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ABSTRACT

We present a global approach to nondissipative physics. Based on symplectic mechanics, this tech-
nique allows us to obtain the solution of a very large class of problems in terms of a Taylor expansion.
We apply this method to the problem of gravitational instability, and we obtain a general expression of
the gravitational potential, solution of the Vlasov-Poisson system, as a function of time in the context of
Newtonian dust cosmology.

Subject headings: cosmology: theory — dust, extinction — hydrodynamics — instabilities

1. INTRODUCTION

The Hamiltonian formalism has long ago been proved to be very general and efficient in classical dynamics. In the recent
years, Hamiltonian techniques have also been applied efficiently to continuous systems. Here we give a general presentation of
the Hamiltonian formalism (reflecting the underlying symplectic structure) applied to systems with a finite or infinite number
of degrees of freedom. The latter case means systems described by a distribution function in phase space (like electromagnetic
or gravitational plasmas). Exploring evolution in time, i.e., motion, we are able to derive, for such systems, the analytical
expression giving the evolution of any physical quantity as a function of initial conditions only. This solution is given in terms
of a Taylor development, with a rule to calculate the coefficients.

Collisionless dynamics describes various astrophysical systems, typically self-gravitating collapsing clouds of stars or dust
particles. It may be applied, for instance, to study the stability and evolution of globular clusters, or the formation of various
cosmic structures by gravitational instability. Here we apply our Hamiltonian formalism to the study of gravitational
instability, i.e., the evolution of a cosmic fluid under the influence of its own weight. Although our calculations are performed
in the Newtonian approximation, they apply perfectly to the evolution of perturbations to the dust Friedmann-Lemaitre
universe, assumed to describe the first stages of galaxies or large-scale structure formation. For such systems, we are able to
derive the expression of any physical quantity as a development with respect to time, depending on initial conditions only. We
illustrate this by developing the value of the (self-consistent) gravitational potential at any point and at any time, as a function
of initial conditions only.

The paper is organized as follows: the first part is devoted to the presentation of the Hamiltonian formalism. Considering
first systems with a finite number of degrees of freedom, we derive the evolution equation for any quantity and find its
solution. In order to show the mechanism of our formalism, we illustrate it on the very simple example of the harmonic
oscillator. Then we generalize the formalism to continuous systems, by using functionals and functional derivatives, which
allows us in this case to derive also the equation for any quantity, as well as its solution under the form of a development. This
allows us in principle to calculate any physical quantity as a function of initial conditions.

The second part specializes the problem to the gravitational instability. We recall first the dynamical equations describing
it, and their solution in the cosmological context (Newtonian approximation to describe the dust Friedmann-Lemaitre
models and their perturbations). Then we write explicitly the Poisson-Vlasov equations which describe the evolution of the
system in the phase space and its link with the usual hydrodynamical approach. Applying the results of the first part, we
express the time derivatives of physical quantities: as expected, we recover the Liouville equation for the distribution function
itself and the derivative of the potential. Then we find the Taylor development for the gravitational potential and provide a
recurrence formula which allows its explicit calculation from initial conditions.

2. THE SYMPLECTIC APPROACH OF NONDISSIPATIVE PHYSICS

This section presents a new and very general formulation of the nondissipative physical equations, applicable to many
kinds of different problems. The unification proposed here is a generalization of several different works (Arnold 1978;
Marsden et al. 1986). We split the framework of nondissipative physics into two parts: systems with a finite number N of
degrees of freedom on one hand, for which we detail the case N = 1; and on the other hand, systems with an infinite number
of degrees of freedom, i.e., statistical physics. We will show that the equations for these two domains are strictly equivalent and
derive from the same least-action principle. We will propose, moreover, the solution of this equation.

2.1. Systems with N Degrees of Freedom

We will consider the three-dimensional case, corresponding to one particle in three-dimensional space. The variables are
the spatial position ¢, and its conjugate quantity, the linear momentum p, both three-vectors. The generalization to more
dimensions is straightforward, the variables becoming any arbitrary collections of conjugate vectors (for systems of N
particles, for instance), or tensors.

The foundation of our analysis relies on the possibility of associating a generator, a Hamiltonian-like function g(g, p), with
any kind of transformation undergone by the system. In the following, we will be interested mainly in one peculiar kind of
transformation, i.e., motion. But transformations can also correspond to the effect of a class of perturbations on a given
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GRAVITATIONAL INSTABILITY 55

equilibrium state, or represent a geometrical change applied to the system (rotation, translation, etc.). In this sense, the
formalism introduced here allows more than the simple study of motion: the search for invariances, the stability studies and,
more generally, the systemization of the study of dynamical systems are possible.

The transformation considered is associated with a parameter A which allows us to follow the transformation. When
motion is the transformation considered, g is the usual Hamiltonian representing the energy E of the system, and A identifies
with the time ¢ (to study instabilities, g will represent the characteristics of the instability, and A will represent the intensity of
the displacement). Then one can always define the meta-action as the function

0= (- % - g)ir, o)

where ¢ and p are functions of 1. In the case of motion, this meta-action reduces to the usual action, a solution of the classical
Hamilton-Jacobi equation (see Arnold 1978, for example). In this peculiar case, the total energy E of the system is conserved
through the t-evolution. Similarly, our formulation requires that the generator g does not depend explicitly on A (although it
depends on g and p) and is conserved through the transformation.

Before turning to the key propositions, we recall some standard definition and notations. The (usual) Poisson brackets for
two functions x(p, ¢) and y(p, q) is defined as

3
Pix,yl= ) |+ , 2

sl v i§1 <a‘1i op; 0Op; 6q,-) @
and we also define the new bracket,

Ly[x, y] = JPa[x, ylda, ©)

which has all the properties of a standard Lie bracket.
We state now the fundamental proposition, whose demonstration follows from the calculations below: the evolution of p
and ¢, as a function of 4, is given by the least-action principle

L[k, s] = sz[k, s]di =0, @

for any function k(q, p). This relation was presented initially in the special case of motion by Marsden et al. (1986) and
Morrison (1980).

Since equation (4) is true for any function k, it implies in particular, Vi, ds/dq; = 0 and Vi, ds/0p; = 0, corresponding to the
two evolution equations for ¢ and p.

First,
os @ dq dg; 9 dq 69)
"o, <” ai” )‘“ 0‘4 < P opai” op,) =0

Since ¢ and p are explicitly independent, and ¢ - p vanishes on the surface of the system,! integration by parts gives
dq; 0g
———1di=0,
J <d’1 api)

dg; _0g _04:09 0499 _ dq
4 op " 0q,0p,  op g an - Dola gl )

which is the evolution equation for ¢ induced by the transformation g.

Similarly,
0Os 0 0 dqg 0g _
A [ ~oi=o [(p g - oJu o

And, after a new integration by parts, we obtain

which implies

dp; dg 0p; g Op; 0g dp
i _ 99 _Oopi%9 9P 99 _p
di aql 6‘1, ap, apl aqz di 3[P, g] > (6)

the evolution equation for p induced by the transformation g.
In the special case of motion, where g = E and A = t, equations (5) and (6) are Hamilton’s equations.

! This assumption makes no problems in this finite-dimensional case; more details are required for continuous systems (see § 2.3 and Appendix).
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2.2. Evolution Equation for Any Function

More generally, the same technique allows us to write the evolution equation of any function k(g, p). Starting from the usual
differentiation formula

3
using equations (5) and (6) some straightforward algebra gives the evolution equation for k induced by the transformation g:
dk

di

This is a linear and first-order differential equation. Its solution is known to be (when g is explicitly independent of )

12
kg, p) = k(q, p)|,, — AP3[g, k15, + > Palg, Pslg, k1l + -+, ©

M

= P,[k, g] . @®

which is usually abbreviated under the notation

kig, p) = e*"%(g, p)l;, - (10)

This formulation is similar to the usual Hamiltonian formalism, with the main additional result here that explicit solution
for the motion (or, more generally, the transformation) is given as a function of time (or, more generally, 1). This offers several
advantages in comparison with the classic formulation.

First, we can expand any function in terms of any parameter. Although the case of motion is specially interesting, we have
more general results. For example, taking for g the generator of a perturbation, and for k the energy of the system, we obtain a
general energy variational principle for every system. In the context of stellar dynamics, Bartolomew (1971), Perez et al. (1995),
and Kandrup (1991a, b) have produced new stability results. Finally, one can use this method to produce an integral of the
evolution equation. A very important improvement lies in the fact that this formalism can be extended to systems with an
infinite number of degrees of freedom. Before turning to it, we use a very simple application to illustrate how it works.

2.2.1. Application to the Harmonic Oscillator

To illustrate some of the mechanism of the technique, we will analyze here shortly the trivial case of the motion of
one-dimensional harmonic oscillator, with A = t and g = E = (p?/2m) + (1/2)w?q>. We use equation (9) with k = | ¢| = ¢, and
the initial conditions ¢(t = 0) = g, and p(t = 0) = p,, we have

2 3

40 = a(t0) = tP5[E, 1wty + 5 PLE, PolE, alllmiy = 5; PoLE, PaE, PATE, a1 emiy -+ (1)

The Poisson brackets are easy to compute:
0E 0q OE 0q P

P go®
P4[E, P4[E, q]] =P3[E, —;]= -
go’|  po?
P4[E, P3[E, P4[E, q]11 = P E’—_m_ =7

and so on. We can obtain a recurrence rule. Injecting these results in equation (11) one can obtain

Po, 14 , Ppoo® t*goo* ¢ poot

M=o+ " t=3= 3N mE A omE TS T
_ ©)*_ ©9* ], po ©0*  ©0)°
‘q°[1_2!+4!+ L] R TR TR
2
= g, cos 0t + 22 sin 0t with 6 = /w—, (12)
mo m

which is fortunately the well-known motion equation of a free harmonic oscillator.

2.3. Systems with an Infinite Number of Degrees of Freedom

The previous analysis was written explicitly for one particle (N = 1) but can be generalized to any N in a straightforward
way. Let us study now the N — oo limit, i.e., nonlocal statistical physics in which variables are no more discrete. In this
continuous limit, a dynamical system is not described by a finite collection of {g{4), p{4)} but by a distribution function
f(4, p, A) in the phase space. We deal with a nondissipative problem; hence, we suppose that the system will evolve without
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No. 1, 1996 GRAVITATIONAL INSTABILITY 57

collisions between its components. We will show that the structure of the equations and the solution of the problem of
evolution of such systems are exactly the same as in the finite case.

First, let us introduce a (nonrelativistic) four-dimensional formalism adapted to this study. We consider the four-vectors
0 =(q, ) and P = (p, g), where g and A are the independent quantities defined in the previous section, which generalize
energy and time for any kind of transformation. In the following, we will consider functionals of f, considered as a function of
{g, p, 4}. In the space of functions of {g, p, i}, we denote the functional derivative 6*. This notation is introduced to
distinguish from the notation é for the functional derivative in the space of functions of {¢, p} only, to be used later. We now
define the meta-action &[ f] through the relation (6 + &)/(d + f) = g. In the special case in which g does not depend on f, it
can be written as

If1= Jfgd%vdﬁ!wl/l : 13)

but this linear formula does not apply, for instance, to the gravitational instability problem. We recall that we have assumed
the generator g to be independent of A, and we note that the meta-action & does not depend on A either. We also introduce
another functional ¢, now defined over the space of functions of {g, p} only (thus at a given 1), and such that §%/5f = g. For
the linear case in which g does not depend on f; it can be written

9[f]1= Jfgd3q p . (14)

Note that, in general, ¥ depends on A. Let us define now a four-dimensional Poisson bracket in the space of functions of

{Q. P} by
L 0x oW 0% oY

VE, Y PZ, Y] = - —, 15
AT ¥1= 2 50, ap, " o, op, 19
and a four-dimensional Lie bracket, relative to the distribution function f, in the space of functionals, as
X otw
We are now able to show that the evolution equation of the system is equivalent to
Taking into account 6 * #[ f]/6* f = g, the latter relation is equivalent to
oA
foﬁ4[5—v, g]d3qd3p di=0. (18)
Following Morrison (1980), an integration by parts (see Appendix) then gives
ot
YA Ja—v P4[g, f]dsqd3p di=0. (19)
Since A" can be any functional, this last relation reduces to 2,[g, f] = 0. Developing
og of o9 of
PJg, f1=Pi[g, f1+ = =——— = =0
and taking into account that g is explicitly independent of A, the equation is finally reduced to
of
— = Pslg, f]. 21

This equation describes the evolution of the distribution function f of a nondissipative system. For the special case of
motion, it is easy to check that it reduces to the usual Liouville equation. Making the mean field approximation, we recover
the Vlasov dynamical equation of collisionless systems. For continuous systems, observables are obtained by averaging
physical quantities following the distribution function in phase space; thus, observables may be seen as functionals " acting
on a positive and normalizable function f of {g, p, A}. Moreover, for any such functional we have

AT _ J% o

V=5 = of 04

d*qd®p . (22)

Injecting equation (21), one has

ax OH
i jé_f Pilg, f1d*qd’p . (23)
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58 PEREZ & LACHIEZE-REY Vol. 465
Using g = d¥%/df, an integration by parts (see Appendix) then gives

ax oA 0%

— = | fPs| —, = |dPq=M,[X, % 24
where we have defined the new Lie brackets M;[", 4], relative to the distribution function f. As for the discrete systems,
M;[., 4] is an A-independent operator; thus, equation (24) can be solved using the Taylor expansion of the exponential

>

lz
%[f] = f[fo] - lMa[g, f](f) |A=lo + 7 Ma[g, Ms[g, f]](f)h:,lo +oe (25)

For dynamical evolution (motion), the generator functional ¢ is the Hamiltonian #[f] of the system. Thus, the time
evolution of any functional £ is given by

2
HLfT=HTfod = tM3[H, A5l +%Ma[=%”, MLA, A 1)isyle=ro + - - (26)

This latter expansion gives the expression of any quantity (mean potential, entropy, etc.) of the system, at time ¢, as a
function of initial conditions only. This may be applied to many problems, as long as the brackets are known. In the following,
we apply it to the problem of gravitational instability.

All these results can be summarized as follows, expressing the symmetries between discrete and continuous nondissipative
systems:

One degree of freedom (variables ¢, p, 1):

Meta-action,
d

dk
Vk(g, p) L;[k, s1(g, p) = 0 <= 7

Evolution,
= P3[k, 9],
Solution,
kig, p) = """ N(g, p) |1=s, -
Infinite number of degrees of freedom [variable f(q, p, 1)]:

Meta-action,

ZLf] Ejfgdf’qdivd/l,

Evolution,

ax
VA[f] L[F, y](f)=0©E=M3[9{, 9],

HLf1= e[ 15 -

Solution,

3. GRAVITATIONAL INSTABILITY

3.1. Dynamical Equations

Here we apply the previous results to the problem of gravitational instability. This problem was introduced in this context
by Kandrup & O’Neill (1994). However, we will not consider in this paper the standard formulation of the problem, using
perturbed quantities with respect to the Friedmann-Lemaitre and a comoving formulation. This formulation would imply
explicit time dependences in the evolution equations or the Hamiltonian, which would forbid the application of the previous
rules. Rather, we calculate the evolution of the total (unperturbed plus perturbed) quantities. Since the evolution of the
unperturbed ones is known trivially, under the form of the cosmological models, a simple difference will provide the
perturbations. We will consider the universe as filled with dust, i.e., pressureless matter only, and we will apply the Newtonian
approximation as usual. Since gravitational instability becomes nonlinear long after the period of matter-radiation equiva-
lence, i.e., when the universe is dominated by pressureless matter, this approximation applies well.

The evolution of cosmic matter is described by the dynamical equation

d’q

F=g=—Vq¢, (27)
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No. 1, 1996 GRAVITATIONAL INSTABILITY 59

and the Poisson equation
A, ¢ = 4nGp (28)

where p is the matter density and ¢ is the gravitational potential. The velocity V = dg/dt. The time derivatives in these
equations are to be taken following the motion, so that d/dt = 0/0t + V - V,. Hereafter, primes will denote partial derivatives
with respect to time 0/0t, i.e., derivative at a fixed (Eulerian) position ¢. The density evolves according to mass conservation
p' = —div (pV).

It is well known that it is possible to express the usual Friedmann-Lemaitre models in a (Newtonian) form obeying these
equations. This will be our unperturbed solution:

Pu=Poa >, (29)
V.=Hq=(d/a)yg, (30)
¢. = 2nGp,q°/3, (31)
where the scale factor a(t) obeys the Friedmann equations
a*a’ = —y/2, (32)
and
a?=vya'-k, (33)
where we have defined y = 87Gp, /3. The scale factor a is normalized to its value at a time t,, chosen as an origin, and p,,
denotes the value of the density at t,; k = —1, 0, or 1 is the curvature factor of space.

3.2. The Vlasov-Poisson System

Gravitational instability is usually described by hydrodynamic equations, to which the Poisson equation is added to
express self-gravity. However, it is not always possible to find a Hamiltonian formulation of hydrodynamics. It is thus
advantageous to work with the Vlasov-Poisson system, which is more general, and from which hydrodynamics can be
deduced as a peculiar case.

Thus, we will consider equation (27) as the dynamical part of a Vlasov equation. This latter, which allows us to follow the
velocity distribution, is advantageous to consider for the Hamiltonian formulation. Hydrodynamics will be treated as a
peculiar case of the Vlasov-Poisson formulation. Assuming particles with unit mass, the matter is described by a distribution
function f(q, p, t) such that

j °ppflg. p. 1) » (34

and the average impulsion at point ¢,

M%0V=meﬂ%nﬂ- 39

Note that the unperturbed distribution function takes the simple form f,(q, p, t) = poa(t) "3 p[p — H(t)q], where Jy, is the
Dirac function. With these definitions, the Liouville equation takes the form

of
a" P oq dq Op 0. (36)

As we will check, the kinetic and potential “energies ” associated with one particle are, respectively, T = p?/2 and ¢(q). The
gravitational potential at a point ¢, is obtained by integrating equation (28) as

rﬂ%nﬂ

,)=—G|d ,
#la0> 1 |4 — 40|

(37
where dI” = d3p d®p is the phase-space volume element.

3.3. Hamiltonian Formulation of Gravitational Instability
3.3.1. The Vlasov-Poisson System

Considering gravitational instability as a motion with respect to time, its generator is the Hamiltonian g = T(p) + ¢,

corresponding to the functional integral

g — g0

so that the functional derivative %/0f = g. The application of the results of the previous sections involves the brackets
M;[«, 9] (with respect to the function f). In order to calculate them, we need to use the following relations, which are
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straightforward to derive:
0 (69 0g
ACIRA )
and
0 (0%9\ Og
oq (5f)_ 2~ e 0

where we wrote ¢ , = 0¢/0q.
This allows us to calculate the evolution of any functional o/ through the fundamental relation

dst
— =M, 9]. (41)

Let us consider a functional .« with its functional derivative 6.2 /0f = A. When A does not depend on f(linear case), equation
(41) implies that

dof
7{ = drAl(q’ D, t)f(qa D, t) 5 (42)
where
04 dg 04 g 04 04
1_ 4.9 ¢4 99 o4 04 4
At =P gl =5 b @)

On the other hand, when 4 depends on f (nonlinear case), the situation is more complicated and, as we will see later, the
functional derivative of 4 must appear in d.<//dt.
3.3.2. Hydrodynamics

It is often sufficient, and this is the general approach, to consider gravitational instability from a hydrodynamic rather than
Vlasov point of view. However, there is no general Hamiltonian treatment for hydrodynamics (except in the case of irrotation-
al flow). To recover hydrodynamics, we may start from the Vlasov description given above and take the appropriate
moments, neglecting the convenient terms, in the standard manner. In fact, it is appropriate to remark that hydrodynamics for
cold matter can be recovered by specifying the distribution function as f(q, p, t) = p(q, t)dp[p — V{4.,]- Since the gas is
considered to be cold and pressureless, all values of p at point ¢ are equal to V. This allows us to recover exactly the usual
description of gravitational instability.

The unperturbed distribution function for hydrodynamics is thus

ft;(q: D, t) = pu(q’ t)(sD[p - Vu(q,t)] . (44)

In the hydrodynamical case, the derivation rule derived above takes a simple form. When we are interested in the evolution
of a functional quantity of the type

o = jd%p(q, nAg, V),

the application of the previous results leads directly to the derivation formula

o = j d’qplq, DA, V),

where 4 and A" are related by equation (43).

3.4. Time Derivatives
3.4.1. Time Derivative of the Distribution Function

It may be more interesting to evaluate the derivative of the gravitational potential at a point ¢,. The expression (37) defines
¢(q0, t) as a functional of f; such that

_4@nt) -G
A= Tl “3)
Clearly,
d (5¢\
i (5—]»)—0’ (%6)
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and
d 5¢) d < 1 )
—(=)=-G6— . 47
dq<5f dg \|q — ¢! )
Applying the results of previous sections, we may now calculate the time derivative of ¢ at point ¢, :

$'(go, ) = —G jd3q @p f(g, p. Vu1(g, P; 90) > (48)

where

1 _[6¢ 5@] d( 1 )
U@, p; g0 = — = Po| 2, 2 | =p- = .

Integration by parts, in the hydrodynamical approximation, leads to

r

1 .
¢'(go, ) =G | d’q div (p¥) . (49)
J 14—l
This equation could have been found directly by deriving equation (37) with respect to time and using the mass conserva-
tion p’ = —div (p¥), but here we illustrate how the method works to calculate any time derivative.

3.4.2. Taylor Development

We have calculated the time derivatives of two peculiar functionals: the distribution function itself and the potential. But
we can also calculate, by applying the method iteratively, the derivatives at any order, of any functional /. This will allow us,
for instance, to calculate its Taylor development. For any functional .« with functional derivative 4, we have shown that the
time derivative ./’ may be written as the integral of A related to 4 by equation (43). It results that the nth-order time
derivative of </ is of the form

oA = Jdl‘ fA™ | (50)
where the A™ can be calculated from the A®~ V. This calculation involves the functional derivative
Sf™ SA™q, p'
2 0= a0+ [ar s [ 22LLg py. 61

In this relation, the last integral term takes into account the nonlinear case in which A™ depends on f. From the above
calculations, it follows that

d d 3A™, p
A" Vg, p) = (p T 3;) {A("’(q, P+ Jdl” f ’[i—((sjqf—p)](q, p)} ; (52)

which reduces to only
4w g, ) = (p 5 — i, ) A%, )] 53)
b dq q dp > >
in the linear case in which A™ does not depend on f.

Let us apply that to calculate some higher order derivatives of the potential. Let us introduce first the notation
J(g — q0) = 1/|q — q, |- Also, we will note the spatial derivatives of any quantity A as

A,ij...k = d‘Iide cedg A (54
For instance, the J ; = —(¢ — ¢,);/|4 — ¢o|* are the components of a vector. With more indices, J ;; _ is a tensor. From
Paoy = G | dT flg, p.)[—p;J {q — qo)], we can apply the previous formula to differentiate again as
¢;:1o,t) =G J‘dr f(q’ D> t)uZ(qa P qO) > (55)
with
d d
uy=—\pj5-—%;5-|piJ.{q—90) = —P:iP;J i(qd — q0) + ¢,:J (g — q0) - (56)
dg; dp;
Substituting in equation (55), integrating by parts, and using the hydrodynamical approximation, we obtain
, 1 d*(pV,V) | dp(d¢/dg)
(g0,t) = —G J‘dsq [ J + . (57)
lg — qol d‘]id‘Ij dg;
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Subsequent differentiation leads to higher order terms. Care must be taken, however, that the functional derivative of ¢” is
not u,, which appears in the previous formula, since u, is nonlinear and depends on the potential ¢ which depends itself on f.
Thus, to calculate ¢® from ¢® = ¢”, we must come back to the original equation (51). First we calculate the functional

derivative
5‘15&0,:) _ . g ou,(q', p'; 40)
[—5f (4, P) = ux(q, p; go) + | AT’ f — o (¢, P) -

We continue by calculating the functional derivative of u, as

Susq, p'; 3l
[%](q, p=J{qd - qo)[ﬁ—})](q) -

After some calculations with no difficulty, the integral in the previous formula may be written

9 —49) @—49)
G | 3¢ p(q )
f qp(q)Iq’—qol3lq—q’l3

Finally, it results that
d’q {d3(pV Vi V) d*[pV{dp/dq)] dLpV{(d*¢p/dq;dq -)} 4 —q0) " (g—9q)
(3) — G i’jik v J1 i i J. + G d3 ’ ’ 0 .
Piaoy |q — g0l | dq;dg;dq, dq;dg; dg; 7rlg) ¢ —q0’lg—q'IP

Similar calculations would allow us to calculate the next order terms, and the Taylor development of the potential may be
written as

(58)

ﬂ+taﬂ+...), (59)

#qo, 1) = (g0, t =0)+ G Idrfo(q’, p’)(tu1 +t? > <

where all quantities are estimated at ¢ = 0.

There is no peculiar difficulty with the resulting formulae, at any order, except for their length, so we will not write them
explicitly. The potential at any point, and at any time (even after shell crossing), may be calculated as a function of initial
conditions only. But the expression is nonlocal, involving the integration of initial quantities (density, velocity, and potential)
over the whole space. As expected, the expressions found are nonlinear, and it is easy to check that their degree increases with
the degree in the time development. Thus, the formulae here are comparable to the perturbative developments usually
performed. Also, it appears that each further degree in the development involves high-order spatial derivatives of the initial
physical quantities, integrated over space. This suggests that the smoother the initial condition, the closer the solution remains
from the linear one.

4. CONCLUSION

We have presented a very general method for dealing with Hamiltonian systems. Although the illustrating case is motion,
i.e., evolution in time, this method applies to any kind of evolution which can be described as a function of a timelike
parameter, like invariances, instabilities, optics, etc. For such systems, the evolution is described by a set of canonical variables
(position and momentum for discrete systems), or by a distribution function in a continuous approach. Having introduced
operators which express the algebraic structure of the problem, we have been able to present an evolution equation for any
quantity, depending on the canonical variables or on the distribution function. We have also presented a formal solution of
this equation, which allows us to calculate any physical quantity as a function of “initial ” conditions only, although under the
form of a development with an infinite number of terms.

These results apply well to the self-consistent problem of gravitational instability, in which the distribution function evolves
in time under its own gravitational interaction. This problem is treated here in the Newtonian approximation which applies in
the cosmological context, when fluctuations evolve with respect to a (dust) Friedmann-Lemaitre model. We have presented
formulae which give an account of the evolution of any quantity depending on the distribution function (or on the mass
density and velocity field in the hydrodynamic approximation). In particular, we have calculated the self-consistent evolution
of the gravitational potential. We have expressed its value at any point, and at any time, under the form of a Taylor
development whose terms of any order may be calculated as functions of the initial conditions only. This applies to the whole
(unperturbed + perturbed) potential, but it is easy to subtract the unperturbed part, which is known analytically, to derive the
evolution of the perturbation. This gives a practical way to calculate the evolution of the potential (or of any quantity like the
density perturbations or the velocity fields) in the context of the gravitational instability theory for the formation of galaxies
and large-scale structures.

In future work, we will compare the development introduced here with other developments introduced in perturbative
(Eulerian or Lagrangian) approaches. We will also treat in more detail a case usually considered in gravitational instability
scenarios, that with no initial velocity perturbations. In any case, this approach gives us a new way to attack the question of
gravitational instability.

J. P. thanks J. M. Alimi, who initiated our discussions.
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APPENDIX
INTEGRATION BY PARTS AND SURFACE TERMS
Let us consider three functions x(q, p), y(¢, p), and z(p, g). We have

0%y 3z 9%y 3z
P 3 3 - < L ]~
JJerson e = [[{(G2 5553 5 (D
each term of the right-hand side of equation (A1) can be integrated by parts,
([ aya s [l 2| [ (0°x 0°2 °z \ s
J] 8 = dqdp—~ xyapaspdq— dy6p36q3+ 6303dqd , (A2)
for the first term and
[ 0%y 0z (| 0% [ (9%x 0z °z
x2S s dadn= || aS| @ || W55 5t x gpeae P94 (A3)

where S, and S, represent, respectively, the two three-dimensional surfaces obtained when ¢ and p go to co. Injecting
equations (A2) and (A3) into equation (A1), one can obtain

3 3
” xP3ly, 2]d°qd’p = ” yPslz, X1 dp + | |xy 5| d°q— J Xy a—i &p . (A4)
op Sp oq Sq
In this last relation, the two last terms generally vanish. Indeed, if
3 3
lim xy Z i 0 and lim xy Z i 0, (A5)
p—>®© q—

then these surface terms vanish. For example, if x or y is the distribution function in the phase space of a Newtonian finite
system, both these terms vanish. For the unperturbed solution describing the cosmological models, it can also be checked that
all surface terms vanish also, so that integration by parts can be applied as well.
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