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TWO-POINT CORRELATIONS IN THE COBE* DMR FOUR-YEAR ANISOTROPY MAPS
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ABSTRACT

The two-point temperature correlation function is evaluated from the 4 yr COBE DMR microwave anisotropy
maps. We examine the two-point function, which is the Legendre transform of the angular power spectrum, and
show that the data are statistically consistent from channel to channel and frequency to frequency. The most likely
quadrupole normalization is computed for a scale-invariant power-law spectrum of CMB anisotropy, using a
variety of data combinations. For a given data set, the normalization inferred from the two-point data is
consistent with that inferred by other methods. The smallest and largest normalizations deduced from any data
combination are 16.4 and 19.6 uK, respectively, with a value ~18 uK generally preferred.

Subject headings: cosmic microwave background — cosmology: observations

1. INTRODUCTION

The detection of large angular scale anisotropies in the
cosmic microwave background (CMB) radiation was first
reported by the COBE DMR experiment in 1992 (Smoot et al.
1992; Bennett et al. 1992; Wright et al. 1992; Kogut et al.
1992). The initial detection was based only on the first year of
flight data. Since that time the DMR team processed and
analyzed the first 2 yr of data and found the results to be
consistent with the first year results (Bennett et al. 1994;
Gorski et al. 1994; Wright et al. 1994a). We have now
processed and analyzed the full 4 yr of DMR observations: this
paper is one of a series describing the results of our analysis.
The maps and an overview of the scientific results are given in
Bennett et al. (1996).

In this paper we analyze the anisotropy in the 4 year DMR
maps using the two-point correlation function as a measure of
the angular power spectrum. The COBE DMR experiment
was designed to measure the CMB anisotropy on angular
scales of =7°, corresponding to spherical harmonic multipole
moments of order € < 30. The DMR has produced full-sky
maps of the CMB temperature at each of three frequencies,
31.5, 53, and 90 GHz, with two independent channels, A and
B, at each frequency. In principle, one can obtain an estimate
of the CMB power spectrum from an anisotropy map simply
by decomposing the map, 7(6, ¢), into spherical harmonic
components and averaging them to find the mean power per
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mode €: T(0, ¢) = D¢ m Gom Yen (0, ¢) with power spectrum
a; = (X f-—dam|?)/(2€ + 1). In practice, however, there are
a number of complications that arise. First, the need to apply
a Galactic cut to the data renders the spherical harmonics
nonorthogonal, thereby coupling the a,, coefficients and
increasing their uncertainty. Moreover, since a? is a quadratic
form, any uncertainty in the a,, (whether due to coupling,
instrument noise, systematic effects, and/or foreground
sources) produces a positive bias in the estimate of the power
spectrum. However, see Gorski et al. (1996) and Wright et al.
(1996) for spherical harmonic-based analyses that account for
these difficulties.

An alternative to estimating the power spectrum is to
evaluate its Legendre transform, the two-point correlation
function. For a given power spectrum with multipole ampli-
tudes C, = (|a,n|*), the predicted covariance between pairs of
map pixels i and j with angular separation «; is

Clay) = (L,T;) = i > (2 + DW? C, Py(cos o), (1)

where 7; is the CMB temperature in pixel i, the angle brackets
denote an average over an ensemble of universal observers, W,
is the experimental window function that includes the effects
of beam smoothing and finite pixel size (W, = G,F,, where
the G, are the Legendre coefficients of the DMR beam
pattern, tabulated by Wright et al. 1994b, and F, are the
Legendre coefficients for a circular top-hat function with area
equal to the pixel area; the coefficients for index level 6 pixels
are available upon request), and P, (cos «;) is the Legendre
polynomial of order €. We estimate the two-point correla-
tion function in our sky by evaluating the average product
of all map temperatures with a fixed angular separation,
C(a) = >,i; wiw; T:T;/>,.; w;w;, where the sum is restricted
to pixel pairs (i, j) separated by an angle «, 7; is the observed
temperature in pixel i after monopole and dipole (and option-
ally quadrupole) subtraction, and w; is the statistical weight of
pixel i. This statistic is straightforward to compute and offers a
quick test of the consistency of the power spectrum from map
to map.

In the approximation that the two-point function can be
treated as a multivariate Gaussian distribution, one can form
a likelihood function with which to estimate the power spec-
trum normalization. In § 2 we present the two-point correla-
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Fic. 1.—Two-point correlation functions obtained from the individual
frequency maps, after monopole and dipole subtraction. Left-hand panels show
the autocorrelation functions obtained from a weighted average of the A and
B channel maps (the point at zero lag is off-scale due to the noise contribution).
Right-hand panels show the cross-correlation of the A and B channels, which
are sensitive only to common structure in the maps. Error bars represent the
uncertainty due to instrument noise, as described in the text. To guide the eye,
the solid line is the autocorrelation of the weighted average of all six channels
maps. All six two-point functions are statistically consistent with each other.

tion data in the 4 yr DMR maps and examine its consistency
from map to map. In § 3 we evaluate the Gaussian likelihood
as a function of the mean expected quadrupole moment,
QOms-ps, under the assumption of a scale-invariant, power-law
spectrum of anisotropy.

2. TWO-POINT CORRELATION DATA

The two-point correlation function, as given above, is the
average product of all pixel temperatures with a fixed angular
separation. The correlation data are binned into angular
separation bins of width 226 with the first bin reserved for all
pixel pairs (i, j) such that i = j, the second bin for pairs with
separation between 0° and 226, and so forth; there are 71 such
bins. For the present analysis we employ the maps pixelized in
Galactic coordinates and use the custom Galaxy cut described
by Bennett et al. (1996), for which there are 3881 surviving
pixels. To minimize the total uncertainty in the two-point data,
due to noise plus cosmic and sample variance, we assign equal
weight to each surviving pixel, w; = 1, instead of w; = 1/0?.
This has the effect of increasing the noise contribution slightly,
but it decreases the sample variance by a slightly larger factor.
Uniform weighting reduces the total uncertainty by a few
percent for the 4 yr data.

The basic two-point functions obtained from the single-
frequency maps are shown in Figure 1. We plot both the
autocorrelation of the weighted sum of channels A and B at
each frequency (the coefficients used to form the weighted
average maps analyzed in this Letter are given in Table 1) and
the cross-correlation between channels A and B. For refer-
ence, we also plot, as a solid line, the autocorrelation of the
weighted average of all six DMR channel maps. The error bar
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TABLE 1
DMR MAP COMBINATION COEFFICIENTS

Map 31A 31B 53A 53B 90A 90B

31 ws?iiiieannnn. 0.611 0389 0 0 0 0

53 WS et 0 0 0579 0421 O 0
O WS?.evrieannnns 0 0 0 0 0382 0.618
53 +90% .......... 0 0 0412 0299 0.110 0.179
31 +53 +90%..... 0.049 0.032 0378 0275 0.102 0.164
Correlation® ...... 0.049 0.032 0378 0275 0.102 0.164

Combination®..... -0.185 —-0.117 0367 0266 0256 0413

? Maps are formed using the above coefficients according to T =
> Chmr Thmr, Where i = 31A,...,90B is a channel index, Chyr are the
DMR map coefficients given above, and Tpyr are the DMR maps in uK of
thermodynamic temperature. The resulting map has units of uK, thermody-
namic.

b Same as 31 + 53 + 90 except that each channel map is modified by
subtracting best-fit Galactic template maps, as described in Kogut et al. (1996a).
The final result is equivalent to 7= >,; ChmrTomr — 0.314T5; — 3.364T5,, where
Chmr are the coefficients specified above, Tj; is the Haslam map in K, and T,
is the DIRBE 140 um map, in MJy sr*. The resulting map has units of uK,
thermodynamic.

¢ Coefficients give the most sensitive combination of the 31, 53, and 90 GHz
data, in thermodynamic units, consistent with the constraint that emission with
a spectral index By = —2.15 (free-free emission) be nullified. The channel
maps are corrected for synchrotron and dust emission by subtracting best-fit
Galactic template maps, as described in Kogut et al. (1996a). The final result is
equivalent to T = ,; ChmrTbmr + 0.170Ty — 2.055T, where Chyr are the
coefficients specified above, Ty is the Haslam map in K, and 7}, is the DIRBE
140 pm map, in MJy st!. The resulting map has units of uK, thermodynamic.

attached to each point represents the rms due to instrument
noise, based on 2000 Monte Carlo simulations that include
only instrument noise. The plot clearly demonstrates excellent
consistency of the two-point correlations at 53 and 90 GHz,
even in the absence of any Galactic signal corrections. The
31 GHz data exhibit a small discrepancy from the mean data
that is primarily quadrupolar and is presumably due to resid-
ual Galactic emission.

The data are quantitatively tested for self-consistency by
forming differences of the two-point functions and comparing
them to simulations. The statistic for the test is defined as
X =ACT-M™' - AC, where AC is the observed difference
between two-point functions, with entries AC, = C{" — C?
(a denotes an angular separation bin, superscripts 1 and 2
denote specific data selections), and M = ((AC)(AC)") is the
covariance matrix computed from simulations. For each real-
ization in the Monte Carlo, we generate a single realization of
a scale-invariant power-law sky with unit normalization, and
six noise maps, one per channel, with appropriate noise level
and coverage (Bennett et al. 1996). We assume the noise is
uncorrelated from pixel to pixel, based on the analysis of
Lineweaver et al. (1994). It is then possible to generate an
ensemble of simulated two-point functions for any desired
auto- or cross-correlation function constructable from the
DMR data. We generate such an ensemble for each of the six
panels depicted in Figure 1; note that a given realization of the
six combinations shares a common CMB signal. We compute
x* as defined above for each possible difference and compare
its value to the ensemble derived from the simulations. Note
that our computation of the covariance matrix from simula-
tions automatically includes bin-bin correlations in the defini-
tion of 2. In no case does the observed value of y? exceed the
5% confidence upper limit derived from the simulations,
which corroborates the visual consistency of the data.

The two-point functions obtained from selected multifre-
quency combinations of the data are shown in Figure 2. We
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F16. 2—Two-point correlation functions obtained from the multifrequency
maps after monopole and dipole subtraction. Top left: autocorrelation function
of the weighted average map constructed from all six DMR channels. Top right:
cross-correlation function of the 53 GHz weighted sum map with the 90 GHz
weighted sum map. Bottom left: autocorrelation function of the weighted
average map with best-fit Galaxy template maps subtracted from the map
(Kogut et al. 1996a). Bottom right: autocorrelation function of the linear
combination map designed to cancel free-free emission. This map has a best-fit
model of the synchrotron and dust emission also subtracted. In all panels the
error bars represent the uncertainty due to instrument noise, as described in
the text. Zero-lag point in each of the autocorrelation functions is off-scale due
to the noise contribution. To guide the eye, the solid line is the autocorrelation
of the weighted average map (top left panel).

plot the autocorrelation of the weighted average map, the
cross-correlation of the 53 and 90 GHz maps, and the auto-
correlation of two maps which have had residual, high-latitude
Galactic emission modeled and removed (Table 1 and Kogut
et al. 1996a). Note the excellent consistency between the
autocorrelation of the weighted average map, which is sensi-
tive to all structure in that map, and the cross-correlation of
the 53 and 90 GHz data, which is sensitive only to common
structure in the maps. Note also that the two methods used to
model and remove high-latitude Galactic emission introduce
only small changes in the two-point data, and hence in the
angular power spectrum. This observation, coupled with the
fact that the correlation and combination model maps render
very similar two-point functions, supports the claim of Kogut
et al. (1996a) that the free-free emission at high latitudes is (1)
weak, and (2) approximately traced by the DIRBE 140 um
map at 7° resolution.

3. QUADRUPOLE NORMALIZATION

Given a power-law model of initial Gaussian density fluctu-
ations, P(k) < k", where P(k) is the power spectrum of
density fluctuations as a function of comoving wavenumber &,
it is possible to derive the corresponding angular power
spectrum of CMB fluctuations, C; = (|a,,|*) (Bond & Efsta-
thiou 1987). The result is

T+ (n — 1)/2IT[O - n)/2]
T+ (5 — n)2IT[(3 + n)/2]

For the scale-invariant case, n = 1, this reduces to
C, = 6C,/[€(£ + 1)], which has one free parameter, the
mean quadrupole moment C,. We customarily express the
normalization in terms of Q. ps = [(5/4)C,]"?, the mean
rms temperature fluctuation expected in the quadrupole com-
ponent of the anisotropy. We determine the most likely

G
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quadrupole normalization, Q,,-ps, from the two-point func-
tion by evaluating the Gaussian approximation to the likeli-
hood function

—1/2ACT -M~1 - AC

—_—. 3
ydet (M) ®)
Here AC” and AC are row and column vectors with entries
AC, = C(a,) — (C(a)), a=0,...70, and M = ((AC)(AC)") is
the covariance matrix of the correlation function. The angle
brackets denote averages over both measurement errors and
over the ensemble of anisotropy fields implied by cosmic
variance for a given C,. We estimate the mean correlation and
covariance matrix as a function of Q,,s_ps using Monte Carlo
simulations described above. The simulations account for all
important aspects of our data processing including monopole
and dipole (and quadrupole) removal on the cut sky. Because
of this subtraction, the bins of a given correlation function are
not all independent so the covariance matrices derived from
the simulations are formally singular. We invert these matrices
to form )* using singular value decomposition, which permits
an unambiguous identification of the zero modes that arise
due to multipole subtraction. We then evaluate the logarithm
of the likelihood, In £ = —3{x* + In [det(M)] + const.}, in
steps of 1 uK in Q.s-ps, spline the result to a resolution of
0.01 pK, and identify the maximum.
We test the likelihood method for accuracy by feeding the

‘g(QrmsfPS) oc

TABLE 2
SCALE-INVARIANT POWER SPECTRUM NORMALIZATION

emin = 2b €min = 3b
Qrms—PS Qrms—PS
Mar 1° Map 2 (mK) X (MK) X
Single-Frequency Cross-Correlation
3lA 31B 182+41 683 180x46 710
S3A ...l 53B 183+16 735 186x17 69.6
90A ...l 90B 164 +22 723 184+23 710
Single-Frequency Autocorrelation
3Iws .t 31ws 171+£37 679 176+40 79.6
S53wWs .oieiiinnn, 53ws 187+16 999 194+16 975
90WS .viininnns 90ws 175+20 635 190+22 615
Multifrequency Cross-Correlation
S53ws oeeiiinl, 90ws 172+15 608 178+x15 64.1
538S iiiiiiiinnn, 90ss 170+16 612 179+x16 623
Multifrequency Autocorrelation
534+90......... 53 +90 185+14 842 196x15 835
31+53+90... 31+53+90 186+14 800 193+14 782

Multifrequency Autocorrelation with Galaxy Model

175+14 762
16.7+2.0 89.2

185+14 783
178 £22 924

Correlation
Combination

Correlation .....
Combination....

# Coefficients that comprise the map combinations in these columns are
given in Table 1, except for 53ss and 90ss, which are straight sum maps:
(A + B)/2.

b ¢ .in is the lowest order multipole remaining in the map after subtracting a
best-fit multipole of order €y, — 1. Oms—ps is the most likely quadrupole
normalization, after calibrating the likelihood with Monte Carlo simulations.
X* is tabulated, for reference, with respect to the mean of a scale-invariant
model with the corresponding most likely normalization.
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simulated two-point functions into the likelihood function and
solving for an ensemble of O,,,s_ps maxima. We define the bias
in our method to be AQ = (Quax) — O, Where (Q,....) is the
mean of the recovered maxima and Q,, is the simulation input
normalization. The resulting bias depends on the noise level in
the data, but ranges from —0.2 to —0.4 uK for the all the cases
except the 31 GHz data where it is ~—1 uK. We correct for
this bias in all reported results. The uncertainty we assign to
Oms—ps is the rms scatter of the ensemble Q,,.,, which typically
exceeds the rms of the Gaussian likelihood by about 10%.

The corrected power spectrum normalization deduced from
a variety of data combinations is given in Table 2. The smallest
and largest normalization deduced from any data combination
are 16.4 and 19.6 pK, respectively, with values ~18 uK
generally preferred. The normalization inferred from the
two-point function is now in better agreement with other
determinations than was the case with the 2 yr data (Bennett
et al. 1994). The change is due to data selection: with the 2 yr
data, we only analyzed the 53 X 90 GHz cross-correlation
function; with the 4 yr data we have analyzed many more data
combinations, including the autocorrelation of a weighted
average multifrequency map which yields a normalization
~1.5 pK higher than the cross-correlation. The multifre-
quency autocorrelation is more comparable to the data ana-
lyzed by other methods, and the two-point analysis yields
consistent results in that case. For a comparison, see Table 2
of Bennett et al. (1996). In general, the normalization inferred
from the 4 yr data is slightly less than we found after 2 yr, in
part because of the extension of the Galaxy cut. For compar-
ison, the 31 + 53 + 90 GHz autocorrelation with a straight 20°
cut yields a best-fit normalization of Q. ps = 19 uK. As
shown in Table 2, the effects of further modeling and subtrac-
tion of Galactic emission are less than 1 uK in the normaliza-
tion.

While a likelihood analysis is capable of inferring the best-fit
parameters for a given model, it does not say anything per se
about the goodness of fit. For reference we have included in
Table 2 the values of x* at the maximum likelihood value of
Qms—ps (With n = 1). Since the two-point function is only
approximately multivariate Gaussian distributed, our tabu-
lated statistic is only approximately x* distributed. However,
we have used our Monte Carlo simulations to compute the
expected distribution of this statistic and find it to be approx-
imately x* with a mean of ~70 and a standard deviation of
~12. The values computed with the DMR data are very
consistent with this distribution, implying that the data are well
fit by a scale-invariant power spectrum.

Analyses of Qrms—ps—1 have also been reported by Goérski et
al. (1996), Hinshaw et al. (1996), Kogut et al. (1996b), and
Wright et al. (1996). All results lie between 16.4 and 19.6 uK,
with most between 17.5 and 18.5 K. In general, all methods
for analyzing a given data combination give consistent results,
while there is modest dependence on data selection. Fortu-
nately, this dependence does not exceed the statistical uncer-
tainty due to cosmic variance and instrument noise. Based on
our judgment, a reasonable value for the normalization of a
scale-invariant spectrum is Qps_ps-1 = 18 = 1.6 pK, where
the quoted error is slightly dilated, relative to the statistical
error, to encompasses the range of normalizations observed in
different data subsets.
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paper possible: the NASA Office of Space Sciences, the COBE
flight operations team, and all of those who helped process
and analyze the data. We thank our referee, Ken Ganga, for
comments that helped improve the clarity of this paper.
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