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ABSTRACT

Many studies have pointed out fractal and multifractal properties of photospheric magnetic fields, but
placing the various approaches into context has proved difficult. Although fractal quantities are defined
mathematically in the asymptotic limit of infinite resolution, real data cannot approach this limit.
Instead, one must compute fractal dimensions or multifractal spectra within a limited range at finite
scales. The consequent effects of this are explored by calculation of fractal quantities in finite images
generated from analytically known measures and also from solar data. We find that theorems relating
asymptotic quantities need not hold for their finite couterparts, that different definitions of fractal dimen-
sion that merge asymptotically give different values at finite scales, and that apparently elementary calcu-
lations of dimensions of simple fractals can lead to incorrect results. We examine the limits of accuracy
of multifractal spectra from finite data and point out that a recent criticism of one approach to such

problems is incorrect.

Subject headings: methods: analytical — methods: numerical — Sun: magnetic fields

1. INTRODUCTION

Magnetic flux in the solar photosphere is intermittently
structured down to the smallest scales accessible to terres-
trial instruments. This manifests itself in a scale similarity of
the distribution of magnetic areas on the solar surface and a
corresponding fractal dimension D =~ 1.6 (Tarbell et al.
1990). Because the solar magnetic flux density is not
uniform, one must define a measure on the fractal set.
Measure theoretical concepts were first applied to solar
fields by Lawrence, Ruzmaikin, & Cadavid (1993), who
found that the solar flux also is multifractal. Subsequently,
small-scale dynamo models have been proposed to produce
multifractal fields and have been tested against observa-
tional data (Cadavid et al. 1994; Lawrence, Cadavid, &
Ruzmaikin 1995a).

The application of fractal and multifractal methods to
solar problems is becoming increasingly common (Brandt
et al. 1991; Lawrence 1991; Ruzmaikin, Sokoloff, & Tarbell
1991; Schrijver et al. 1992; Lawrence & Schrijver 1993;
Milovanov & Zelenyi 1993; Lawrence et al. 1995b; Tao et
al. 1995). These works approach fractality and multi-
fractality from a variety of viewpoints and may, at times,
appear contradictory. A reconciliation of some of these
results is timely. It is also appropriate to illustrate pitfalls,
both computational and interpretive, which investigators
may encounter.

Fractal dimensions and multifractal spectra are defined
mathematically in the asymptotic limit of infinite resolution
and hence over an infinite range of scales. No set of obser-
vational or simulated data can approach this limit. All are
bounded by an inner cutoff at finite resolution and by an
outer cutoff at the scale of the system under observation (or
simply of the image size). One is left with a scaling range
somewhere between the two cutoffs. We will use the term
“resolution-limited asymptotics” to describe this situation.
When asymptotic and resolution-limited asymptotic quan-
tities are confused, theorems relating mathematical quan-
tities may appear to be violated, and apparently
straightforward computations can lead to incorrect
answers. Different definitions of fractal dimension that coin-
cide asymptotically often yield markedly different values
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when calculated from data. Dubuc et al. (1989) have
remarked on the weakness of box counting methods for
studying fractal dimensions of graphs of finite time series.
Scotti, Meneveau, & Saddoughi (1995) have given a thor-
ough analysis of the scaling corrections needed for calcu-
lation of fractal dimensions of such graphs. Their findings
parallel, in some aspects, our results for magnetic images.
Finally, different kinds of fractal dimensions can be com-
puted for the same sets or measures, leading to inappro-
priate comparisons of calculated values.

We will illuminate these problems by analyzing, in the
context of resolution-limited asymptotics, artificial images
with known asymptotic properties and comparing the
results to mathematical expectations. Each case will be
illustrated by an example from solar data.

2. MULTIFRACTAL MEASURES

Let us cover an image of the solar surface, including mag-
netic flux, with a grid of square “coarse-graining” cells or
boxes of uniform sizes s = €L, where L is an outer cutoff
scale, and where € < 1. Then we define a measure u, on the
set of boxes containing magnetic flux, that describes the
variation of the flux, or other measure, from box to box. For
finite €, the coarse-grained measure y,(€) in the ith box is the
integral of the measure y over that box. If the measure is
signed, as for line-of-sight flux (Lawrence et al. 1993;
Cadavid et al. 1994), the opposite signed components cancel
within each box, and then the absolute value is taken. If the
frequency distribution of the measure among the boxes is
invariant as e is varied, then it is multifractal (Evertsz &
Mandelbrot 1992).

A fixed coarse-graining grid is useful for conceptual pur-
poses, but for large €’s there are not enough boxes for good
counting statistics. Further, results can be distorted by for-
tuitous alignment of the grid with image features. In compu-
tations we will place Monte Carlo sampling boxes
randomly in the image.

2.1. Multiplicatively Generated Multifractals

We explore finite size effects by examination of a known
measure generated by a multiplicative cascade process. This
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is a restricted version of the two-dimensional procedure
used by Lawrence et al. (1995a). A measure uniformly dis-
tributed on a square area is divided among four equal quar-
ters according to two multipliers M, and M,, selected at
random from the same distribution density P(M) =
P(1 — M), where 0 < M < 1. The four subsquares are allo-
cated the measures M;M,, M,(1—-M,), 1 — M)M,,
and (1 — M,)(1 — M), respectively. Then, the four squares
are further divided into four equal quarters according to the
same procedure and with the same probability density, and
so on to infinity. The invariance of the allocation rule
through all the levels of subdividion produces multifractal
scaling. Figure 1 is a gray-scale image of a 512 pixels x 512
pixels image constructed from the first nine steps of such a
procedure with a triangular distribution density:
P(M)=4M for 0< M < % and P(M) = 4(1 — M) for § <
M<L1

2.2. Generalized Dimensions

The asymptotic limit of the gth moment of the measure
gives the “ generalized dimensions ”

1 In); u¥e)
D =
T @g@-1) ?.I,I; Ine
where q is any real number (Grassberger 1983 ; Hentschel &
Procaccia 1983; Halsey et al. 1986). D,, is just the fractal

dimension of the supporting set of the measure. The gener-
alized dimensions are a nonincreasing function of ¢
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(Hentschel & Procaccia 1983). The measure of a simple
fractal is uniform, so D, = D for all g. The limit g — 1 exists:

D, =lim M .
o In(l/e)
The “measure theoretic” dimension D; describes the con-
centration of the measure. For example, when D, describes
the distribution of a set of coins, D; describes the distribu-
tion of their monetary value (measure).
In the resolution-limited asymptotics of real data, we
remove the limits from equations (2.1) and (2.2), write

IWECETL

and find D, by a linear fit of In[); u¥(€)] to In(1/e). The
1ntercept C(q) of the fit indicates the importance of finite-
size effects.

As a result of its scale invariance, the moments of the
measure of Figure 1 can be reduced to the moments of

2.2)

2.3)

P(M):
q q —4._ 1 o
cay = [[amranues = o - (2> ]
(2.4)
ifg> —2andq# —1,and
M~y =4In2. 2.5

{M?) is singular for ¢ < —2 because of the M?*! depen-
dence of the integrand at M ~ 0. The generalized dimen-
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Fi16. 1.—Gray-scale, 512 pixels x 512 pixels image constructed from the first nine steps of a multiplicative cascade procedure with a triangular distribu-

tion density. Black is low measure, white is high measure.
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sions are directly related to these moments (Meneveau &
Sreenivasan 1991; Chhabra & Sreenivasan 1991a, b; for a
two-dimensional version see Lawrence et al. 1995a):

1 21n (M)
D"“(l—q)[z %) ]

Figure 2 shows as a solid line the analytical form of D,. This
gives D, = 2, in agreement with the fact that this measure
fills its two-dimensional embedding space.

Also shown in Figure 2 are the results of a box counting
calculation of D, and C(q) via equation (2.3) over the range
3 pixels < s < 16 pixels and with 50,000 Monte Carlo sam-
plings. C(q) is zero within the error bars for —0.5 < g <5,
so there are no finite-size effects here. This expectation is
borne out by the excellent fit of the box counting D, to the
analytical curve. The finite range of g over which the good
fit occurs may be laid to the singularity of (M%) at g < —2
and to the finite scaling range. In particular, the increasing
scatter with g > 2 of the box counting values of D, and C(q)
indicates the basic limit of accuracy that can be attained in a
512 pixels x 512 pixels image.

(2.6)

2.3. Multifractional Spectrum

Relabel the coarse-grained measure yy€) in the ith box in
terms of its coarse Holder exponent «;, where

Hi(e) = €. @7

Because € < 1, large values of a correspond to small values
of pu. For each e, make a histogram of the number
dN(a, €) = n(a, €)da of boxes with “singularity strength” o
in bins of width da. If the number density n(x, €) scales for
€ — 0 according to

n(a, €) ~ P(lne)e™'® | (2.8

with f(«) independent of €, then the measure is multifractal
according to the criteria of Evertsz & Mandelbrot (1992).
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F1G. 2.—Analytical form (solid line) of D, for the measure of Fig. 1. Box
counting calculation of D, (squares) and C(g) (circles) for this measure over
the range 3 pixels < s < 16 pixels and with 50,000 Monte Carlo samplings.
Error bars represent the precision of the linear fits. Those not shown on the
box counting values are smaller than the symbols.
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The “multifractal spectrum” f(«) amounts to a double
logarithmic plot (to base €) of the probability distribution of
measure in the coarse-graining boxes.

Finiteness of the total measure in the limit € — 0 requires
that f(«) touch from below, but not cross, the bisector line
f(a) = a. The scaling correction ¢(Ine) is required to con-
serve the measure for variable finite e. We have used the
form

1 1/2 C C
¢(Ine) = C(a)[]n (;):l [1 + ln(ll/ 9 + lnz(;/e) + ]

2.9)

derived by van de Water & Schram (1988). The + 1/2 expo-
nent corrects typographical sign errors in equation (7) of
Lawrence et al. (1993) and in equation (2.4) of Cadavid et al.
(1994). C(«) is an undetermined function of «. While they are
irrelevant asymptotically, the unknown constants C, are
important in a resolution-limited context. Thus, although
we can establish multifractality in solar fields (Lawrence et
al. 1993; Cadavid et al. 1994), ambiguity in the scaling cor-
rection leaves f(x) numerically inaccurate (Meneveau &
Sreenivasan 1989; see also Lawrence et al. 1995a).

The derivation of equation (2.9) assumes that f(a) is
tangent to the bisector at a point a,, that it can be expanded
in a Taylor’s series about that point, and that the leading
noncanceling term in the expansion of h(a) = o — f(a) is the
quadratic term proportional to f”(«,). If, however, the
second derivative vanishes, then the leading term will be
proportional to some higher (even) derivative f®(a,). In this
case the leading logarithmic factor becomes [In(1/e)]'/". If
f() is in contact with the bisector over a finite range, the
leading factor is [In(1/€)]° = 1. If, on the other hand, f() is
not differentiable at «,, but can be approximated as linear
on either side of that point, then the leading factor becomes
[In(1/€)]*. As an alternate, more robust (and truncated),
version of equation (2.9), we thus could adopt

d(ine) = Co)[In(1/e)]” . (2.10)

In what follows we will look at both forms to preserve
continuity with earlier work.

The scaling correction ¢(lne) is closely analogous to a
scaling correction factor introduced by Scotti et al. (1995)
for the fractal dimensions of graphs of functions. That cor-
rection also reflects the finite resolution of the series.

For a simple fractal, the multifractal spectrum collapses
to the point « = f(«) = D. Under the condition f"(a) < 0 <
dD,/dq < 0, the quantities a, f(®), and the quantities g and
(g — 1)D, are formally equivalent and are connected by a
Legendre transformation:

d
= U [(g—1D,], f()=gqax—(q—1)D, (2.11)
(Frisch & Parisi 1985; Halsey et al. 1986). The maximum
value f, .. (a) = D,.

Figure 3 shows as a dashed line the f(a) curve calculated
by a Legendre transformation from the analytical D, curve
in Figure 2. Although the analytical D, does not exist for
g < —2, the transformation maps the point g = 2 to & = oo,
f(2) = —o0, so the whole singularity spectrum remains
present. For a classification of forms of multiplicative prob-
ability distribution densities and the singularities arising
from them, see Hentschel (1994). The solid line in Figure 3 is
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Fic. 3.—f(a) curve calculated by Legendre transformation from the
analytical D, curve in Fig. 2 (dashed line). The f(«) curve calculated by
Legendre transformation from the box counting D, in Figure 2 (solid line).
The sets of symbols denote f (o, €) curves for box sizes 2 pixels (open circles),
3 pixels ( filled circles), 4 pixels (open triangles), 6 pixels ( filled triangles), 8
pixels (open squares), and 12 pixels (filled squares) calculated with the
values C(@) =1 and C, = —1.05 and including 100,000 Monte Carlo
samples.

calculated from the box counting D, shown in Figure 2 and
represents the case of resolution-limited asymptotics. These
are in good agreement.

We also carry out a direct calculation of the f(«) curve by
means of a resolution-limited asymptotic version of equa-
tion (2.8). First, we write this in the form

_In[n(, /¢(ne)]
flo €)= In (1/e) '

Next, ¢(In€) is adjusted so that the f(«, €) curves for differ-
ent € are (1) congruent to the greatest extent possible and (2)
tangent to the bisector. We have chosen to cut off the power
series in equation (2.9) after the C; term, introducing an
error ~(1/ln L)>. We have associated the value of L with the
size of our image, but the true value is unknown. C(x) and
C, are treated as free parameters in meeting criteria (1) and
(2). The sets of symbols in Figure 3 denote f(a, €) curves for
box sizes s = 2, 3, 4, 6, 8, 12 pixels calculated with the values
C(@)=1 and C; = —1.05 and including 100,000 Monte
Carlo samplings. These coincide in the range 1.2 < a < 2.8,
demonstrating scaling, and they are tangent to the bisector.
However, they give D, = 1.9, too small by about 5%. This is
attributable to truncation of the scale correction ¢(In €). Use
of the prefactor in equation (2.10) in place of that of equa-
tion (2.9) gives optimum parameter values C(x) = 0.8 and
B =0.3. This leads to a plot of f(a, €) curves indistin-
guishable from that of Figure 3.

Lawrence et al. (1995a) have examined positive definite
measures constructed from the square of the transverse gra-
dients of line-of-sight fields in solar magnetic images. These
measures show strong multifractal scaling. The multifractal
spectrum was calculated as in the present case except that
an observational determination of P(M) was substituted for
the analytical computation. This leads to a plot virtually
identical to Figure 3.

(2.12)
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Because of the form of equation (2.12), Tao et al. (1995)
have mistaken our “curve matching” version of the histo-
gram method for an erroneous division by In(1/€) and
advocate a standard linear fitting version instead. The situ-
ation is akin to finding the slope of a linear sequence of
points in a two-dimensional plot. If the line through the
points passes through the origin of coordinates, then we can
find the slope by simply dividing the ordinates of the points
by their abscissae. If the line does not pass through the
origin we have two possibilities. On the one hand, we can
carry out a linear fit to the points, determining both the
slope and the intercept. On the other hand, we can move the
origin of coordinates [by choosing C(«) and C, or C(«) and
f] to meet the line through the points and then divide the
ordinates by the abscissae. Our curve matching approach is
analogous to the second choice and is fully valid, as is its
application in Lawrence et al. (1993). This is explored
further for an image from that paper in the next subsection.

We point out additionally that Tao et al. (1995) were
commenting on the generalized dimension approach to multi-
fractal scaling, rather than the direct calculation of f(a) we
have used. This second approach is preferrable for analysis
of real, observational data, because it shows the quality of
the data and degree of scaling very directly. The generalized
dimensions, however, are calculated by averaging moments
of the measure over the whole image, and this introduces a
sometimes misleading appearance of regularity to the result.

2.4. Scaling of a Solar Magnetic Image

Figure 4 is a line-of-sight magnetic field image of NOAA
active region 5643 made under good seeing conditions with
the San Fernando Observatory video spectra—spectrohelio-
graph system on 1989 August 17. The pixel scale is 0746
pixels™ %, and the field of view is 480 pixels east-west and
550 pixels north-south. Resolution is seeing limited at > 1"
This image was studied in Lawrence et al. (1993); here we
compare the curve matching and standard fitting calcu-
lations of f(«).

Figure 5 shows D, and C(q) for this signed measure. We
have seen in § 2.2 that they do not exist for g < —1. For
0<q<3, D,=D~2 resembles a simple fractal. For
q > 3, D, begins to decrease slowly. The C(q) curve indicates
the presence of finite-size effects.

Because the Legendre transformation is ineffective here,
we rely on the histogram method to calculate f(x). Figure 6
shows f(a, €) curves for s = 2, 3, 4, 6, 8, 12 pixels and the
choices C(x) = 1.2, C; = —1.4. These display scaling over
the range 1.7 < « < 2.2. The structures at ¢ > 2.2 are ana-
lytically treatable finite-size effects of the image noise
(Cadavid et al. 1994). Again, f,,,.(2) = Do, = 1.9 is too small
by ~ 5%, because we have truncated equation (2.9) after the
C, term. Finally, use of the equation (2.10) prefactor gives
no discernable improvement in the matching of the f(x, €)
curves, but leads to the parameter values C(x) = 0.5 and
p = 0. This last value is not surprising, since the f(a, €)
curves appear to follow the bisector over a finite range.

The scaling of f(«) seen in Figure 6 is obtained by
assuming that both In [n(a, €)/¢] and In u vary linearly with
Ine. To check this, we define X(€) = In u(e). X(e) varies
between some X, () and X, (€), and at each scale we
follow the procedure suggested by Meneveau & Sreeni-
vasan (1989) by dividing this range into 20 equal intervals of
size¢ AX and checking the scaling for each interval. Box
counting is implemented for 600 realizations of a fixed
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F1G. 4—Line-of-sight magnetic field image of NOAA active region 5643 made under good seeing conditions with the San Fernando Observatory video
spectra—spectroheliograph system on 1989 August 17. The pixel scale is 0746 pixel "%, and the field of view is 480 pixels east-west and 550 pixels north-south.

Resolution is seeing limited at > 17

course-graining grid with location varied randomly by up
to 32 pixels in rows and columns. Figure 7 shows the linear
scaling of In p(€) versuls In (¢) for six of the 20 intervals. The
scaling range is 5-30 pixels. The slopes of the lines are the
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q

F1G. 5.—D, (squares) and C(g) (circles) for the signed measure of Fig. 4

corresponding «;. It is clear that the linear fits are especially
good for 1.6 < « < 2.17, verifying that the Ansatz of equa-
tion (2.7) is physically realistic. For « > 2.17, corresponding
to weaker magnetic fields, the fits are degraded, probably by
the effects of image noise (see Fig. 6). This effect also was
observed for turbulent motions of the terrestrial atmo-
sphere (Meneveau & Sreenivasan 1989), and the same inter-
pretation was placed upon it. Figure 8 shows plots of
In [n(e, €)/¢(In €)] versus In € for six values of a. For conve-
nience, we have chosen data points from bins equally
spaced in a. The prefactor ¢(lne) uses C =1.2 and C, =
—1.4. The scaling range is 4-28 ‘pixels. Once again, we see
good linear fits; the slopes give —f(«;). The filled circles
with error bars in Figure 6 show the f(a) curve obtained by
linear fitting over the range 2-12 pixels. For 1.7 < « < 2.2,
this agrees closely with the curve matching plots. However,
for 2.2 < a < 2.6, the fitted curve is too high, even extending
above D, = 2. For s > 2.6, the fitted curve is too low. These
excursions are due to image noise. While the standard
fitting method blindly calculates a value for (), the curve
matching procedure points clearly to the influence of two
distinct phenomena: the scaling of the magnetic flux and the
presence of image noise.

3. DIMENSIONS OF SIMPLE FRACTALS

For simple fractals, all elements of the fractal set have the
same measure .
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Fi1G. 6.—f(a, €) curves for a =2, 3, 4, 6, 8, 12 pixels and the choices
C(x) = 1.2, C, = —1.4. Filled circles with error bars represent the f(a)
curve obtained by linear fitting over the range 2-12 pixels. The solid line is
the bisector f(a) = .

3.1. Box Counting Dimension

Cover the image with a grid of coarse-graining boxes of

uniform scale € < 1. If N(e) is the number of boxes contain-
ing any measure, then the asymptotic limit

. InN@
b=lm i e

is defined to be the fractal dimension of the supporting set
of the measure. For data, the asymptotic limit is unavail-
able, so we seek a resolution-limited asymptotic scaling
range between the inner and outer cutoffs. For finite size

(3.1)

40—

i=3
i=6
i=8

In(1,)
1 | )

o

-12.0
L o 4
i=16
-16.0 — —
N 1 | n
-5.0 4.0 -3.0 -2.0

In(e)

FiG. 7.—Linear scaling of X(e) = Inp(e) vs. Ine for selected intervals
AX(e). The scaling range is 5-30 pixels. The slopes of the lines are the
corresponding a;.
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D

boxes in this range, N(€) oc € and

InN(e) = C + DIn(l/e), (3.2)

where C is a constant intercept fixed by linear fit of In N(e)
to In(1/e). In analyzing the fractal properties of data, the
difference between these two definitions of D is crucial. Dis-
crepancies between the two for the dimensions of graphs of
time series are discussed in detail by Scotti et al. (1995).

An instructive test example starts with a measure uni-
formly distributed on a square, divides the square into four
equal quarters, and distributes the measure evenly in three
of them chosen at random. The process is repeated for each
of the filled subsquares, then all of the filled subsubsquares,
and so on to infinity. Figure 9 is a 512 pixels x 512 pixels
realization of this process through the first nine levels of
partition. At the nth level of this process, the set consists of
3" filled pixels in a square 2" pixels on a side. Thus, the
fractal dimensionis D = In3/In2 =~ 1.585.

Let us determine the fractal dimension in the resolution-
limited asymptotic regime. Figure 10 shows In N(q, €) versus
In(1/s) = In(1/€) + constant for the case ¢ =0. N(0, €) =
N(e), the unweighted number of boxes described above. The
slope is not constant over the full range 1 pixel < s < 64
pixels but shows a break at s ~ 6 pixels. Over 1 pixel <
§ <6 pixels, a rough linear fit gives D = 1.30 & 0.03,
clearly too small. For 6 pixels < s < 64 pixels, the fit gives
D = 1.627 + 0.006, which is too large.

What has gone wrong? Unless they match the original
cascade partitioning, both in size and location, our coarse-
graining boxes will contain varying amounts of measure
1 < po and so cannot cover the fractal set efficiently. Thus,
when s > 1 pixel, the number of boxes counted will be too
large. However, for s = 1 pixel, the boxes must match the
partitioning and the correct number of boxes will be
counted; hence, the curvature in the plot. The situation can
be improved by weighting each box in the sum by a power
q > 0 of the amount of measure it contains: we calculate a
generalized dimension D, for g > 0. These would be inde-
pendent of q in the asymptotic limit, but in the resolution-
limited asymptotic case, values of g > 1 cover the set more
precisely and give better results. Figure 10 also shows
In N(q, €), where N(g, €) is the weighted number of boxes,
versus In(1/s) for g = 8. The plot is linear over 1 pixel <
s < 64 pixels and yields Dg = 1.572 +0.004, a better
approximation to the asymptotic value.

3.2. Cluster Dimension

A different kind of dimension has been studied by a
number of groups. Discrete clusters of pixels in a fractal set
can represent granules (Brandt et al. 1991) or magnetic
plages (Balke et al. 1993). A fractal dimension governs the
scaling of the number of pixels A (the “area” or “mass”)
with the linear size L of each cluster:

Aoc LPa (3.3)

In practice, D, is the slope of a plot of In A versus In L.
Figure 11 is a 256 x 256 array of pixels that are random-
ly occupied or not with probability p = 0.5. The occupied
pixels are black (an arbitrary choice in this case). Clusters
are defined by continuous sets of occupied nearest neighbor
pixels, and percolation theory (Stauffer & Aharony 1992)
indicates D, = 1.56 for such clusters. We have identified
278 discrete clusters in Figure 11, with linear size restricted
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FiG. 8.—In[n(x, €)/¢(In €)] vs. In€ for six values of «

for convenience to 10 pixels or more. Figure 12 is a log-log
plot of the areas versus the sizes; the linear fit gives D, =
1.54 4+ 0.04, in agreement with percolation theory. The box
counting dimension of the set of occupied pixels, however, is
D=2

3.3. Threshold Sets

A “threshold dimension” Dy, is the fractal dimension of
the support (the “threshold set”) of that portion of a posi-

tive definite measure lying above some given value. If the
threshold value is zero, D, = D,. From the asymptotic
nature of the information theoretic dimension D, in equa-
tion (2.2), however, it follows that for any threshold level
greater than zero, D, = D, (Farmer, Ott, & Yorke 1983).
Does this hold for resolution-limited asymptotics? For the
known multifractal measure of § 2.1, the analytical D, =
1.740. Tao et al. (1995) prescribe that D, be taken to be D,
of the threshold set calculated via equation (3.2). As we have
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seen in § 3.1, however, coarse-graining boxes cannot cover
such black-and-white sets efficiently, and workers who

follow this prescription are likely to obtain incorrect results.
We again use D, and arbitrarily choose g = 8 (still not a

45 F T T T T ]
=1.30£0.0
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z
g 25f -
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F1G. 10.—Log-log plot of N(q, €) vs. 1/s over the range 1 pixel < s < 64
pixels for g = 0 (open circles) and g = 8 (filled circles) for the fractal set of
Fig. 9.

perfect procedure). If the threshold level is such that the
lowest 4% of the measure is excluded, we find D, = 1.907
+ 0.005, if 17% is excluded, D, = 1.815 + 0.005, and if 42%
is excluded, D, =1.63 +0.02. For resolution-limited
asymptotics, Dy, is strongly dependent on the threshold
level and therefore #D,. Tao et al. (1995) have found a
closer coincidence between D, and D, for a simulated mag-
netic image. The preceding discussion suggests that this
result is fortuitous.

3.4. An Observational Example

Figure 13 is constructed from a Lockheed-La Palma
magnetogram of plage in NOAA active region 5168 on 1988
September 29 made with the Vacuum Tower Telescope of
the Swedish Solar Observatory (Title et al. 1989). The
spatial resolution in this image is ~0"5, and the pixel scale
is 0714. The threshold set includes those pixels with | B)| >
500 G. This threshold matches the analysis of the same
image by Balke et al. (1993). Figure 14 is a log-log plot of
N(g, €) versus 1/s over the range 1 pixel < s < 64 pixels for
g = 0 and q = 8. As before, g = 0 gives greater values of N,
but now the g = 8 plot shows a break at s &~ 11 pixels. For
s < 11 pixels, Dg = 1.90 + 0.01. At the smallest scales, the
threshold set in Figure 13 is made up of almost-two-
dimensional objects. This is a consequence of the image
resolution and the sizes of magnetic features at the 500 G
level. For 16 pixels < s < 64 pixels, Dg = 1.54 + 0.04, and
D, = 1.58 + 0.01. We take these values as indicative of the
actual fractal dimension.
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3.0 ' ' T r The absolute value of the line-of-sight field in the original

Lockheed-La Palma image from which Figure 13 was
derived has a measure theoretic dimension of D, = 1.844
+ 0.007 for scales s > 8 pixels. However, we found the
7 fractal dimension of the threshold set at 500 G to be D, =~
1.55 # D,.

We identify 67 discrete clusters in Figure 13 with linear
size greater than 10 pixels. Figure 15 is a log-log plot of the
. cluster areas versus linear size and gives D, = 1.75 + 0.05,
virtually identical to the result of Balke et al. (1993). After
numerical enhancement of the resolution, Tarbell et al.
(1990) estimated D, =~ 1.6, and Balke et al. (1993) found
D, = 1.54 + 0.05 for cluster sizes below the connectedness
length. Because this smaller value coincides with that of the
fractal dimension found in the preceding paragraph, it is
tempting to identify these dimensions with one another.
However, calculation of D, and D, using the threshold set
10 12 14 1.6 1 8 2.0 exactly as it is in Figure 13 in each case, gives differing
' ' results. Further, the value of D refers to scales > 5", while to
obtain the lower value of D we must go to scales an order

FiG. 12—Log-log plot of cluster areas (masses) vs. linear size for the of magnitude smaller. . .
occupied set of Fig. 11. Tao et al. (1995) have suggested an obvious connection

2.5

2.0

log A

1.54 + 0.04

log L
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F1G. 13.—Threshold set constructed from a Lockheed-La Palma magnetogram of plage in NOAA active region 5168 on 1988 September 29 made with
the Vacuum Tower Telescope of the Swedish Solar Observatory (Title et al. 1989). The spatial resolution in this image is ~075, and the pixel scale is 0714
The threshold set includes those pixels (black) with | B, | = 500 G.

between D, and D,,. This is not present in resolution- masses versus linear sizes of the individual clusters, where
limited asymptotics. Aside from differing numerical values, all are measured at the finest, single pixel level. The thresh-
the two dimensions have different meanings. On the one old dimension, on the other hand, refers to the scaling of the
hand, the cluster dimension refers to the scaling of the mass of the whole field of clusters versus the variable

coarse-graining level at which it is measured.
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Fi6. 14—Log-log plot of N(g, €) vs. 1/s over the range 1 pixel < s < 64
pixels for g = 0 (open circles) and q = 8 (filled circles) for the threshold set F1G. 15.—Log-log plot of cluster areas (masses) versus linear size for the
of Fig. 13. set of Fig. 13
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4. DISCUSSION

The point of departure for this paper has been the crucial
difference between the asymptotic, mathematical definitions
of fractal quantities and the versions of these quantities one
can expect to calculate from real data. For example, the
threshold dimension theorem of Farmer et al. (1983),
though valid in the asymptotic limit, does not manifest itself
in resolution-limited asymptotics.

The histogram approach to calculating f(«) spectra is
complicated by the necessity of undetermined scaling cor-
rections that arise from finite resolution, Although this
method is therefore numerically inaccurate, it is convenient
as a test for the presence of multifractal scaling. It has the
further advantage of displaying the data directly, whereas
the approach of averaging moments of the data introduces
an artificial smoothing of the results. We have compared the
utility of two formally equivalent techniques for this calcu-
lation, which we have called the “curve matching” pro-
cedure and the standard linear fitting. The latter requires a
separate fit for each value of a. Curve matching allows us to
choose a simplified form of the intercept, in particular
C(a) = contant in equation (2.9), and so to demonstrate
convergence of the f(«) with only one computation. Further,
the detailed behavior of the f(a, €) in different parts of the
spectrum (e.g., congruence for 1.7 < a < 2.2, a characteristic
divergence for a > 2.2) are plainly visible for curve match-
ing and aid in physical interpretation. While the fitting
method blindly calculates values for f(«), the curve match-
ing procedure exposes two distinct phenomena in the
image: the scaling of the magnetic flux and the presence of
noise (see Fig. 6).

Box counting measurements of dimensions of simple frac-
tals, or of multifractals that do not fill their embedding
space (with D, < 2), are unreliable in the resolution-limited
asymptotic regime. This is a consequence of the inability of
coarse-graining boxes to cover the supporting sets effi-
ciently. A partial cure is to use D, for higher values of g, so
as to weight the count of boxes according to the amount of
measure they contain. As can be seen in Figure 2, box
counting works well for a multifractal that does fill its
embedding space. Here every sample box covers something.
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We have compared cluster and threshold dimensions in
the resolution-limited asymptotic regime. Aside from differ-
ing numerical values, the two dimensions have different
meanings. On the one hand, the cluster dimension refers to
the scaling of the masses versus linear sizes of the individual
clusters, where all are measured at the finest, single pixel
level. The threshold dimension, on the other hand, refers to
the scaling of the mass of the whole field of clusters versus
the variable coarse-graining level at which it is measured.
D, does not refer to the geometrical location of one cluster
relative to another. Schrijver (1994) has also indicated the
difference between cluster and box counting dimensions of
sets. Certainly the fractal set of Figure 10 provides a strong
counterexample to their equality. In this particular case, the
clusters are tightly intertwined and the two approaches give
very different results. The fractal set in Figure 12 is more
loosely structured, but when calculated at the resolution
shown there the two dimensions differ (D = 1.75 + 0.05
and D = 1.55). The cluster dimension is related to the fractal
dimension D, = 1.56 &+ 0.05 inferred from the random
walks of magnetic elements on the Sun (Lawrence & Schrij-
ver 1993). Here each walker is confined to its own single
cluster. The measured value of D,,, suggests a connection to
random clusters like those in Figure 10 below percolation
threshold (Schrijver et al. 1992).

The application of fractal and multifractal ideas to solar
problems is an expanding enterprise. It is natural to expect,
as workers familiarize themselves with new concepts, that
confusion and misunderstanding will occur. It is hoped that
the examples presented here will help to clarify the relation-
ships among the work of different groups and will facilitate
development of these powerful techniques.
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