z,, used
here are not unique, but have been selected so as to give an approximate eye fit of the 2B data set to the D = 4 (top group of
curves), and to the D = 2 curve (lower group of curves). The visual match of these theoretical PL curves to the 2B data is as
good as that for the SC case in Figure 1, even though here we have a luminosity ratio of 100. (In fact, detailed y? fits to joint 2B
and PVO data sets with PL models of K = 10? are indistinguishable to within 1 ¢ from corresponding SC fits, as shown in
HMMDYS (see also Hakkila et al. 1994); such detailed PL fits to both 2B and PVO lead to more accurate choices of #,,, D, K
values, which have been used in Table 3, below). The approximate eye fits to 2B shown in Figure 2 merely illustrate the fact
that in the PL case, different choices of %,,, &,, (even for constant K) lead to a different D that matches the same observed
data set.

In Figure 3 we compare the generic shape of the SC curves for various D (top set of curves) to that of the generic PL curves
(lower set of curves). For the latter we have chosen an artificially large spread of luminosities K = 10° with maximum
luminosity £, equal to that of the SC luminosity .#,. This large spread K permits one to see more easily the three limiting
asymptotic regimes of the PL curves, going from the Euclidean F~%2 to F! ~# (where f = 15/8 is used) to F — constant for
D < 4 as F is decreased. The intermediate regime present in the PL case (see, e.g., Wasserman 1992; MM95) is not present in
the SC case. We note that the detailed x> fits of HMM?95 indicate that there are statistically acceptable fits to the 2B data set
alone with K = 105, but only to K < 10?if 2B plus PVO is used.

3. REDSHIFTS AND TIME DILATION

3.1. Mean Redshifts and Dispersions
The redshift of a source of luminosity % producing a flux F is, from equations (3) and (5),

1+z=[1+(F/F) Y21%; Fy=%/4nR3). 5)
For a given ®(%) one has
Ny(>Fy) = 4nR3 f “oug jleD(x)dx , 26)
Lm 0

where Qp(x) = (1 — x)® “?Px? and for the flux F, we have x; = [1 + (F;/Fy)/*]™ L. The number of observed sources that give
fluxes between F; and F,is (0 < F; < F, < oo, including F; = 0and F, = )

‘M x2

Np(Fy, F3) = 4nR3 L (L)L j Qp(0)dy = Np(>F;) — Ny(>F,), @7
m X1

where y, = [1 4 (F,/Fy)"/?]™ . In this equation there is a double integral of the function ®(#)Q,(x) depending on variables x

and . If one takes the integral of the function (1 — x%) ™ 2®(%£)Q)(x) for the same area of the variables % and y and divides

the result by Ny(Fy, F,), obviously one obtains the average value of the quantity (1 — x?)2 But since (1 + z2) = (1 — x) 72,

this gives the average value of the scale factor (1 + z) for all the sources with fluxes between F, and F,, namely,

[Z8 (L)AL |32 (1 — 1) *0p(0)dx _ Np+s(Fy, Fa)

14+ z(F,, F,)] = = . 28
L 2 B = o 222 0ol NuF;, F) 9
This expression follows from the relation (1 —x) ™ 2Qp(x) = Qp+ 1(x) and is valid for arbitrary luminosity functions.
Also, since Qp . »(x) = (1—2)"*Qp(x) and (1 + z)* = (1 — )~ it follows similarly that
T Jed (L)AL 2 (1 — ) 7*Qo(0)dx _ Np.oFy, F)
1+z(F,, F :_ L 1 DAL o D o 29
2, F) ¥ (L)< [ Op(n)dx Np(Fy, F») *)
Then
A[l + z(F,, F,)] = {[1 +2(Fy, F))* —[1 + z(Fy, Fz)]z}llz . (30)

characterizes the dispersion of (1 + z) around the mean value. Again, it is worth mentioning that these specific expressions are
valid for Q = 1, A = 0 models without K-corrections. However, similar expressions can be derived for arbitrary models.
Clearly, for given F, and F, the values of [1 + z(F,, F,)] and [1 + z(F,, F,)]? are different for different D. In the SC case
they depend also on %, and in the PL case on .%,, and K, but they do not depend on n,, because the latter parameter cancels
out in the definitions.
As a consistency test of these relations consider a special case where F, = (F; + dF), where dF is infinitesimally small, and ,
in addition, we have an SC luminosity function. In this special case it follows that

Np[Fy, (Fy + dF)] = |[dNy(>F)/dF]|p~p, dF ,
U+ 2[F, (Fy+dP)]=(1—x)"2%; A{l +2[F, (F; +dF)]} =0, (31)

where we used the relation [dN (> F)/dF] = [dN (> F)/dy](dy/dF). We see that in this special case, the mean redshift equals
to the redshift defined by y; = [1 + (F,/Fy)'/?] ™%, and there is no dispersion, as expected.
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3.2. Time Dilations and Energy Stretching

While the previous sections were valid both for steady or bursting sources, from here on we examine the latter case.
Another observable quantity of potential cosmological significance for bursting sources is the intrinsic duration of source
events, e.g., the time interval between the beginning and end of a burst, or a subpulse of a burst, or a characteristic variation
timescale of the source flux (or the inverse frequency of a spectral line, if such exists). This duration may be quite different for
different energy bands.

In the simplest case the intrinsic duration is “ gray,” or independent of the energy band, e.g., if there is a “standard” GRB
burst duration At, in the rest-frame of the source. Then the apparent duration of a source placed at redshift z is At =
Aty(1 + z) (Paczynski 1992; Piran 1993), and two bursts at different redshifts z; and z, will show different apparent durations
related by (Fenimore & Bloom 1995)

T2 = (At /AL) = (1 + z)/(1 + z5) . (32

A less simple case is that where the intrinsic burst durations are not gray, i.e., there is an intrinsic energy stretching, such
that the intrinsic duration of the event in its own rest frame depends on the photon energy or waveband. This is reported to be
the case with GRB, the same burst exhibiting increasingly shorter durations at higher photon energies (Fenimore et al. 1995;
Fenimore & Bloom 1995). As argued by these authors, the BATSE 2B data indicates an energy dependence of the type
Ato(E) ~ Ato(Eo)E/E,) ¥, where E, is an arbitrary energy, Ato(E,) has the dimension of time, and k ~ %. Assuming this to be
the case and—without loss of generality—making k to be an arbitrary real number, one can show that if bursts had some
standard duration at the same energy in their own rest frame, then the result of observing from different redshifts would lead
to an apparent duration-redshift relation given by

[Aty(Eo)/Aty(Eo)] = [(1 + zy)Ato(E)I/I(1 + z5)Ate(E2)] = [(1 + z)/(1 +22)1' 7%, (33

where E;, = (1 + z,)E,, E, = Ey(1 + z,). Because the right-hand side does not depend on E,, the ratio of apparent durations
is [(1 + z,)/(1 + z,)]* ~*for arbitrary E,, and this energy need not be specified later. Thus, in general we can write

12 = (Aty/AL) = [(1 + z))/(1 + 2)Y =145, (34

where 74, is the time ratio, r, , is the redshift factor ratio, j = 1 if there is no energy stretching, or j = 1 — k if there is energy
stretching,

If we take events at two different flux levels F, and F, (F, > F,), assumed to come from an SC luminosity function, these
correspond to redshifts z,, z, (z; > z;,), which come from the relation

Fpo= 30/[477R3(\/ 1+ 2z,,—1)*] (35)

(valid for Q = 1, A = 0, no K-correction; see § S for a relaxation of some of these assumptions). Then, if we measure the ratio
of the corresponding event durations (assumed to be some standard duration in their respective rest frame), 75, = (At,/At,) >
1, we have

A+z)A+z)=13, FfF,=[/1+z-D(/1+2z-1]), (36)

V1t zy=(/Fy/Fs— DI/ F/Fs— %),
V1+zi=14 /1 + z, . (37)

Thus in this special case, both relevant redshifts are obtainable directly analytically. We see that one must have F,/F; >
739 > 1, and asF,/F, runs from 11/ to co, z, decreases from oo to zero, i.e., larger F,/F, leads to smaller z,. On the other hand,
for a fixed F,/F,, a smaller 73}’ gives smaller redshifts.

To improve the statistics, one would want to bin the bursting source flux into some appropriately defined ranges of “dim”
and “bright” categories (taking only sources whose fluxes are inside the ranges F, + AF, and F, + AF, centering around
some mean values of dim and bright fluxes F; and F,). One can then use the formulae (derived above (eq. [28]) to connect the
corresponding ratios of the mean durations (assumed to be standard, with or without intrinsic energy stretching) to the ratio
of the mean redshifts,

and hence

(A +z)={1+:z[(F,— AF,), (F; + AF)1},
(1 + z) = {1 + z[(F, — AFy), (F, + AF,)]} ,
Al + zp) = A{1 + z[(F, — AF,), (F, + AF )1} , (38)
Al + z) = A{l + z[(F, — AF,), (F, + AF,)]} ,
T+ 21+ z) = rap = (Aty/Aty)" = <jfi .

One can also calculate the dispersion in this last ratio of mean values by combining the relative dispersions (eq. [30]) for both
groups alone via

AL+ 2)/(0 + 2,)] _ Argy _
1+ z)/(1 + z) Tap

VIAW + 2)/(1 + 2T + [AQL + )1 + 2)]* - (39
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This can be done for different parameters and separately for SC and PL luminosity functions, the mean redshifts and

dispersions being connected to the integral number expressions N, for each type of luminosity function via equations (28)
and (30).

4. APPLICATION OF TIME DILATION ANALYSIS

Attempts to detect a “ cosmological signature ” (Norris et al. 1994, 1995) in GRB have compared the mean duration At of
events in the BATSE data base with peak fluxes corresponding to count rates within specific bands C,; + AC,,, C; + AC, and
C, + AC,, where the subindices are “dd” for dimmest, “d” for dim, and “ b for bright bursts. The values chosen by Norris et
al. (1994) are (Cy3 — AC,y) = 1.4 Kcts s™1, (Cyy + ACyp) = 2.4 Kets s~ 1, (C; — ACy)) = 2.4 Kets s™1, (C; + AC,) = 4.5 Kcts
s™14,(C, — AC,) = 18 Kcts s ™1, (C, + AC,) = 250 Kcts s~ 1, where Kcts s ™! = kilocounts per second. These count values can
be roughly translated (based on averages of data from Nemiroff 1994, private communication) into the following peak fluxes:
1.4 Kcts s~ — 0.45 photons cm ™2 s~ 1; 2.4 Kcts s~ — 0.70 photons cm ™2 s~ 1; 4.5 Kcts s~ ! — 1.15 photons cm 2 s~ 1; 18
Kcts st — 5.0 photons cm ™2 s~ 1; 250 Kcts s ~! — 45.0 photons cm =2 s~ 1. In what follows we lump together the “dim” and
“dimmest” category into a single “dim ” one labeled by the index d’ (standing for d + dd in the above categories). Hence we
have

Fy—AF, ~045, F,+AF,~115, F,—AF,.s,, F,+AF,~4500, F, ~035,

F,~250, AF,~200, (40)

in units of photons cm~2 s, implying a ratio F,/F, ~ 31. Note that these are approximate 2B bands, which may differ
depending on the analysis and the data cuts, but they serve to illustrate the effects discussed. A more detailed discussion of
these bands is presented in Horack et al. (1995b), who use a ratio F,/F,; ~ 21.

In Norris et al. (1994, 1995) an observed ratio of durations t,., ~ 2.25 was reported. More recent values are 1.75 (see, e.g.,
Norris 1995b; Horack et al. 1995b) and 1.35 (Fenimore 1995). A first quick and simple estimate of the implications of such a
time dilation can be obtained using the analytic formulae based on the flux bin centroid values (eq. [37]). This gives

Fy~080, A

-2

=026, z,=183, 1,,=225, j=1,
2,=060, z, =520, 15,=225, j=2,
2,=016, z,=101, 1,,=175, j=1, an
z,=032, z,=234, 1,,=175, j=%,
2=007, z,=044, 4=135, j=1,
z, =014, zy = 0.87, =135, j=2.

We see that the presence of energy-stretching has an essential impact on the values of relevant redshifts; taken at face value, a
time dilation signal of 2.25 could imply that the dim bursts are at-redshifts larger than the most distant known objects (see also
Fenimore et al. 1995). On the other hand, the lower time dilation values of 1.75, and especially 1.35, give more reasonable
dim + dimmest redshifts, even" with energy stretching. However, such a simple estimate based on equations (37) neglects
binning effects as well as luminosity function and evolution effects.

More reliable conclusions may be obtained by calculating (1 + z;)/(1 + z,), their ratio, and the corresponding dispersions
via formulae (28), (30), (38), and (39), which specifically include luminosity function and density evolution effects via the N,
entering the definitions of these bin-averaged quantities. For a putative measured time dilation 7,,, one can then search for
the cases when the ratio 7;,, = (1 + z;)/(1 + z,) is equal (forj = 1, no stretching) to 7,4 (2.25, 1.75, 1.35 in the cases of Norris et
al. 1995; Norris 1995; Fenimore 1995b), or else is equal (for j = 2, with stretchmg) to 734> (or 3.86, 2.54, and 1.65 in the same
three cases just mentloned) To do this, we need to use the appropriate pairs of corresponding values .Z, and D (for SC) or
triplets of corresponding values L, K, and D (for PL), which give good log N-log F fits (HMM95). We can restrict ourselves
to values of D < 5, since D > 6 is excluded by the downward curvature of the counts at low F, and D = 5.5 gives also wrong
fits (HMM95). The values calculated from our analytic expressions (38), (39), (28), and (30) using the SC values of N, from
§ 3.2.1 are shown in Table 1.

These redshift estimates are systematically larger than the values from equation (41). Nevertheless, the dispersions of the
average redshifts and their ratios are large, and therefore as a rough first approximation the values from equation (41) are
compatible with those of Table 1. For instance, even in the case of 7, = 2.25, subtracting a 1 ¢ dispersion from the mean
value of r;, for D = 5 gives an r;, comparable to the mean ry,, value for D = 4.5, corresponding to (1 + z;) — 1 ~ 5.5. This is
near the redshift of the most distant quasars known.

The uncertainties 1n the mean redshifts are increased also by the fact that the estimates depend also on #,,. The values used
for each D are from x? fits to the BATSE 2B data by HMM95, and a +1 o variation around the best fit can change by factors
~2. In Table 2 we illustrate the impact of such <1 o changes in %, for a fixed D = 4.5. We see that the impact on the
redshifts of varying between different allowed £, for the same D is nonnegligible. Nevertheless, while keeping such uncer-
tainties in mind, it seems clear that if the time dilation of 2.25 (Norris et al. 1995) were correct, under the SC assumption Table
1 indicates z, ~ (0.2-0.6) and z; ~ (1.5-2.5) for j = 1 (no energy stretching), and z, ~ (0.6-2.0) and z, ~ (4-10) for j = 2 (with
energy stretching). For this time dilation, extremely large redshifts seem to be indicated for the dim objects (see also Femmore
et al. 1995; Horack et al. 1995b), but because of the dispersion around the mean values, even for 7,, = 2.25 one cannot
conclude necessarily that z; > 5 is required. For the lower values t,, = 1.75, 1.35 the dim redshifts are of course more
moderate. This is discussed further in § 6.
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TABLE 3

PowEeR-LAW LUMINOSITY DISTRIBUTION RESULTS SHOWING AVERAGE REDSHIFTS
CALCULATED FROM EQUATIONS (38)—(39)*

D L)1) [TFz) Al+z) (Fz) Al+z) rey  Arg
2.00...... 0.05 1.33 0.22 1.82 0.63 1.37 0.52
250...... 0.08 1.42 0.28 2.07 0.86 1.46 0.67
3.00...... 0.10 1.49 0.33 233 1.12 1.57 0.83
3.50...... 0.15 1.62 042 2.83 1.63 1.75 1.11
4.00...... 0.30 1.92 0.66 4.06 2.99 212 1.72
450...... 0.50 2.32 0.98 6.29 534 271 2.57
5.00...... 0.80 296 146 11.00 9.63 3.70 373

* Notation as in Table 1. A ratio of K = &,,/%,, = 100 was taken everywhere, and values of &,
(photons cm ™2 s~ 1) for each D are taken from the best fits of HMMO95.

For the PL distribution luminosity function, we can use the same formalism to calculate the mean redshifts and their
dispersions. We choose a relatively broad luminosity dispersion K = (% ,,/%Z,,) = 100, which, while still giving a good ? fit to
the 2B + PVO data (HMMD95), accentuates the differences between the SC and PL luminosity functions. While formally one
uses the same equations (38), (39), (28), and (30), the values of N, entering into them are now obtained from an integration
over luminosities placed at different redshifts (§ 2.2). The results are summarized in Table 3.

These values appear slightly larger than in the SC case, but no far-reaching conclusions may be drawn from this difference.
In fact, the remarkable difference between Tables 3 and 1 is provided by the much larger redshift dispersions for the PL
luminosity distribution, as opposed to the SC case. Because of this large dispersion, the PL and SC results are clearly
compatible with each other. Also, this very large dispersion implies that even for 7, = 2.25 the dimmest redshifts encompass
within their 1 ¢ error bars the values z; ~ 1, and the same is true to a larger extent for the lower values of 7,,. The larger
dispersion of mean redshifts in Table 3 is quite reasonable, because for SC at a given F one has a given z, but for PL at a given
F there is a range of z corresponding to a range of .#. The implications of such large dispersions for cosmological models for a
given measured time dilation are further discussed in § 6.

The dependence on .Z,, in the PL case is illustrated in Table 4. We see that, similarly to the SC case, the dependence on .%Z,,
is nonnegligible, and while not changing the means by much it can change the ratios and further increase the dispersion. The
dependence on K is illustrated in Table 5. Here D and %, are fixed, and K varies. In this case the 7,, practically remains
unchanged, but the mean redshifts and dispersions vary significantly.

5. K-CORRECTION AND Q < 1 EFFECTS

In the previous sections the calculations of the redshifts of GRBs or other sources was done without any K-corrections and
for Q = 1. In this section, the impact of relaxing these assumptions is estimated (cf. also Fenimore & Bloom 1995; Horack et
al. 1995b). For simplicity, we illustrate these effects for the special case when equations (36)—(37) hold, since it was found that
qualitatively they reproduce the behavior found in the more detailed analysis. We further simplify the situation by assuming
that only one or the other effect operates alone, i.e., we either have Q = 1 and a K-correction, or Q < 1 and no K-correction.

If £, ~ v*~ 2, where £, dv is the peak-flux luminosity in the frequency interval v, (v + dv), and a is a real number, then there
is no K-correction for o = 1 (see, e.g, MM95). If & # 1 then the peak-flux F from a source at redshift z will be (1 + z)*~! times

TABLE 4
MEAN REDSHIFTS FOR THE POWER-LAW LumiNosiTy FuncTioN®

£ /10073 ({T+z) Al+z) T+z) Al+z) Tap Arg,

020........... 1.84 0.56 422 2.82 2.29 1.69
040........... 2.18 0.85 5.68 4.56 2.60 232
060........... 244 1.09 6.86 6.08 2.81 2.79
0.80........... 2.66 1.31 791 7.48 297 3.17
1.00........... 2.86 1.51 8.87 8.81 3.11 349
® D and K are fixed; D = 4.50,K = %,,/%,, = 100, and %, (photons cm~2 s~ %) is
varied.
TABLE 5
MEAN REDSHIFT IN THE CASE OF A POWER-LAW DISTRIBUTION®
K 1+ z) Al + z) 1+ z,) A1 + z,) Ty Arg,
4.......... 1.37 0.12 2.61 0.47 1.90 0.38
64........ 2.10 0.74 5.51 395 2.63 2.10
324....... 3.12 2.04 8.88 114 2.85 4.10
1024...... 4.29 414 122 23.0 2.84 6.03
2500...... 5.51 7.11 153 39.1 2.77 7.94

® % (photons cm~2 s7!) and D are fixed (£, =05, D=4.5), and K =
&L u/ <L Varies.
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TABLE 6

VALUES OF THE MEAN REDSHIFTS
DERIVED FOR VARIOUS

VALUES OF Q
Q z 2z,
10...... 0.6 52
08...... 0.7 5.5
06...... 0.8 6.0
04...... 1.1 7.0
02...... 20 10.6

greater than the expected peak flux when no K-correction occurs. [For instance, for « = 0 and £, ~ v~ 2 one will have a
(1 + z) times smaller peak flux than for « = 1.] In other words, instead of equation (3) here, one has

F = Z/[4nR¥1 + 2)' "% /1 + z — 1)7] . 42)

Assuming two sources with the same intrinsic peak flux spectra characterized by o at redshifts z, and z;, instead of equations
(36)—(37) one obtains

(I +2z)/A + zp) = w3, Fy(1 + zp)' "[Fa(1 4 z5)' ™ = [(/1 + zo — D//1+ 2z, — D], 43)

V142, = (F G Vi F e — DIFyely VFy — ), 1+ 20 =320 /T+ 2, . @4

The impact of « # 1 can be seen from the fact that these equations are identical to equations (36)—(37), if one formally
substitutes F,/F, for F,t5;"/F,. Hence we see that for « < 1 (« > 1) one obtains systematically smaller (bigger) ratios for
the peak fluxes, and hence bigger (smaller) redshifts than in the absence of a K-correction. To illustrate this effect consider
again F, = 25 and F, = 0.8 (in units of photons cm ™2 s ). For a = 1, we had (eq. [41]) z, = 0.6 and z,, = 5.2 for j = 0.6. For
the same case, but with « = 0 (i.e.,, with &, ~ v~?), we obtain z, = 1.1 and z, = 7.2. This means that one may expect that
K-correction effects, when relevant, will increase the redshifts that one derives. Generally « = 1 is a good fit for the peak flux
spectra of GRB in the range where most photons are collected (see, e.g., Band 1994), and therefore K-corrections may not play
a large role in most sources. Nevertheless, one cannot exclude the situation where a systematically smaller « may be needed
(see e.g., Schaefer et al. 1994) where K-corrections are relevant.

For z 2 few, a value of Q # 1 may also affect the estimates of the relevant redshifts. We restrict ourselves to Q < 1. For
o = 1 we will have for a source with peak luminosity % at redshift z at peak flux

F = Z/{4n[c/(H. /1 — Q)]? sinh? (1 + 2)} . 45)

In the denominator we again have 4nd2(1 + z), where d, is the proper distance (Weinberg 1972; MM95). The relation between
xand 1 + zis now given by

and hence

1+ z =(cosh 5o — 1)/[cosh (1, — x) — 1], 46)
were cosh n, = (2/Q) — 1. Hence
sinh y = é—_m RA-Q+Ql+2+2-Q/1-Q+ Q1 +2)]. @7)

To choose betwen the plus and minus signs in equation (47), we note that for z — 0 one should have {c/[H(1 — Q)'/*]} sinh
= cz/H. This is fulfilled for the minus sign. Hence here, instead of equation (37), one obtains

[Fyl+24) _ 21—+ Q1 +2,) — 2—- Q) /1 -2+ Q1 + z,) "
= . (L+z) =i (48)
Fo(l+z) 20-9)+Ql+2)-2-QJ1-Q+Q1+3z) (L2l +2) = a5

The system is solvable analytically for a given 7/, Q and F,/F, [e.g., substituting (1 + z,) from the second equation into
the first one, a fourth-order algebraic equation is obtained for the unknown (1 + z,).] Nevertheless, it is much simpler to solve
it numerically. in order to illustrate the trend, we solve it for 7, = 2.25, j = 0.6 (F,/F,) = 25, for various Q. The relevant z,
and z, are summarized in Table 6. As seen from Table 6, decreasing values of Q increase the relevant redshifts, as expected.
More sphecifically, the numerical examples calculated here show that for the smallest values of Q ~ 0.2 currently thought to
be acceptable, an increase in redshift by up to a factor 2 may occur over the corresponding Q = 1 values.

6. DISCUSSION AND CONCLUSIONS

We have derived analytical expressions for the integral distribution of bursting or steady sources, as well as the mean
redshifts, time dilations, and the dispersions of these quantities over finite flux bandwidths, valid over the entire range of fluxes
in a spatially flat Friedmann model. We have also evaluated the effects associated with Q < 1 and with the inclusion of
K-corrections. These expressions are particularly useful for comparing against the numerical results log N-log F fits, e.g.,
GRB catalogs such as the BATSE and PVO samples and allow one to derive relatively simple and quick results without
lengthy computations.
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We have used our analytic expressions for the average redshifts in specific peak flux bands together with log N-log F fits to
the BATSE and PVO data on GRB to derive new information, based on measurements of time dilation effects. While the
detection of such cosmological time dilation signals is currently the subject of debate (Norris et al. 1995; Fenimore et al. 1995;
Mitrofanov et al. 1994, 1995), there is no doubt that under the cosmological interpretation such effects should be incorporated
into analyses of the integral distribution in order to obtain more reliable conclusions about the redshift, luminosity, and
density behavior. If a measured time dilation exists, several important problems can be addressed. First, the ambiguities of
previous log N-log F fits (which allowed various choices of luminosities and of the density evolution index D, e.g., HMM?95)
are resolved. The inclusion of redshift information via a time dilation signal breaks the degeneracy of the models fits and
allows a unique determination of % and D. Second, the use of our analytical redshift expressions using parameters from log
N-log F fits provide an estimate of the mean source redshifts in different peak flux bands that are explicitly consistent with a
particular log N-log F fit. Third, the same analytic expressions provide an explicit estimate of the dispersion (or essentialy 1 o
error bars) associated with these mean redshifts. The dispersion is especially large for the examples of a power-law luminosity
function, which provide good log N-log F fits in a x2 sense that are statistically indistinguishable from those of standard
candles.

We have also shown that a simple analytic approximation to the Fenimore et al. (1995) energy stretching phenomenon of
GRB time pulses implies that the measured time dilation factors between two arbitrary GRB flux classes labeled by d’ and
b would scale with the redshift factor approximately as 7,5, = (Aty)/(AT;) = 3% = [(1 + z4)/(1 + z;)]¥°. This is a
particularly simple scaling that allows us to find theoretical estimates of the bright and dim mean redshifts of bright and dim
GRB:s, if a time dilation signal 7, is identifiable as being due to purely cosmological effect. Thus, for the value 7., = 2.25 cited
by Norris et al. (1995), we find that the redshift factor ratio would then have to be r;;, = (1 + zz)/(1 + z,) = 3/ ~ 3.86, if
energy stretching is included. The numerical examples above are for a stretching At oc E~* with a specific value (Fenimore et
al. 1995) k = 0.4; we have also provided in the text general expressions for an arbitrary stretching index k.

As specific examples, we have discussed the redshifts implied by reported values of the time dilation 7., = (At,;)/(At,) ~
2.25,1.75, 1.35 (Norris et al. 1995; Norris 1995; Horack et al. 1995b; Fenimore 1995b), under the assumption that these real
and entirely cosmological i.e., not contaminated by intrinsic effects (e.g., internal source physics that might mimic such a
signature, etc.). Approximate SC results were obtained using the simple analytic equation (37), and more accurate results were
obtained using the detailed analytic averaging over flux bands corresponding to bright and dim + dimmest bursts. The latter
are detailed in Table 1 and Figure 4, from which one can find the relation between a particular redshift factor ratio r,;,, and the
density evolution factor D (corresponding to a luminosity that gives consistency with the log N-log F constraints). Table 1
and Figure 4 show that for 7,4, = 2.25, r;, ~ 2.25 (no stretching) occurs for D ~ 4, where z, ~ 0.5 and z; ~ 2.3, while
rap = 3.86 (stretching) occurs for D ~ 5, where z, ~ 1.6 and z; ~ 10.0. For 7, = 1.75 and no stretching one infers D ~ 3 and
z, ~ 0.25,z; ~ 1.25, while with stretching (r;,, = 2.54) one gets D ~ 4 and z, ~ 0.5, z;, ~ 1.5. For 14, = 1.35 and no stretching
the implied valueis D ~ 1,7z, ~ 0.1 and z,. ~ 0.7, while with stretching (r;, = 1.65)itis D ~ 2.5,z,, ~ 0.25and z, ~ 1.15. .

The same three values of a putative time dilation 1, = (At,;)/(At,) =~ 2.25, 1.75, and 1.35 were also used for comparing with
the band-averaged redshift factor ratios in the PL luminosity function case, detailed in Table 3 and Figure 5. From these, one
sees that the average redshifts in the PL luminosity function case are not significantly different from those obtained in the SC
case case. For 7,, = 2.25 without stretching, a value of r;,, ~ 2.25 would occur for D ~ 4, where z, ~ 0.9 and z,, ~ 3.0; while
with stretching, a value of r;, = 3.86 occurs for D ~ 5, where z, ~ 2.0 and z, ~ 10.0. For 7,, = 1.75 (no stretching) we
have D ~ 3.5, z, ~ 0.6, and 2, ~ 1.8; with stretching (r;, = 2.54) we have D ~ 4.5,z, ~ 1.4, and z, ~ 5.3. For 74, = 1.35 (no
stretching) we have D =~ 2,7, ~ 0.3, and z;, ~ 0.85; with stretching (r;, = 1.65) we have D ~ 34,z, ~ 0.6,and z, ~ 1.7.

For the SC case without the energy stretching of Fenimore et al. (1995), our theoretical model fits to the data give mean
redshifts of bright and dim sources. We find from our SC/no stretch fits that for t,, = 2.25, 1.75, and 1.35, the density
evolution index required (see eq. [1]) must be D ~ 4, 3, and 1. With energy stretching, they would be D ~ §, 4, and 2.5. The
large D for 7,, = 2.25 is in qualitative agreement with the results of Fenimore & Bloom (1995), Fenimore et al. (1995), and
Horack et al. (1995b) in independent and complementary analyses. In the PL luminosity function, where we used a ratio of
brightest to faintest intrinsic luminosity K = 102, for the same three values of 7, the no stretch fits are D ~ 4, 3.5, and 2, while
with stretching they are D ~ 5, 4.5, and 3.4. The source luminosities corresponding to these density evolution exponents D
(compatible with the log N-log F constraints) are given in HMM95. Here D > 3 means more sources at large redshifts, and
D < 3 means more at small redshifts, since in our proper density notation D = 3 corresponds to comoving constant density. A
confirmation of a clear cosmological time dilation would be needed to obtain stronger constraints on the density evolution.

We note that the redshift values and evolution indices quoted are based on a statistical average over specific flux ranges,
giving mean redshift values that are systematically larger than the values from equation (41), based on the simple analytic
estimates of equations (37) for the centroid of the flux range. Nevertheless, the dispersions of the average redshifts and their
ratios are large, and therefore as a rough first approximation the values from equation (41) are compatible with those of Table
1 for the SC case. For instance, subtracting a 1 ¢ dispersion from the mean value of r,,, for D = 5 gives anr;, comparable to
the mean r,, value for D = 4.5, corresponding to mean dim redshifts z, ~ 5.5, if t,, = 2.25. This is near the redshift of the
most distant quasars known, and thus even for this most extreme time dilation in the SC case there need not be incompati-
bility between the Norris et al. (1995) signal and the earliest galaxy formation redshifts.

The tendencies outlined above are stronger in the case of a PL luminosity distribution. While the mean values obtained are
comparable, the redshift dispersion is understandably larger than in the SC case. For a relatively large ratio of maximum to
minimum luminosities K = 102, which still give good log N-log F fits, the PL dim and bright mean redshifts without or with
energy stretching are somewhat larger than those in the corresponding SC cases given above. In the PL case, however, while
again the mean dim redshifts are very large for a dilation signal of 2.25, whether stretching is included or not, the dispersion is
so large that a dim redshift as low as z,; ~ 1is within 1 ¢ error bars of the mean values.
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FiG. 4—SC luminosity function: Mean (1 + z) for dim + dimmest (bottom curve) and bright (upper curve) bursts, and their ratio t,., (middle curve), as a
function of the density evolution parameter D. Values are computed for integer and half-integer values of D, but are drawn slightly offset in the figure so the
error bars can be distinguished. For a time dilation ratio 7, one has a redshift factor ratio r,, = 74, (rs5 = 734) if one neglects (includes) energy stretching of
time profiles. Results based on egs. (38)-(39), as in Table 1, where the different.#, used for different D are taken from the SC fits of HMMO95.

The smaller time dilation signals 7,4, (e.g., 1.75 or 1.35) of course bring the mean redshift values closer to z; < 1. There is
also the additional possibility that the purely cosmological part of a time dilation signal be even smaller than what is directly
measured, in that some specific models already imply a fairly generic source-intrinsic time dilation signal. As an example, the
dissipative fireball external shock spectra calculated by Mészaros, Rees, & Papathanassiou (1994) show that shorter duration
bursts (higher I') also have higher intrinsic fluences (because from general physical arguments one finds that the radiative
efficiency generally increases with I'), e.g., as illustrated in their Figure 4 of that paper. This mimics a cosmological time
dilation, it is not strongly model dependent and is independent of redshift (see also Brainerd 1994; Yi 1994).

The specific numbers discussed above are for an Q = 1, A = 0, K-correctionless model. For an Q < 1 universe, or in cases
where a K-correction is necessary, the mean redshifts are generally larger than in the Q = 1 uncorrected case, but the error
bars remain large enough that even time dilations ~ 2 can remain compatible in the PL case with modest dim source redshifts.

In conclusion, we have derived analytic expressions for the integral number of sources per unit flux inan Q =1, A=0
Friedmann model with density evolution and either SC or PL luminosity functions, of general applicability to steady or
bursting sources. We have shown how the density evolution affects the luminosities inferred for the sources and have
discussed the effects of a PL luminosity function on log N-log F distributions. Using these expressions we have also derived
the mean redshift and time dilation factor distributions over given finite flux bands, and the dispersions associated with them.
We have shown that a time dilation signal of 2.25 (Norris et al. 1995), if purely cosmological, would imply values for the
redshift of the dimmest bursts, which are very large especially if one includes pulse energy stretching (Fenimore et al. 1995).
However, the redshift dispersion expected is so large that the redshifts remain statistically compatible with conventional ideas
about the epoch of earliest galaxy formation. For smaller values of the time dilation signal, e.g., 1.75 or 1.35, even the mean
values of the redshifts are in the conventional range. More generally, we have discussed the effects of density evolution and
luminosity function on the redshift ranges inferred from an observed flux distribution with various amounts of intrinsic pulse
energy stretching for arbitrary values of an observed cosmological time dilation, which may be useful in the interpretation of
future experiments.

We are grateful to M. J. Rees and E. Fenimore for stimulating discussions, I. Horvath, V. Karas, and E. Fenimore for useful
interactions, and J. Horack for detailed comments on the manuscript. This research has been supported by NASA NAG

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...466...29M

= No. 1, 1996 BURSTING SOURCES 43

10 [~ -

<1+4z,>, 1y, <l+z,>
T
1

FI1G. 5—PL luminosity distribution: Mean (1 + z) for dim + dimmest (bottom curve) and bright (upper curve) bursts, and their ratio r,, (middle curve), as a
function of the density evolution parameter D. Values are computed for integer and half-integer values of D, but are drawn slightly offset in the figure so the
error bars can be distinguished. For a time dilation ratio 7,, one has a redshift factor ratio r,, = 4, (rz, = 73%7) if one neglects (includes) energy stretching of
time profiles. The results are calculated from egs. (38)—(39), as in Table 3, using a ratio of maximum/minimum luminosities K = 100 and values of £, for
each D taken from the PL fits of HMM95.
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APPENDIX
DETAILS OF EQUATIONS (18)-(19)
One has

n n n! nn—1)...n—k+1)
= = = k= ces .
(k) (n _ k) K — k! A o mk=012..., k<n

First, we prove the following relation (here n > 0):

i (—1)"(") =0. (A1)
k=0 k

Proof. If n = 2x — 1, where x is natural, one has (—1)* = —(—1)""*for any k < n. Then

(D; <,,fk)

occur with opposite signs, and they give zero in equation (A1). We have x such pairs in the sum of (A1); hence, equation (A1)

holds here. If n = 2x, where x is natural, then one may write
+ 2x _ 2x _ 2x o 2x
2x 1 3 2x—1/)°

£en(3)-(0)-()-
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We have (x + 1) positive terms (the first and the last terms equal to 1), and x negative terms. We will use the following
relation:

n\ (n—1 + n—1

k) \ k k—1)’

where n > 0 and k > 0. Hence
2x 2x [ f2x—1 2x — 1 x 2x — 1 2x — 1
-—1 k = 2 -_ .
Lev(0)-2 (%) G- B LG Gos)
(The two factors of unity were written down separately; note the sum indices.) After some arrangement it follows that
2x 2x *~1 x —1 * (2x—1 U ax—1\ 2 2x—1
o)z ()56 2 )2 05 )

which completes the proof of equation (A1).
Using equation (A1), it follows that (for n > 2)

n n n n_l n—1 . n—l _
é¥—D%Q)=ﬂ§f_WQF4>=ﬂ§J_U <1n>—0’ (A2)
and0<s<n-—2):
i (—l)kk(k—1)...(k—s)<n)=n(n__1) (n—s) z (— 1)k<n s — 1)
koot k k=s+1 s—1

n—s—1 _
—n(n—1)...(n—s) Z (— 1)m+s+1< rsn 1>=0. (A3)
Wedefine8 —2D=M; M =0,1,2,3,...,and we have (0 < k < M):

(=1 (M
%=k 13 <k>

M

Y (k+3)a,=0.

k=0

and thus (if M > 1):

In what follows we will take M > 2. The cases M = 0 and M = 1 will be discussed below. One may write

M N M 1 0 1 1 1 2 2 1 2 1
DR (e ) KL 1 R (Y 6 P e 1y A e e
k k 1 1
+"'+<0>“""<1>“"1—+7 o ”"() Ty
M M 1 M 1
e (g (Vi oo o (o

This arrangement allows one to proceed as follows. First, consider the first terms of the horizontal lines. Their sum is

M<k> M 1 M2 lM ) 3 6 3
° kgo 0)% k;oa" 0( s £"( n)”dn M+l M+2tM+3

T M+ )M +2M+3) P

Second, consider the second terms of the horizontal lines. Their sum is
M k M M
S1=~.Z(1>ak=—Zkak=——2(k+3—3)ak=3AD.
k=1 k=0 k=0

(The lower index may be changed from 1 to zero, because we add only a vanishing term.) Similarly, we obtain for the third
terms

M (K k— Mk M
S,=Y (2)“" Z Kk — 1) T g Muk=k§o(_2)kak=6AD,

k=2 k=2
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Consider now the sth terms (s > 2). Their sum is

< ( k kik — sk +2—
Se-1=(=1p"" ¥ (s 1>ak=( 1)“2 k=1 .k+3-9k+2-9

k=s—1 (s—1!

M opk—1)..(k+3—s(k+3—s—1)

= (—1)s—1k=0 1) a
(=)=s=-n ¥ o kk—1..(k+3—5) _s+1
BT A e (s—2)! W= S

From this, the following recurrent relation follows:

2
Sm_%sm 15 m=1a29(M_1)’ SO:AD.

This may be changed into the direct relation as follows:

M+2 1 4
s, M*2o g mEle s =ts, s =28.=34p.
1 2 1
Hence
2
5, =mtAm+ 1) ),Lf'"H) Ap. (Ad)

This relation holds forany 0 < m < M.
This proof was done for M > 2. If M =0, A, = 1, and S, = 1. If M = 1, it is easy to show that A, = £, S,, = Ap(m + 1)
(m + 2)/2,m = 0, 1. Hence equation (A4) holds also for M = 0and M = 1.
Using equation (A4) one may write
t*dt %‘,‘ t*dt (k + Dk +2)
AL+t 21+ t4)" 1+ t4)3 2(1 + %

To do the concrete integration one may proceed as follows (M =0, 1,2, .. .). We write:

ApYu(®) - (AS)

t*dt t3 33
Yolt) = fm .= A+ +5 Yoll) -

The function y(t) is a tabulated integral. Consider now M > 2, and assume that we know /5, () and ¥/, ,(¢). Then one
may write:

V) — Vae ) M+ )M +2) t*dt M + 1)® 4M + 3 (s i®) — Uag 0] -
M-t 2 A+ sl+M+2 M-t M=2
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