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ABSTRACT

We present a complete solution to the cyclotron-synchrotron radiation that results from an isotropic
distribution of electrons moving in a magnetic field. We make no approximations in the calculations
other than artificially broadening the harmonics by a small amount in order to facilitate the numerics. In
contrast to previous calculations, we sum over all relevant harmonics and integrate over all particle and
observer angles relative to the magnetic field. We present emission spectra for electron temperatures
T=5x10%K, 10° K, 2 x 10° K to 3.2 x 10*° K, and provide simple fitting formulae that give a fairly
accurate representation of the detailed results. For T > 3.2 x 10'° K, the spectrum is represented well by
the asymptotic synchrotron formula, which is obtained by assuming that the radiating electrons have
Lorentz factors large compared to unity. We give an improved fitting formula for this asymptotic case as

well.

Subject headings: magnetic fields — plasmas — radiation mechanisms: thermal

1. INTRODUCTION

Radiation by quasi-relativistic and fully relativistic elec-
trons in magnetic fields is very common in astrophysics.
Examples of sources include supernova remnants (see, €.g.,
Anderson, Keohane, & Rudnick 1995), jets and lobes in
radio galaxies (e.g., Carilli et al. 1991), hot accretion flows
onto neutron stars and black holes (e.g., Narayan, Yi, &
Mahadevan 1995), and relativistic fireballs in gamma-ray
bursts (e.g., Paczynski & Rhoads 1993; Mészaros, Laguna,
& Rees 1993). In all these examples we have thermal or
nonthermal electrons radiating cyclosynchrotron radiation
in a magnetic field that is probably of near-equipartition
strength. It is clearly important to be able to calculate the
radiative luminosities and spectra of these systems.

Surprisingly, a full solution to this problem does not
appear to have been published so far, especially for thermal
sources. The majority of previous work (e.g., Schott 1912;
Schwinger 1949; Oster 1960, 1961, Pacholczyk 1970) is
limited either to the cyclotron or the synchrotron limit
where analytical formulae may be used. These calculations
are not relevant in the transition zone between cyclotron
and synchrotron radiation when the velocities of the elec-
trons are quasi-relativistic. Petrosian (1981) has obtained
some approximate formulae in this intermediate regime, but
a complete analysis of the emission from thermal sources
with temperatures in the range 10°-10*° K can only be
done numerically. Takahara & Tsuruta (1982) and Melia
(1994) have reported numerical calculations in the mildly
relativistic regime, but both calculations involve some
approximations and morever do not agree with each other.
Therefore, there is need for a more accurate treatment to
resolve this difference.

For nonthermal sources, Ramaty (1969) has performed
numerical calculations in the cyclosynchrotron regime. He
calculates the absorption and emission coefficients, at a
fixed observer angle, for an arbitrary angular distribution of
particles, discusses the polarization of the radiation, and the
possibility of cyclosychrotron maser phenomenon. These
results have been applied to solar flares (see Ramaty et al.
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1994). A quantum relativistic treatment of the cyclo-
synchrotron problem in superstrong magnetic fields, for lin-
early polarized radiation modes, has been investigated by
Bezchastnov & Pavlov (1991). They discuss how quantum
relativistic effects lead to fine structure in the cyclotron har-
monics, and present spectra of emission, absorption and
polarization for a thermal distribution of radiating par-
ticles. We do not consider superstrong magnetic fields in
this paper.

We present in this paper the complete solution to the
cyclosynchrotron problem for a thermal plasma in the non-
quantum regime. In § 2 we give a qualitative as well as
quantitative description of the problem and briefly discuss
previous work in this subject. We also present an outline of
how we solve the problem exactly. Then in § 3 we present
the results. We calculate the emission due to a thermal dis-
tribution of electrons for a range of temperatures and
provide analytic fitting functions for the spectra.

2. THEORY

2.1. Qualitative Features

A nonrelativistic particle moving in a magnetic field radi-
ates with a simple dipole pattern (e.g., Rybicki & Lightman
1979) so that an observer sees a sinusoidal electric field. The
observed spectrum consists of a single d-function at the
orbital frequency, w,, of the electron. This is the limit of
extreme cyclotron radiation. If the particle is speeded up,
the dipole radiation pattern gets distorted and the observed
electric field is no longer purely sinusoidal. The spectrum
then picks up additional Fourier components, or harmo-
nics, which are integral multiples of the fundamental fre-
quency. The situation is illustrated in Figure la. At the
same time, w, decreases with increasing velocity v, accord-
ing to

eB
m,c’

W, = (1)
where w, is the cyclotron frequency of the particle, and
y = 1/1 — v*/cH)'? = 1/(1 — p*)'/*is the Lorentz factor.
With increasing y, the emission is beamed more and more
toward the direction of motion of the particle. For large y,
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the electric field appears as a series of §-function-like pulses,
each of width ~ 1/y2w,, with succeeding pulses separated by
a time 2ny/w,. The Fourier transform of these d-functions
gives closely spaced d-functions in frequency that approx-
imate a nearly continuous spectrum extending up to o ~
y?w, and cutting off exponentially at higher w. This corre-
sponds to the synchrotron limit, where the spectrum has the
universal shape shown in Figure 1b.

The cyclotron and synchrotron limits have very different
spectra, as Figure 1 shows. How does the spectrum evolve
from one to the other as the particle velocity is increased?
Answering this question requires detailed calculations and
is the topic of this paper.

2.2. Previous Work

We begin by reviewing a number of well-known results.
The power (energy/time/steradian/frequency) emitted by an
electron moving with a velocity parameter § in a frequency
range dw, and at an observer angle 6 with respect to the
magnetic field, is given by (e.g., Schott 1912; Rosner 1958;
Bekefi 1966)

o’ & (cos 8 — B\
N, O)do> = 2ne limgl ( sin 0 )
x Ja(x) + LI (x)]é(y)dw V)
Here
x=-"28 siné, 3)
Wo
y = mwy — o(l — B cos 6), 4)

d(y) is the Dirac d-function, J,,(x) is the Bessel function of
order m, J,(x) is its derivative, B, = B cos 8, is the velocity
parameter parallel to the magnetic field B, where the parti-
cle moves at an angle 0, to the local field, and B, = B sin 6,
is the velocity parameter perpendicular to the magnetic
field.

Each integer m in the summation in equation (2) corre-
sponds to a harmonic, and the presence of the d-function
implies that the emission occurs at discrete frequencies. To
calculate the power in successive harmonics at low f (the
cyclotron limit), we expand the Bessel functions to lowest
order in x. After integrating over all observer angles, the
emission in each harmonic is given by (Schwinger 1949;
Rosner 1956; Bekefi 1966)

r_ 2¢%0p (m+ Hm*™*h gom )
= T om+ 1) :
This result, which is valid as long as mf < 1, shows that the
spectrum decreases rapidly with increasing m. Figure la
shows an example with f = 0.1, which corresponds to this
limit.

In the opposite limit of y > 1, which is the synchrotron
limit, we are interested in large m’s, and the Bessel functions
can be approximated by modified Bessel functions (Bekefi
1966). We then have the familiar result (e.g., Schwinger
1949; Pacholczyk 1970; Rybicki & Lightman 1979):

dE_:{3e3B sin 6, FX) . ©

do 2mm, c?

Vol. 465
where
() 3,0 .
X=;c, wc=5ywbs1n0p, )
F(X)is given by
F(X)= XL Ks3(0dg )

and Kj;;5(¢) is the modified Bessel function. By taking
appropriate limits of F(X), we obtain

4n (X\
FX)»— (%)
%) \/31"(1/3)<2)

1/2
F(X)—><g) e XXV X »1.

X<1, )]

(10)

Figure 1b shows the synchrotron spectrum for a particle
with y = 10.

The above results are for electrons of a given velocity.
For a thermal distribution we need to integrate the emission
over a Maxwellian. This integral can be done in the syn-
chrotron limit to give (Pacholczyk 1970),

X XM -1 -1
= I
€, dw =C K,1/0) (sin Bp)dcu ergss "~ Hz™ ', (11)
where
e’n, w, ) 2x kT
C=—FF—, y=—, = , 0,= , (12
37c * Wy u 302 ec’ 1)

K,(x) is the modified Bessel function, and I(x,,) is defined by

I(xy) = 1 Imzz exp (—z)F(%)dz .

s (13)

In writing equation (11), we have included the proper nor-
malization for a relativistic Maxwellian distribution; in the
limit of high temperatures, this normalization is equivalent
to that used by Pacholczyk (1970). The limiting behavior of
I(xy) for small and large x,, are straightforward. The former
has been worked out by Pacholczyk (see eq. [A2]), and the
latter by Petrosian (1981) (see eq. [A4]). Equation (11) cor-
responds to particles at a fixed angle 6, to the magnetic
field. For an isotropic particle distribution, we need to
perform another integral over d(cos 6,). The asymptotic
dependencies of the result for small and large x,, are again
easy to calculate and are discussed in Appendix A.

For the mildly relativistic case, Petrosian (1981) has
obtained the following analytic approximations for the
emission spectrum from a thermal distribution of electrons
as a function of the observer angle 0:

€. (O » 2% ¢ —*

62 7 K,(1/6,)
x exp (—6.753xiPydw , x0,> 1, (14)
1 1+ cos? 6
1/2~3/2,.2 32~ 7 7
€,(0)dw — 312272 CBeKZ(l/ee) (x6.) ( Sn? 0 )

2
X exp l:—xh‘l (m)]dm , 0,<1. (15

These results are valid only with the additional condition
w/w, > 1, the regime Petrosian (1981) was interested in. For
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Fi6. 1.—(a) Cyclotron emission for a particle with = 0.1. The emission is normalized to the total emission in all harmonics. (b) Synchrotron emission for
a particle with y = 10 from standard synchrotron theory. (Vertical axis is eq. [6] with f = 1 G, sinf, = 1.)

xy > 1, equation (14) is exactly the same as equation (11) (cf.
eq. [A4]), and we see that the approximations made by
Petrosian (1981) in this regime are the same as the extreme
synchrotron approximations.

The extreme synchrotron results described above provide
quite an accurate representation of the exact results for
electron temperatures =3 x 10!° K, while the series result
given in equation (5) is very good at temperatures <108 K.
For 108 K < T <3 x 10'° K, we cannot use either of these
limiting results but most solve the complete cyclo-
synchrotron problem.

2.3. The Complete Solution

We start by writing the integrals that need to be carried
out. To determine the luminosity, L, = dE/dw, due to a
particle moving with velocity parameter B, we must inte-
grate n,(B, 6) (eq. [2]) over observer angles, and a given
particle distribution:

L,= E_2 ldﬁ n(p) J:ndqbl,

* " do  4n ),
x fd(cos op)fz"w j dicos O, (8, 0), (16)
(1] 0 -1

where 1,,(B, 0) is given by equation (2). The subscript p refers
to the particle, and n(f) is the velocity distribution of the
particles which is taken to be isotropic. The factor of 2 in
front is because we integrate over only half the range of cos
0,, and the factor of 1/4n comes from the angular normal-
ization of the (isotropic) particle distribution function. The
integrals over ¢, and ¢ are trivial, giving

dE 1 1 1
L,=—-= 27:J dp n(ﬂ)J\ d(cos 0,) J d(cos OB, 0) .
dw o o -1
(17

For a fixed velocity parameter § and frequency w, we
numerically evaluate the two innermost integrals in equa-
tion (17), as well as the sum over harmonics in the expres-

sion (2) for (B, 6). We repeat this calculation for various
values of § and w and tabulate the results. The results can
then be convolved with any isotropic velocity distribution
to obtain the spectrum L. In this paper, we restrict our-
selves to a relativistic Maxwellian n(f) and present detailed
results for this particular case.

The evaluation of equation (17) involves a d-function (eq.
[2]), which determines the precise frequencies at which radi-
ation is observed. For a given harmonic m, the -function
implies that there is emission only at

. MDo
"~ (1—pycosf)

Since m takes on integer values, this means that for a given
B and cos 0, emission is observed only at a discrete set of w.
Unfortunately, the discrete nature of the emission poses a
serious numerical difficulty since it requires infinite
resolution in frequency. In order to make the numerics trac-
table, we replace the d-function with a smooth broadening
function, f(w), which is nonzero over a finite frequency
range w, + Aw. Here w, is the central frequency where we
wish to evaluate the emission, and Aw is a broadening
width, which we adjust. With the smoothing function, the
d-function in equation (2) becomes

[0

(18)

1 1
o(y) = o[mwy — (1 — B cos O)] = oy T— B cos 0

AV
(19)
where

L_2. (20)

X =
W, YW

For f(3), we choose the functional form

15 2 1
f= T6A; [1 - (A—xz)(x — )+ (A—XJ(X - xc)4] ,

21
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which has the property that f(w, + Aw) = f'(w, + Aw) = 0.

In our calculations we set Ay = ay, and we have found
that a choice « =0.05 allows the J-function to be
broadened sufficiently to stabilize the numerics without
losing too many details of the harmonic structure of the
emission. For each value of y, of interest, we calculate the
power emitted into a width 2Ay centered at ., counting
only those harmonics which fall within this width. With
equations (2) and (19), equation (17) thus becomes

L, = 2n(e2“’”> f ldﬂ n(B) J ' d(cos 0,)
2nc ) Jo o

J)
1— B cosb

ol & fcos0—By\* . , PB.sinb
*X lim§1< SinH Jm X l—ﬁ” COS 0
B, sin 6
2 72 N o el
+ﬁl]’”<yx 1—Bycosb/]

For a Maxwellian velocity distribution with temperature T,
we have

X Jl d(cos 6)
1

22

__mct v
n(y)dy = KTK.(18) By* exp ( - 98>dv , (23)
or
__mc 7
"B = s B O (— He)dﬁ e
with

© 1
Jl n(y)dy = L n(B)dp =1. (25)

Here k is Boltzmann’s constant, 8, = kT/m, c?, and K,(x) is
the modified Bessel function.

The procedure to calculate the full cyclosynchrotron
emission spectrum is as follows. Using equation (22), we fix
the values of B, cos 6, cos 6, and sum over the harmonics
responsible for emission over the frequency range y — Ay to
% + Ay. This gives the total emission into the given observer
angle 0 from particles at angle 6,. We then integrate over all
observer (cos ) directions, to get the emission into all of
observer space, and integrate over all particle (cos 0,) direc-
tions to obtain the total emission per particle at the given
values of y due to an isotropic distribution of particles
moving with the given f or Lorentz y. We repeat the calcu-
lation for various values of y and y to obtain a table of
values.

The present calculations differ from previous work by
Ramaty (1969), Tsuruta & Takahara (1982), and Melia
(1994) in that we integrate over all observer angles whereas
those authors restricted themselves to a particular observer
angle.

3. RESULTS

3.1. Transition from Cyclotron to Synchrotron

Figure 2 shows plots of the emission as a function of
scaled frequency y for various particle velocities, after the

angular integrations in equation (22) have been performed.
For comparison, the dashed lines show the synchrotron
formula as given in equation (6). We see that the exact
numerical results deviate considerably from the limiting
synchrotron formula in Figures 2a—2c, where the harmonic
cyclotron-like emission is quite evident. The harmonics are
broadened, partly because of our broadening function f(x)
(eq. [21], and partly due to Doppler broadening induced by
B (see eq. [18]). The former effect dominates in Figure 24,
but the latter is more important in Figure 2c.

By Figure 2d, which corresponds to f = 0.9, y = 2.3, the
harmonics have merged completely at higher values of y
and the synchrotron approximation is becoming quite
good. Yet higher values of y (Figs. 2e-2f) make this trend
more apparent. However, at low values of y the harmonics
continue to be present, and there are deviations from the
synchrotron formula.

Figures 3a—3d show polar plots of the emission as a func-
tion of the observer angle 6. In these figures, the particle has
y =10.3 and is moving in a helix at an angle 6, to the
magnetic field with cos 6, = 0.3. The field points along the
positive y-axis. Figure 3d shows the emission pattern that is
observed at a large frequency y = 100. According to Figure
2f, which corresponds to this value of y, the emission at this
x is practically equal to the synchrotron formula. The
reason is clear from Figure 3d. We see that the emission is
tightly beamed along the particle direction, and the beam
has a half angle ~ 1/y, exactly as assumed when deriving the
synchrotron formula. Varying cos 6, does not change this
behavior and, therefore, on integrating over cos 6, we find a
total emission that agrees very well with the synchrotron
formula.

In strong contrast is the case shown in Figure 3a, which
corresponds to the same values of y = 10.3 and cos 6, = 0.3,
but has a much lower value of y = 0.8. The emission pattern
now is not strongly beamed about the particle’s velocity.
Instead we can clearly see a set of harmonics, each with a
width determined by f(y). As cos 6, varies, the individual
beams get longer or shorter, but the harmonic character
remains. Therefore, the integrated emission over all cos 0,
deviates significantly from the synchrotron approximation
[as Fig. 2f shows at log (y) ~ —0.1]. Figures 3b-3c, show
how the transition in the beaming occurs as y increases.

3.2. Emission by a Thermal Distribution of Electrons

The primary output of our calculations is a table of 7,
values as a function of electron velocity § (or equivalently y)
and dimensionless frequency y. This table can be convolved
with any isotropic velocity distribution to calculate the cor-
responding spectrum. In the following we describe the
results for a thermal Maxwellian distribution.

3.2.1. The Ultrarelativistic Regime

We first consider the ultra-relativistic regime, where
kT > m,c?. Pacholczyk (1970) derived the formulas given
by eqgs. (11) and (16), for the emission from a relativistic
Maxwellian distibution of electrons with a fixed particle
angle 6,. For an isotropic distribution of particles, we define
a new function I'(xy,)

’ _ i XM
Toan) = 4n jl<sin 0,,)de '

and substitute I'(x,) for I(x,) in equation (11).

(26)
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FiG. 2—Plots of scaled emission log (/) against log (y) for (@) f = 0.2, (b) B = 0.3,(c) B = 0.6,(d) B = 0.9, () y = 5.3,(f) y = 10.3,(g) y = 40.3, (h) y = 100.3.
The vertical axis is the scaled emission, I, after the angular integrations in eq. (22) have been performed. l, = L(c/*w}) = L,(c/e*w,) (cf. eq. [22]). The dashed
lines show the synchrotron limit given by eq. (6).

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1996ApJ...465..327M

J: D465 TRTM

o

(=q]
[{e]]
(=]
[=h

332 MAHADEVAN, NARAYAN, & YI Vol. 465
04 -T LI |‘Tl 1 11 I 1 11 0.4 ’-l UL ' T T LI l 11
- - .
0.2 - 02 F .
. ] i § g ]
0 ] 0 : ]
0.2 | - ~0.2 | :
- (a) x=0.8 1 - (b) x=14
— 4 1 11 I 1 1 L1 1 I L1 1 _04 1 1 1 I [ | L1 1 l 1 1
~04 -02 0 02 04 ~04 -02 0 02 04
0.4 -l lrl LI LI l T 1 I—‘ 1 ’:l— IIﬁITlll lllfrlll—l_—l'l
i 1 : ]
0.2 — - ]
i i 0.5 -
- ] . :
of i 0 \/
I 3 0= b R
-0.2 — - 0.5 - ]
- (c) X=5.0 ] _q1 £ (d) x=100.0
— .4 r_J L1 J 4 1 1 1 1 1 l L1 1 IJIlllllJll Illlllllllj—
“04 -02 0 02 04 -1 -05 0 05 1

Fi16. 3.—Polar plot of emission from a particle moving with a Lorentz factor y = 10 at an angle of cos 8, = 0.3. The magnetic field is oriented along the
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Pacholczyk (1970) has numerically calculated I(x,;) over a
wide range of x,, and tabulated the values. In addition he
has shown that in the limit of small xy

1 167 [xy
Ixy) > — —F—
G xM9\/§<

In the opposite limit of x; > 1, Petrosian (1981) finds
I(xy) — 2.5651 exp (—1.8899x3(3) .

1/3
7) =25593x32%.  (27)

(28

We can combine these two limiting extremes into the fol-
lowing simple fitting function,

192 0.9977

1(xy) = 2.5651(1 + 5t ) exp (— 1.8899x1/3) ,
M

(29)

where we have optimized the coefficient 1.92 in the middle
term so as to minimize the error. This fitting function has a

maximum error of 0.39%, which occurs when xy = 63.
Figures 4a—4b, compare the fitting function with the exact
numerical values of I(x,,) and show the residuals.

In the case of I'(xy), we show in Appendix A that as
Xy —0

I'(xy) = 2.1532x5 23 , (30)

and as xy —
I'(xp) = 4.0505x; /¢ exp (—1.8899x3/3) . (31)

Once again we combine these two limits to obtain a fitting
function:

4.0505 ( )

F(xw) = —75~
M

040 05316

;CE/? _Wz_) €xXp (— 1.8899xh1,,/3) .

(32)

This function has a maximum error of 2.7% at x = 160.
Figures 4c—4d, compare the fitting function with the
numerical values and show the residuals.
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3.2.2. The Mildly Relativistic Regime

Using our tabulated values of 17, as a function of  and yx,
we have computed emission spectra for isotropic thermal
distributions of electrons with temperatures in the range,
5x10® K< T<32x10!° K. At the highest tem-
peratures the emission is very similar to the asymptotic
result in equation (32), but there are significant deviations at
lower temperatures, especially at small y. We have obtained
a set of fitting functions corresponding to each of the tem-
peratures for which we have calculated the spectrum. Each
function is of the form

4.05050 0.408 0.5316y
wisa = (145 g+ 47

x exp (—1.8899xi{%), (33)

where «, f, and y are all adjustable parameters that we have
optimized so as to minimize the square of the deviation of
M(xy) from the numerically calculated results. Table 1

shows the optimized parameters we obtained at the various
temperatures. We expect that as T — oo, a, f, and y should
all - 1, since M(x,) must approach I'(x,). Indeed we see
that this is the case in Table 1. At lower values of T,
however, the parameters are very different from 1. This is to

TABLE 1

OPTIMAL VALUES OF THE PARAMETERS FOR
D1FFERENT TEMPERATURES

T I'(x)
X) @ B 7
5% 10%....... 0.0431 10.44 16.61
1x10°....... 1121 —10.65 9.169
2x10°....... 1.180 —4.008 1.559
4%x10°....... 1.045 —0.1897 0.0595
8x10°....... 0.9774 1.160 0.2641
1.6 x 10*°...... 0.9768 1.095 0.8332
32 x 10%°...... 0.9788 1.021 1.031
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5. 5—(a) Plots of eq. (34) (dashed lines) and the numerical calculation (solid lines) for (@) T = 3.2 x 10*°, (b)) T = 1.6 x 10'°, () T =8 x 10°,

=4 x 101, and their corresponding percentage errors (c), (d), (9), and (h).
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a large extent because the fitting function is attempting to fit
the harmonic “ bumps ” in the spectrum.

In terms of the fitting function M(x,y), the optically thin
cyclosynchrotron emission from a thermal plasma at tem-
perature T is given by (cf. eq. [11]),

€,dw = CR(y, T)dw ergs s"* Hz™ !, (34)
with
xM(xm)
R(x, T) = R 35
® D=0, )
and the power is given by
we, = yL, = 0, CxR(y, T) ergs s ' . (36)
N L l T LJ ) l ] R ' 4
I (@ T=2x10% !
7~ O p— p—
= L i
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z [/ )
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For temperatures T >3 x 101 K, M(x,) should be
replaced by I'(xy) given in equation (32), which is equivalent
to setting the fitting constants «, f, and y equal to unity.

Figures 5—-6, show the fits at various temperatures along
with the residuals, and Table 2 shows where the maxi-
mum errors occur, both over the range log (y) < 1 and for
log (x) > 1. We see that the errors are particularly severe for
log (x) < 1 because of the harmonic oscillations which are
impossible to fit in detail with a simple function such as
equation (33). However, in many applications, the synchro-
tron emission will be self-absorbed, and one would be inter-
ested primarily in log (y) > 1. We see that the errors here are
much less severe.

We have compared our detailed numerical results with
those of Petrosian (1981), Takahara & Tsuruta (1982), and
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Fi6. 6.—(a) Plots of eq. (34) (dashed lines) and the numerical calculation (solid lines) for T =2 x 10°%, (b)) T =1 x 10, (¢) T =5 x 10%, and their

corresponding percentage errors (c), (d), and (f).
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TABLE 2

List oF ERRORS AND WHERE THEY OCCUR FOR log (y) < 1
AND FOR log (x) > 1, FOR DIFFERENT TEMPERATURES

T log () <1 Percent log (x) > 1 Percent
(K) IOg (Xmax.error) Error IOg (Xmax‘error) Error
5x108....... 0.1 440 23 85.1
1x10°....... 0.05 33.6 33 16.6
2x10°....... 0.0 59 3.0 53
4x10°....... 0.33 6.7 2.8 24
8 x10°....... 0.33 53 19 0.9
1.6 x 10%°...... 0.0 7.0 14 0.56
32 x 10%°...... 0.0 74 1.6 0.55

Melia (1994). We find good agreement with the former two
papers. The small differences in our results can be explained
by the fact that the other authors only considered a single
observer direction, whereas we have averaged over all direc-
tions. We do, however, find a serious discrepancy with
Melia’s results. For instance, our calculation shows that for
T = 10'° K, the spectrum peaks at log (x) ~ 2, whereas the
calculation by Melia indicates that the peak is at log (y) ~ 1
and that the emission is insignificant at log (x) ~ 2. In fact,
Melia’s results seem to indicate that the cutoff frequency for
the synchrotron emission is essentially independent of the
temperature, whereas it is clear from basic principles that
the cutoff must increase rapidly with increasing tem-
perature.

4. CONCLUSION

The detailed calculations described in this paper bridge
the gap between the limits of nonrelativistic cyclotron emis-
sion and ultrarelativistic synchrotron emission. We have
calculated the emission due to an isotropic distribution of
charged particles moving in a magnetic field and have
shown how the spectrum changes as a function of the parti-
cle Lorentz factor y and the dimensionless frequency
(defined in eqgs. [1] and [20]). Figure 2 shows some results
for selected cases. Included in our calculations are all the
details of the harmonic emission. This is important at low
values of y, and for low frequencies even at high values of y.
Also, we isotropically average over observer directions rela-
tive to the magnetic field.

Having calculated emission spectra for an array of values
of y, we have integrated the spectra over an isotropic rela-
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tivistic Maxwellian distribution of particle velocities to cal-
culate the spectrum of cyclosynchrotron emission due to a
thermal plasma in a magnetic field. The results are shown in
Figures 5 and 6 for temperatures ranging from 5 x 108 K to
3.2 x 10'° K. We have obtained fitting functions M(xy)
with three fitting constants, «, f, and y (see eqs. [33]-[35]
and Table 1), which provide a fairly accurate representation
of the numerical results. These fitting functions allow the
spectrum to be calculated with reasonable accuracy for any
temperature greater than 5 x 108 K. The errors decrease
with increasing temperature in the manner indicated in
Table 2.

The thermal cyclosynchrotron spectra presented in this
paper agree with most previous results, except that our cal-
culations are more complete since the spectra have been
integrated over all particle and observer angles. At highly
relativistic temperatures, our results agree with those given
by Pacholczyk (1970), while at mildly relativistic tem-
peratures and for frequencies @ > w,, our results agree with
those of Petrosian (1981) and Takahara & Tsuruta (1982).
There are minor deviations in the results that can be traced
to the fact that the previous authors specified a fixed direc-
tion of the observer relative to the field rather than averag-
ing over all directions. Our results do, however, differ
significantly from the calcuations presented by Melia (1994),
and we have been unable to understand the reason for the
discrepancy.

Finally, we note that the basic output of our calculations
is a table of emission spectra for isotropic particles of fixed
or Lorentz factor y. In this paper we have concentrated on
one application of this table, namely the calculation of
thermal cyclosynchrotron spectra from thermal plasmas
with Maxwellian velocity distributions. The tabulated
results could be convolved with any other isotropic electron
distribution function, e.g., a power-law distribution, to cal-
culate the corresponding spectrum. Our work thus provides
a “ready to use” table for determining the cyclosyn-
chrotron emission from any astrophysical source with an
isotropic particle and magnetic field distribution.

This work was supported in part by NSF grant AST
9423209. R. N. thanks the Institute for Theoretical Physics,
University of California, Santa Barbara (NSF grant PHY
9407194), for hospitality during the later stages of the work.

APPENDIX

ASYMPTOTIC FORMULAE FOR I(x) and I'(x)

Al I(x)

The definition of I(x) is given in equation (13):

I(x) = % J:Ozz exp (—z)F <%>dz .

(A1)

By using the approximation of F(x) given in equation (9), Pacholczyk (1970) showed that

116 13
109~ x (5) =25593x"%3, x<1.

2

9/3

(A2)
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+ In the opposite limit of x > 1, we use the approximation of F(x) given in eq. (10) to write
71 ® 1 X
Ix)=» [z=x1? | 22>exp| —lz+5)dz. (A3)
) \/; x bz p z2
i Employing the method of steepest descent, Petrosian (1981) showed that this integral can be evaluated to give
1
1) — 2% exp [—(21F + 2-23)x117]
61/ 2 4 ( A 4)
—2.5651 exp (—1.8899x'3), x> 1.
A2. I'(x)
The function I'(x) is defined by
1 X
I'xy=— | I{ = dQ, . A5
) 4nj<s1n0p) r (A3)
We first consider the case for x < 1, where we have I(x) — 2.56x ~2/3. Setting x — x/sin 6, we obtain
2n [12.56
I'lx) > 2= | == sin?? 6d(cos 6), A6
) 4r J, X2 ( ) (A6)
which can be evaluated to give
) 2.56 T'(1/2)r(1/3)
I'%) = =5 e a (A7)
X 21°(11/6)
=2.1532x 723, x<1.
For x > 1, we have I(x) — 2.5651 exp (— 1.8899x'/3), and setting x — x/sin 6, we obtain
1
I'(x) = 2.5651 J exp (— 1.8899x1/3/sin/® B)d(cos ) . (A8)
“Jo
We now use the fact that most of the emission comes from 6 ~ r/2. Setting § = ¢ + n/2 we obtain
1
I'(x) - 2.5651 J exp (—1.8899x'/3/cos'/? ¢)d(sin ¢) . (A9)
o
Setting cos ¢ = (1 — y?)/2, and Taylor-expanding up to y2, we finally obtain
1 1.8899x1/3y?
I'(x) > 2.5651 J exp (— 1.8899x1/3) exp (— Ty dy ,
0
_ 1/3
_ 2.5651 exp (—1.8899x"/°) T 6 ’ (A10)
2 1.8899 / x!/3
1 1/3
= 4.05045 i exp (—1.8899x"7), x>1.
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