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ABSTRACT

We present a new algorithm for inverting poorly resolved gravitational lens systems using the
maximum entropy method. We test the method with simulations and then apply it to an 8 GHz VLA
map of the radio ring lens MG 1654+ 134. We model the lens as a singular isothermal sphere embedded
in an external shear field and find that the critical radius of the lens is b = 079820, the dimensionless
shear is y = 0.0771, and the position angle of the shear is # = 100°8. These results are consistent with the
results obtained by Kochanek using a complementary inversion algorithm based on Clean.

Subject headings: gravitational lensing — methods: numerical

1. INTRODUCTION

Since the discovery of the first gravitational lens (Walsh,
Carswell, and Weymann 1979), the number of observed lens
candidates has grown enormously (see Keeton & Kochanek
1996 for a review of the data). Today there are dozens of
well-established lens candidates observed at various wave-
lengths and having a range of morphologies. These include
multiply imaged quasars, radio rings, giant luminous arcs,
and arclets. These huge observational advances drive theo-
retical efforts to exploit lensing as an astrophysical tool.
Lensing has many applications: it provides an independent
method for measuring the Hubble constant (Refsdal 1966a,
b; Falco, Gorenstein, & Shapiro 1991; Narayan 1991), it
allows a direct probe of the gravitational effects of dark
matter (Paczyfhski 1986; Narayan, Blandford, & Nitya-
nanda 1984; Kaiser & Squires 1993), it provides us with a
highly magnified view of some of the most distant objects in
the universe (Kochanek et al. 1989), and it probes the
cosmological model (Turner 1990; Kochanek 1996). Some
applications involve the statistical analysis of the entire lens
sample, but many applications require a detailed under-
standing of an individual lens system. This has made lens
modeling an increasingly important field.

Ring and arc lenses are particularly well suited to detailed
modeling. Well-resolved images of these objects provide
many more constraints for the model source and lens poten-
tial than point lenses such as multiply imaged quasars. The
constraints created by multiple imaging allow the unknown
source and lens to be solved for simultaneously. Sophisti-
cated lens modeling algorithms have been developed in
recent years as the number of observed lenses has grown. In
a rigorous modeling scheme, no a priori source structure is
assumed. Generally, a model is constructed for the lensing
mass or potential, and the image is “inverted ” by mapping
through the lens back to the source plane. The lens param-
eters are modified until they produce the best fit of the
inversion to the data. In the most sophisticated inversion
algorithms, such as LensClean (Kochanek & Narayan
1992), the standard inversion procedure is combined with
an algorithm that compensates for the finite resolution of
the observations during the reconstruction.

We have developed a new algorithm, LensMEM, for
inversion of extended gravitational lens images. LensMEM
is similar to LensClean, but uses the maximum entropy
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method (MEM) rather than the Clean algorithm to correct
for the smearing of the data by finite resolution. In regular
astrophysical applications the two methods are comple-
mentary: Clean is better suited for concentrated, pointlike
sources, while MEM is better at deconvolving extended
sources for low-level structure. In lensing applications, both
types of deconvolution algorithms are valuable.

In an earlier paper (Wallington, Narayan, & Kochanek
1994, hereafter WNK), we developed the LensMEM
method in one dimension in order to work out the details of
the algorithm on a manageably sized problem. In a separate
paper (Wallington, Kochanek, & Koo 1995, hereafter
WKK), we developed a two-dimensional mapping algo-
rithm which lacked any correction for finite resolution but
allowed us to produce an accurate inversion in the absence
of significant atmospheric distortion. The inversion scheme
using this mapping method was applied to the giant arc in
Cl1 0024 + 1654, for which relatively high-resolution images
made beam deconvolution less necessary. In this paper we
expand the MEM equations to two dimensions and
combine them with the mapping method from WKK to
produce a full-fledged two-dimensional MEM lens recon-
struction algorithm.

In § 2 we describe the details of the pixel mapping, MEM
equations, and solution method. We demonstrate the scope
and accuracy of the algorithm in § 3 by testing it on artificial
data for which we know the true lens and source. Finally, in
§ 4 we apply LensMEM to real data from the radio ring
MG 1654+ 134.In § 5 we provide a summary.

2. METHOD

The algorithm works in two cycles. The inner cycle finds
the best-source model for the current, fixed lens model,
always starting from the same initial conditions. The
residuals from this fit are an estimate of how well the lens
model fits the data. In the outer cycle the parameters of the
lens model are adjusted to minimize the residuals.

This general procedure was originally developed by
Kochanek et al. (1989) with a crude inner cycle that took no
account of the finite resolution of the observations. Here we
combine the more advanced mapping algorithm of WKK
with the MEM methods developed in WNK to build a
MEM-based inner cycle. The alternative inner cycle is the
LensClean method developed by Kochanek & Narayan
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(1992) and Ellithorpe, Kochanek, & Hewitt (1996). The
general form of these algorithms differs only in the image
reconstruction method used for the inner cycle.

2.1. Pixel Mapping Technique

The source position u corresponding to a given image x is
found using the lens equation

u=x— Vo), (1)

where ¢ is the two-dimensional lensing potential (see Sch-
neider, Ehlers, & Falco 1992 for a detailed discussion). We
use a pixel mapping technique to move between the source
and image planes. Since lensing produces multiple images of
some regions of the source, it is simplest to move from the
image plane to the source plane. However, the reconstruc-
tion algorithm requires us to move from the source to the
image plane, since we adjust the source pixels and need to
compute the resulting image to compare to the data. We
therefore construct a pixel weighting function that lets us
map the source plane onto the image plane without having
to solve for the multiple roots of the lens equation (1).

The image plane is regarded as a grid of pixels, and the
corner of each pixel is mapped back to the source plane
using the lens equation. We divide each image pixel diago-
nally into two triangles, and we project each triangle into a
new triangle on the source plane (Blandford & Kochanek
1987; Wallington & Narayan 1993; WKK). We calculate
the area of overlap, w;;,;, of the two projected triangles for
image pixel i, j with each source pixel k, I. We use a discrete
notation and adopt the convention that the indices i and j
are used in the image plane and k and ! in the source plane.
The sum of weights over the source plane is the inverse
magnification, y;;, of an image pixel,

_ Wi
Auij ' = z,zxgjkl > (2)

where Ax? is the area of an image pixel, and the sum of
weights over the image plane is the number of images N, of
a source pixel,

ij Wiji
N=ZT 3)

where Ax? is the area of a source pixel.
We compute the weights at the start of the inner cycle for
each new lens model. We can then transform the array of

source fluxes, Sy;, into the lensed image, L;;, using
Zkt Wit S
L=, @
Zkl Wijki

The image and source grids need not coincide, and we allow
the program to “zoom in” on the source plane to concen-
trate the pixels in the most highly magnified regions of the
source. The singly imaged pixels which lie off the edge of
this smaller source grid are mapped directly back to the
image, as would have occurred with a larger source grid.

2.2. MEM Equations including Lensing

Our algorithm to find the optimal source that fits the
observed image for a fixed lens model is a generalization of
MEM used to deconvolve the point-spread function from
astronomical observations (e.g., Narayan & Nityananda
1986). Given a lensed image L observed by a telescope with

beam B, the observed data D are represented as
D=L+*B+o, (5)

where the asterisk represents a convolution and ¢ is the
random noise in the observation. Since many sources will fit
the data to within the noise, a method such as MEM is
needed to pick the “best” one. MEM accomplishes this by
maximizing the entropy of the source while minimizing a
measure of the error between the data and the reconstruc-
tion. This produces a map which represents the most prob-
able source. We maximize the function

I, — D;)?
J= —Z SkllnSkl_‘).z 4 ] N (6)
K ij Oij

where the first term is entropy, the second term is the x?
difference between the data D and the model image I, and A
is a Lagrange multiplier. In the case of gravitational lensing,
we fit the source model, but we observe the lensed image of
the source, L, so the model image we compare to the data is
I = L x B. The quantity J in equation (6) thus represents
the sum of an entropy calculated on the source plane and a
x? calculated on the image plane (see WNK for a more
complete discussion).

2.3. Solving the MEM Equation

The goal of the maximum entropy method is to find the
highest entropy solution that has a y* equal to the number
of degrees of freedom in the map, Ny,. In practice, the
target N 4,¢ is ambiguous because of the problems associated
with using the heavily processed Clean map (see Kochanek
1995; Ellithorpe et al. 1996). To reach this goal, we must
simultaneously optimize the source and adjust the La-
grange multiplier .. We follow the procedures of Cornwell
& Evans (1985), and maximize J using the conjugate gra-
dient method (e.g., Press et al. 1992). The conjugate gradient
method maximizes J using a series of one-dimensional line
maximizations in directions chosen not to interfere with
previous steps. Each inner cycle with a new lens model
starts with the same initial condition for 4 and a uniform
source. In each iteration we produce a beam-convolved
image using the current model for the source, compute the
2 fit of this image to the data, and calculate the entropy of
the current source model. We can then maximize J and
adjust the source model.

At the same time, we adjust the Lagrange multiplier A.
We begin the maximization with a low value of 4, so that
the entropy term dominates the value of J. As the maximi-
zation progresses, we increase A to add more information
from y? into the optimization. The goal is to follow the
curve of the minimum value of y* as a function of the La-
grange multiplier A, starting from smooth functions that fit
the data poorly and moving toward the smoothest model
that fits the data well. Lengthy experience with this process
has shown that the increase in A need not be gradual, but
that A must only be adjusted when the algorithm has
achieved some local stability and we are near the minimum
value of y2 for the current value of A. Thus we calculate a
measure of the overall gradient of the function at each iter-
ation and only allow 4 to be adjusted when this gradient
measure is small. We also reset the conjugate gradient pro-
gression each time A is adjusted. This prevents the directions
stored from the iterations run with the old A from restricting
the freedom of the method to find the best solution with the
new A.
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The other important consideration in carrying out the
maximization is choosing a stopping criterion. Simply stop-
ping the inversion when y? reaches some target value such
as N, the number of pixels in the map, is impractical in
the limit of both very good and very bad models. With a
good model, the final x* can typically be far smaller than
N, whereas with a bad model the MEM reconstruction
will not be able to fit the data no matter how long it runs. In
both cases, using a target value of y? as a stopping criterion
would be counterproductive. For that reason we have put a
simple iteration requirement into our program: every
MEM reconstruction runs for 100 iterations. We find that
this allows for superresolution in those models which can
achieve it, and that those models which cannot reach an
acceptable y? level after 100 iterations probably never will.

We define error bars for our lens parameters by per-
forming a series of Monte Carlo simulations. In this way we
avoid some of the vagaries encountered by Kochanek &
Narayan (1992), WKK, Kochanek (1995), and Ellithorpe et
al. (1996) in trying to define error bars from the value of y2.
Because of the finite size of the beam, adjoining pixels are
not independent, and so the number of degrees of freedom
in the map is less than N ;.. In addition, poor lens models
will produce residuals in the multiply imaged portion of the
map which are significantly higher than those found in the
single-image region. Monte Carlo techniques allow us to
avoid these difficulties and still define reliable error bars for
our lens solutions.

2.4. Lens Potential Model

We use a simple lens potential model with only five
parameters. We model the lens as a singular isothermal
sphere embedded in an external shear field,

® = br + 3yr? cos 2(0 — 6,) , (7

where b = 4n(c/c)*D4y/D,; is the critical radius of the lens, y
is the dimensionless shear, 0, is the angle of the shear, ¢ is
the one-dimensional velocity dispersion, and D4, and D,
are the angular diameter distances between the lens and the
source and the observer and the source, respectively. Poten-
tials of this form can roughly fit all the observed cases of
lensed quasars (e.g., Kochanek 1991). The five parameters of
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this model are the coordinates of the lens center, x;, y,, the
critical radius b, the shear y, and the shear angle, 6,. The
outer cycle of the algorithm optimizes these lens parameters
using simplex minimization (e.g., Press et al. 1992) of the
final 2 produced by the inner-cycle MEM reconstruction.

3. TESTS OF THE ALGORITHM

We performed a series of tests of the algorithm using
artificial data. By inverting a known image, we can test how
well our algorithm solves for the lens parameters and gener-
ates a good source model.

We began with the source model shown in Figure 1a. We
deliberately used a source model that resembles the real lens
reconstruction of MG 1654+ 134 (Kochanek 1995), so we
could test how well our algorithm models low-lying details
and complicated structure on scales smaller than the beam.
We used the lens parameters listed as “real values” in Table
1 to produce the image, and convolved the model with a
Gaussian beam with FWHM equal to 5 pixels. We added
Gaussian random noise to the image so that the peak
signal-to-noise ratio in the image is S/N = 150. Figure 1b
shows the “data ” that we constructed from this source and
lens model. The source plane grid is 128 x 128 pixels, and
the image is 64 x 64 pixels. The source has also been
“zoomed” in by a factor 1.88 with respect to the image
plane, making each source pixel 0.266 as big as the image
pixels.

We produced the lensed “data ™ analytically rather than
with our pixel mapping technique. Since the same pixel
weights would be used to invert the lens, using them to
create the initial image would eliminate the numerical inac-
curacies of the mapping algorithm and misrepresent the
accuracy of the method. To produce the initial data image,
we divided each image pixel into 25 subpixels, found the
source flux corresponding to each subpixel center using a 4
point interpolation scheme, and then averaged over all the
subpixels.

3.1. Lens Parameter Solution

Our first test of the method was to compute y? as a
function of a single lens parameter while holding the other
four parameters fixed at their true values. We repeated this
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FiG. 1.—Artificial data. We project an artificial source (a) through a lens with parameters given in Table 1, smooth it with a beam, and add random noise
to produce the “data” (b). The source contains 1282 pixels, and the image has 642 pixels. The different scales for the source and image planes reflect the fact
that the source is “zoomed in ” with respect to the image. The beam has a FWHM of 5 pixels, and the peak signal-to-noise ratio in the image is 150.
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TABLE 1
FIVE-PARAMETER SOLUTIONS FOR ARTIFICIAL DATA INVERSION

Noise Realization X, b y 0, x>

| P 31.898 30.138 10.079 0.0460 10423 1569.0
2 e 31.874 29.999 10.092 0.0487 102.0 1776.8
K P t 31.673 30.071 10.141 0.0493 102.3 1420.2
O SN 31.862 30.011 10.087 0.0484 102.2 1794.8
S s 31.972 30.203 10.081 0.0450 105.2 1613.8
2 31.878 20.051 10.088 0.0478 102.8 14434
T e e 31.797 30.116 10.093 0.0470 103.5 1597.3
B 31.803 30.094 10.092 0.0473 103.4 1550.3
D e 31.906 30.047 10.094 0.0477 102.7 1393.5
10 31.662 30.072 10.102 0.0477 103.5 14759
| T SO 31.607 30.061 10.089 0.0474 103.5 1656.6
12 31.607 30.061 10.089 0.0474 103.5 1520.0
13 31.855 30.160 10.091 0.0461 104.3 1568.3
14 31.649 30.114 10.090 0.0477 103.7 1553.1
15 31.865 30.139 10.091 0.0475 103.7 1803.8
16 e 31.895 30.134 10.079 0.0466 104.1 1618.8
17 31.842 30.113 10.092 0.0471 103.4 1572.7
18 31.837 30.105 10.073 0.0465 104.0 1682.3
19 31.688 30.074 10.091 0.0479 103.3 1731.0
20 . s 31.767 30.024 10.106 0.0493 102.1 1754.4
20 31.978 30.122 10.075 0.0468 103.1 1705.4
2 31.732 30.100 10.090 0.0469 103.8 1664.6
23 e 31.688 30.031 10.142 0.0475 103.4 1645.0
24 31.688 30.135 10.089 0.0476 103.4 17134
2 31.708 30.112 10.082 0.0471 103.9 1621.2
Average ..........coeeiiiiiiiiinnn.. 31.789 30.091 10.093 0.0474 103.4 1617.8
011 0.109 0.048 0.016 0.0010 0.7 112.0
Real values .........ccoooevviinnne 32.000 30.100 10.079 0.0453 102.9
Fit of Monte Carlo solution...... 194 ¢ 019 ¢ 088 ¢ 210 ¢ 071 ¢

Note.—This table gives the results of 25 different LensMEM reconstructions of the artificial data shown
in Fig. 1. The columns give the lens position x,, y, and the bending angle b in pixels, the shear y, and the
orientation of the shear, 0,, in degrees. The final column shows the x? fit of the reconstructed image to the
data. The average values of the lens parameters are given at the bottom of the table, with their rms error bars.
The last line shows the deviation of the average values from the true values in units of the estimated

uncertainties.

test for several different noise realizations. This gives us a
sense of the error bars on each parameter and lets us check
the smoothness of y* in each dimension of the parameter
space before doing the full five-parameter minimization. In
the case of real lens data we might start the inversion by
constraining the lens parameters in this way to develop a
feel for the parameter values and sensitivities. Figure 2
shows the y? of the residuals as a function of x;, b, and

7 cos 0,, with curves for five different noise realizations.
The minimum for each curve is near the real value of that
parameter, and the 12 level is well below 4096, the number
of pixels in the data. The x? is able to reach this low value
because some of the degrees of freedom of the model are
used to build the source.

The second test was to perform minimizations in which
three parameters, b, y, and 0,, were allowed to vary while
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F16. 2.—One dimensional cuts through the error surface, made by varying one parameter while holding the other four fixed. Left: The lens position x; is
varied. Middle: The bending angle b is varied. Right: The quantity y cos 0, is varied. In the latter case the parameters held fixed arex;, y;, b, and y sin6,. Six

different Monte Carlo simulations are shown in each case.
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the remaining two parameters, x; and y, were held fixed.
Figure 3 shows a contour plot of the final x? values for these
minimizations. Again, we find a well-constrained minimum,
and the values of b, y, and 0, are close to what we know to
be the real values.

The final test was a full five-parameter minimization.
Table 1 shows the results of 25 five-parameter mini-
mizations using different noise realizations. We used the
standard deviations of the calculated parameters to derive
error bars for the solution. The average value of each
parameter lies within 2 standard deviations of the real value
for every parameter except y. Figure 4 shows scatter plots of
parameter pairs. Two of the pairs of parameters, y versus 0,
and y, versus 7, seem to be correlated, but the errors in these
parameters are still small.

3.2. Source Reconstruction

In addition to providing a reliable lens model, a good
inversion algorithm should be able to reproduce the source.
Figure 5b shows the source reconstruction of an image
made with a beam equal to our original beam. We analyzed
the source reconstruction of a series of image models in
which we varied the signal-to-noise ratio and the resolution
of the image. Unlike similar tests in WNK, the signal-to-
noise ratio had little effect on the accuracy of the source
reconstruction. The resolution, however, had a significant
impact. For images created using beams much larger than

Vol. 465
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true value, indicated by a plus sign. The contours have a spacing of
Ay?* = 300, with the lowest contour at y2 = 1800.
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in these parameters is very small.
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FiG. 5—Montage of source reconstructions. The same lens and source are used in each case, but the beam FWHM is varied. In (@) and (b) are shown raw
source reconstructions made with beam FWHM = 2.5 and 5, respectively. These reconstructions are then smoothed with a FWHM = 2.5 pixel beam in (c)
and (d). The contour levels are the same as in Fig. 1, but the scale of the plots has been increased to give a better picture of the details of the sources.

that used in the original model (FWHM = 10 and 20 pixels
versus the original FWHM = 5 pixels), the algorithm was
unable to produce a reasonable inversion. These simula-
tions had final y? values more than 10 times higher than
those found in our other inversions. For images created
using a beam half the size of our original value, the image
reconstruction fitted the data very well, but the source
reconstruction was highly fragmented (Fig. 5a).

As discussed in WNK, many deconvolution routines
produce reconstructions with too much high-frequency
power, but the extra power can be filtered out by smoothing
with a suitably selected beam. In the Clean algorithm, for
instance, the source is reconstructed as an ensemble of delta
functions, which are smoothed to produce the source map.
Figures Sc and 5d show the results of smoothing the source
reconstructions with a Gaussian beam with FWHM = 2.5.
These smoothed sources more accurately re-create the true
source.

3.3. Source Reconstruction Glitches

In WNK, where we first formulated the LensMEM equa-
tions in one dimension, we spent a considerable amount of

effort investigating “ glitches ” which appeared in the recon-
struction of large sources. These spiky patterns appeared at
the boundaries between regions of different image multiplic-
ity in sources which were large compared to the lens critical
radius. We developed a second formulation of the
LensMEM equations to try to combat the problem, but
found the glitches to be intrinsic to the maximum entropy
method when combined with lensing. It was not clear how
much of an effect these glitches would have on the full two-
dimensional algorithm. Now that we have the complete
algorithm, we reproduced the conditions that led to the
glitches with our artificial data. We were not able to
produce any obvious glitches in two dimensions with either
formulation of the MEM equations. It is possible that the
averaging produced by overlapping plxels has diluted the
glitch effect, which was quite pronounced in one dimension.

4. INVERSION OF MG 1654 +134

Having demonstrated that LensMEM works on artificial
data, we next attempted to model a real lens, the radio ring
MG 1654 +134. Recent detailed models of this system by
Kochanek (1995) and Ellithorpe et al. (1996) using the Lens-
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Clean algorithm provide an interesting opportunity to
compare the results obtained using these complementary
methods.

Figure 6a shows the 8 GHz VLA image of MG
1654 + 134 from Langston et al. (1990). This 128 x 128 pixel
image has a circular Clean beam with a FWHM of 0718 (six
pixels), a signal-to-noise ratio of 134, and a pixel scale of
0703. The source is at redshift z, = 1.74, and the lens is at
z; = 0.254.

We model the lens using a singular isothermal sphere
embedded in an external shear field (eq. [8]) and adopt a
source plane grid with 1282 pixels on the same scale as the
image plane (i.e., we did not “zoom in ). We first performed
a series of three-parameter optimizations in a grid of fixed
lens positions x;, y,. Table 2 shows the y? values found at
each position. Since the position and parameter values were
in rough agreement with the position found by Kochanek
(1995), we decided to do a full five-parameter minimization
after just this preliminary test.

The first line of Table 3 shows the lens parameters found
with a five-parameter minimization. The final y2 of this

Vol. 465
TABLE 2
x> VALUES FOR A GRID OF LENS POSITIONS
Xy
Vi 17775 17805 17835 17865
17848............ 92185.4 87090.4 62823.2 108887.2
17878............ 25518.3 17320.6 19008.4 29621.9
17908............ 327271 23424.2 113934 22750.2
17938............ 99711.5 87973.9 80629.2 77801.2

Note.—This table gives the final x> for three-parameter opti-
mizations of MG 1654 + 134 made with fixed lens positions.

model was 9081, which is 0.55 per image pixel. In order to
obtain error bars for the individual lens parameters, we
used our best lens model to produce a reconstructed image
(Fig. 6b) of MG 1654+ 134 and added random noise with
the same signal-to-noise ratio to generate model data. We
then performed a series of five-parameter reoptimizations of
the model using the reconstructed data with different noise
realizations. Table 3 shows the results of these opti-

FiG. 6.—Reconstruction of radio ring MG 1654+ 134: (@) The 8 GHz VLA observation. (b) The LensMEM reconstructed image. (c) The smoothed source
reconstruction. The butterfly-shaped boundary shows the projection of the edges of the image plane; (déResiduals of the inversion.
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TABLE 3
FIvE-PARAMETER SOLUTIONS FOR MG 1654 + 134 INVERSION

Noise Realization x; b y 0, 1
Original data solution ...... 178251 178896 079820 0.0771 10028 9081.9
N 1.8264 0.9825 0.0775 101.1 5796.6
2 e 1.8254 1.8906 0.9825 0.0768 100.9 6447.1
K T 1.8235 1.8940 0.9817 0.0784 101.2 4433.7
4o 1.8261 1.8884 0.9835 0.0757 100.9 4885.9
T 1.8260 1.8903 0.9817 0.0776 101.0 5479.7
[ 1.8239 0.9808 0.0779 101.2 59194
T 1.8246 1.8885 0.9806 0.0769 101.3 4856.2
8 1.8270 1.8888 0.9821 0.0772 100.8 5083.7
D 1.8260 1.8906 0.9820 0.0773 101.0 4937.7
10, 1.8273 1.8926 0.9813 0.0793 101.5 5128.3
| P N 1.8285 0.9827 0.0773 100.7 6451.6
12 1.8241 1.8898 0.9824 0.0769 100.8 5600.3
13 1.8259 1.8902 0.9824 0.0773 101.4 5152.7
4. 1.8257 1.8870 0.9816 0.0764 100.7 5902.5
15 1.8271 0.9832 0.0776 101.0 5038.9
Average ..........ceeeunniiins 1.8258 1.8902 0.9821 0.0773 101.0 5407.6
4 11 SN 0.0013 0.0017 0.0008 0.0008 0.2 577.4
Kochanek 1995 values ...... 1.8049 1.8780 0.9820 0.0770 100.6
TINS ooneiieeieeeeeaannnns 0.016 0.012 0.003 0.005 1.0

Note.—This table shows LensMEM reconstructions of the radio ring MG 1654 4+ 134. The first
line gives the results of the solution obtained from the real data. The following 15 lines represent
the solutions found by inverting the reconstructed data, to which random noise was added. This
allowed us to find rms errors for the solved parameters. These error bars are given with the average
of the different noise realizations. The last two lines show the lens pameters and errors found by
Kochanek 1995. The lens positions reflect a coordinate transformation between the respective
models. The column headings are the same as in Table 1.

mizations. The average x2 found for the reconstructed data
was considerably below that found for the real data, since
the noise in the reconstructed data is truly random. The real
data include systematic errors, since they consist of a Clean
image constructed from visibility data. The ideal way to
carry out the Monte Carlo simulations would be to start
from the visibilities.

We also compare our results with those found by Kocha-
nek (1995), which are also listed in Table 3. All our param-
eter values are well within 1 standard deviation of the
Kochanek (1995) values, except for the lens position, in
which we disagree by approximately 1.3 o.

Figure 6¢ shows our best source reconstruction (obtained
by inverting the real data with our best lens model),
smoothed with an appropriate beam. This source is qualit-
atively the same as that obtained by Kochanek (1995).
Figure 6d shows the residuals of the reconstructed image.

5. CONCLUSIONS

We presented a new lens inversion algorithm, LensMEM,
that uses the maximum entropy method to account for the
finite resolution in lens observations. We are able to simul-
taneously produce a model source and lens using the con-
straints from multiple imaging. We tested the algorithm
using artificial data and Monte Carlo simulations, and
showed that it produces reliable lens parameters. The
parameter values are consistent with the true values, and
the 2 errors around the minima have a smooth, quadratic
form. These 2 values are low compared with the number of
pixels in the image because many degrees of freedom are
used to build the model of the source. We estimate param-
eter errors using Monte Carlo simulations of the data with
different noise realizations in which we optimize the lens
model and calculate the standard deviation of the solutions.

We also find that the algorithm produces good models for
the source if the image is sufficiently well resolved. Very low
resolution maps cannot be properly inverted, but high-
resolution maps fit the data well while producing frag-
mented source reconstructions. Smoothing by a suitable
beam eliminates the high-frequency structure and gives a
good source reconstruction.

We applied the algorithm to real data by modeling the
radio ring MG 1654+ 134. We compared our lens param-
eter solutions with those found by Kochanek (1995) using
the comparable inversion algorithm LensClean. The largest
deviation from Kochanek (1995) was 1.3 ¢ in any model
parameter. We again performed Monte Carlo simulations
to calculate error bars for our parameters by adding
random noise to our reconstruction of the data. The y? fits
of the Monte Carlo inversions were much lower than the
reconstruction performed on the real data, since we were
able to ensure truly random noise in our reconstructed data.
A possible additional improvement to the algorithm would
be to modify it to operate directly on radio visibility data
(Ellithorpe et al. 1996). This would circumvent the system-
atic errors introduced by Clean in producing the image.

Lensing has become a very active field, with new lensed
objects constantly being discovered. As the sample of lenses
grows, the need for rigorous lens inversion algorithms
increases. Algorithms such as LensClean and LensMEM
are vital for fully exploiting gravitational lenses. We have
shown LensMEM to be successful at both producing good
source maps and obtaining reliable lens parameters, and we
hope to see it become a valuable tool in the study of gravita-
tional lensing.

This work was supported in part by the NSF through
grants AST-9423209 (R. N.) and AST-9401722 (C. S. K.).
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